十七章--高斯光束的物理特性

十七章--高斯光束的物理特性
十七章--高斯光束的物理特性

17章--高斯光束的物理特性

之前的章节建立了计算在真空中的光束特性的分析工具,然而,我们也需要对真实光束特性的物理的,直观的理解--下两节将尝试建立一个了解。

特别地,我们以前章节介绍的哈密顿-高斯和拉格拉日-高斯模型都是数学方面的,而且也为拥有有限直径反射镜的、稳定的、激光共振器的传输模型提供了好的近似。因此高斯或者类高斯光束在分析激光问题和有关光学系统的问题得到广泛的应用。高斯光束特性的物理和数学理解是特别重要的。在这章里我们回顾在真空中的理想高斯光束的大多数重要的物理特性。

17.1 高斯光束特性

在本节中我们首先观察低阶高斯光束物理的性质,包含光圈传输,平行光距离,远场角光束传播和高斯光束传播的其他的实际方面。

解析表达式

和在横向尺寸的平面波前R0=让我们总结低阶高斯光束的特点在一斑点尺寸ω

∞情况下,在一个简化的参考平面,我们令z=0.从今以后,这个平面将被显而易见的原因证明为束腰。

如图17.1所示:

在另外平面z的高斯光束的归一场方向图将有以下方程

复合的曲率半径与光斑的尺寸和曲率半径在任意z平面都有以下定义关系:

在真空中参数遵守传输定理:

有初始值

记在这些方程里的λ的值为光束在这些介质中传输的放射波长。

高斯光束所有重要的性质都能用束腰尺寸ω

0和z z R

?比值用以下方程联系:

换句话说,沿场方向的整个高斯光束以在束腰上的单一的因素ω

(或者q0?,或者z R)为特点,还有在介质传输的波长λ。

光圈传输

在分析真空中理想高斯光束传播特性前,我们可以简要的了解在任何真正的光学系统存在的有限尺寸光孔的渐晕效应. 光斑尺寸半径ω之后,高斯光束的强度减弱是非常迅速的。

一个实际的光孔必须是多大才能使高斯光束上的截断效应之前能被忽略。

猜想我们定义一束光的总功率为P=?|u?|2dA ,其中dA表示横截面的面积,在孔尺寸ω中高斯光束的辐射强度变化如下:

有效直径和均匀的拥有相同峰值强度和相同总功率的柱状光束的面积作为一束柱状高斯光束将是:

如图17.2所示。

孔明显比所需的要大,然而,要穿过一个真正的光斑尺寸为ω的,没有减掉外沿的高斯光束。例如,光斑尺寸为ω的高斯光束通过集中在直径为2a的圆孔时有极小的的能量会转让掉,,如图17.3所示:

图中标出了圆孔半径a的圆孔对于光斑尺寸ω光的传输比值。半径a=ω的孔可以传输高斯光束86%的总功率。我们定义光衰减到86%或者1e?时为孔尺寸。

然而过去记录里我们有更有用的归纳总结,当圆孔半径为a=(π2?)ω或者直径为πω时,孔将通过高斯光束超过99%的总功率。我们经常运用这作为实际的设计准则来设计高斯光束的孔面积,趋向于取“d=πω”或者是99%准则。(当d=3ω时,我们可以很好的观察到光孔将传输98.9%的功率.)图17.4展示

一些高斯光束重要的直径落在高斯光束轮廓上。

光圈衍射效应

然而,光学设计中应该注意到,与圆孔不一样的是方形边缘的孔,即使他们之削弱了一束光总功率中很小的一部分,也会产生光圈衍射效应如图17.5,这将致使传输光束在近场(fresnel)和远场(Fraunhofer)辐射图形产生剧烈的变形。

我们将在接下来的章节里介绍,例如,理想高斯光束在通过光斑尺寸为d=πω且有锐利边缘的圆孔时产生的衍射效应导致强度变化ΔI/I≈±17%的近场衍射涟漪,同样在远场轴向的峰强度大约17%的衰减。我们必须放大有锐利边缘的孔的尺寸d≈4.6ω来减少1%的衍射涟漪效应的影响。

光束的准直:瑞利半径和共焦参数

另外一个重要的问题是理想高斯光束从束腰区域传播出来时衍射分散扩大的速度有多少,后者,实际上,我们要知道一束准直的高斯光束开始很大的分散之前的距离是多少?

光斑尺寸ω随距离的变化由方程17.5给出,图17.6展示了两个不同的束腰

半径ω

01和ω

02

> ω

01

,随着传输的距离剧烈的扩大。主要点是当入射光斑

在束腰的尺寸ω

越小,光束由于衍射分散得越迅速;再近场内保持准直一段比较短的距离;在远场分散一个大的束角。

实际上,在光束直径增加到束腰时的√2倍,或者是光斑面积加倍时,光束从束腰传播出来的距离由以下参数简单给定

术语瑞利半径有时候用于天线原理,描述准直的光束通过直径为d(假设d》λ)天线孔后开始剧烈的分散时的距离z≈d2/λ。因此我们采用相同的术语命名z R≡π

ω

2/λ。高斯光束从束腰传播出时,瑞利范围标记了在‘近场’(fresnel)和‘远场’(fraunhofer)区域的分解线。

换一种说法来讲,假如一束高斯光束从一个孔聚焦到束腰然后再扩散,在斑尺寸

为√2ω

面之间的全部距离b可以表示为

b=2z R=2πω02

λ

=confocal parameter (10)

共焦参数广泛用于描述高斯光束。,如图17.7所示,瑞利范围z R≡b/2在运用于大多数高斯光束有关的公式里。

准直高斯光束传播

在实际情况下,一束光的准直束腰区域在超过多少距离后扩大?为对这个问题得到更深的了解,我们可以设计高斯光束从一个直径为D的有微小汇聚的初始光圈传播出来,入图17.8所示,结果是光束在离开瑞利范围后缓慢的聚焦到束腰上,其尺寸为ω

,然后又从新扩散到另一边的相同直径D(或者说相同聚焦界限)的瑞利范围上。例如,我们选择孔直径为πω或者是穿过总功率为99%

原则,所以我们在每一个结尾选定D=π×√2ω

然后准直光束距离和传输孔尺寸之间的关系用公式表达为

Collimated range=2z R=2πω02

λ≈D2

πλ

.

(11)

图17.8和表17.1展示了两束不同波长激光准直范围的典型的数据。一束可见光通过1cm的光孔能投射出有几毫米的有效直径的光束,它在传播50米后者更远距离后没有严重的衍射。

这样的光束能用于例如在建设项目中做准直的‘无重力的弦’。在光电池列阵的辅助下,能很容易的发现这样一束光的中心,而且在整个传输距离里准确性好于ω/20,或者一毫米的小部分。

远场光束角:“礼帽”准则

接下来我们设想在远场情况下,当光束尺寸随距离变化线性变化时,如图17.9.在z>>z R的远场下光束传播的角度是多少?

由高斯光束方程(17.1~17.5),在远场中从尺寸为ω0的束腰通过的高斯光束,它的1/e 强度斑尺寸如下

ω(z )=ω0z

z R

=

λz

πω0

(z>>z R ) (12)

化简为

ω0×ω(z )≈

λz π

(13)

将束腰的光斑尺寸和远场联系起来。高斯光束在远场中呈角度传播能用几种方法联系近场光束尺寸后者孔面积,这基于我们的要求。

例如,远场沿轴向的光束强度如下

因此,在轴向与总功率相同的光束强度分散到面积πω2

(2)/2=λ2

z 2

/2πω02

在远场中相等的‘礼帽’分散的立体角ΩTH (z),由下给出

与此同时,由17.7给出的方程A TH =πω02

/2为‘相同大礼帽’的柱状光束面积。这两个参数的乘积为

凹凸函数的性质

凹凸函数的性质 李联忠1 文丽琼2 1 营山中学 四川营山 637700 2营山骆市中学 四川营山 638150 摘要:若函数f(x)为凹函数,则n f f f n f x x x x x x n n ) ()()()( 212 1 +++≤ +++ 若 函数f(x)为 凸函 数 , 则 n f f f n f x x x x x x n n ) ()()()( 212 1 +++≥ +++ 从而使一些重要不等式的证明更简明。 中图分类号: 文献标识号: 文章编号: 高二数学不等式,教材上只要求学生掌握两个数的均值不等式,教材上的阅读材料中,证明了三个数的均值不等式,从而推广到多个数的情形。学有余力的学生,会去证多个数的情形。仿照书上去证,几乎不可能。下面介绍凹凸函数的性质,并用来证明之,较简便易行。 凹函数定义 若函数f(x)上每一点的切线都在函数图像的下方,则函数f(x)叫做凹函数。如图(一) 凸函数定义 若函数f(x)上每一点的切线都在函数图像的上方,则函数f(x)叫做凸函数。如图(二) 性质定理 若函数f(x)是凹函数,则 n f f f n f x x x x x x n n ) ()()()( 212 1 +++≤ +++ 若函数f(x)是凸函数,则 n f f f n f x x x x x x n n ) ()()()(2121 +++≥ +++ 证明:若函数f(x)是凹函数,如下图

点P ( )( ,2 1 2 1 n f n x x x x x x n n ++++++ )在f(x)上 设过P 点的切线方程为:y=ax+b 则 b n a n f x x x x x x n n ++++? =+++ 2 1 21 )( (1) ∵f(x) 是凹函数,切线在函数图像下方 ∴b a f x x +≥11)(;b a f x x +≥22)(;…;b a f x x n n +≥)( ∴ b n a n f f f x x x x x x n n ++++? ≥+++ 2 1 21) ()()( (2) 由(1),(2)得 n f f f n f x x x x x x n n ) ()()()( 212 1 +++≤ +++ 若函数f(x)为凸函数,如下图 点P ( )( ,2 1 2 1 n f n x x x x x x n n ++++++ )在f(x)上 设过P 点的切线方程为:y=ax+b 则 b n a n f x x x x x x n n ++++? =+++ 2 1 21 )( (1) ∵f(x) 是凸函数,切线在函数图像上方 ∴b a f x x +≤11)(;b a f x x +≤22)(;…;b a f x x n n +≤)(

大学毕业论文-高斯光束通过梯度折射率介质的传输特性

本科毕业设计论文 设计(论文) 题目高斯光束通过梯度折射率介质中的传输特性 指导教师 姓名___________ 辛晓天________ ____ 学生 姓名___________ 赵晓鹏________ ____ 学生 学号_________ 200910320129___ ___ _院系_______理学院________ _ 专业 ____ 应用物理_____ _ 班级____ 0901___ _

高斯光束通过梯度折射率介质中的传输 特性 学生姓名:赵晓鹏指导教师:辛晓天 浙江工业大学理学院 摘要 本文利用广义惠更斯-菲涅耳衍射积分(Collins公式)法,导出了高斯光束在均匀介质和梯度折射率介质中传输的解析表达式。对高斯光束在均匀介质和梯度折射率介质中传输特性进行了分析,重点分析了梯度折射率系数和传输距离对传输特性的影响。结果表明,高斯光束在梯度折射率介质中传输时,随着梯度折射率的变化,轴上光强分布呈周期性变化;在梯度折射率系数一定时,其轴上光强分布关于光强最大位置是对称的。 关键词:广义衍射积分法、高斯光束、均匀介质、梯度折射率介质、传输特性 - 1 -

Propagation properties of Gaussian beams in Gradient-Index medium Student: Zhao Xiao-Peng Advisor: Xin Xiao-Tian College of Science Zhejiang University of Technology Abstract Using the generalized Huygens Fresnel diffraction integral (Collins formula), this paper deduces the analytical expression of Gauss beam in a homogeneous medium and gradient refractive index medium.The Gauss beam propagation in homogeneous media and the gradient refractive index medium are analyzed, and analyze the influence of gradient refractive index coefficient and transmission distance of the transmission characteristics.The results show that Gauss beams in the gradient index medium transmission, along with the change of gradient refractive index, light intensity on axis changes periodically;In the gradient refractive index coefficient is fixed, the axial intensity distribution of light intensity maximum position is symmetrical. Keywords:Generalized diffraction integral; Gaussian beam; homogeneous medium;Gradient-index media; Propagation properties - 2 -

基于matlab高斯光束经透射型体光栅后的光束传输特性分析(附源程序)

目录 1 基本原理 (1) 1.1耦合波理论 (1) 1.2高斯光波的基本理论 (9) 2 建立模型描述 (10) 3仿真结果及分析 (10) 3.1角度选择性的模拟 (10) 3.2波长选择性的模拟 (13) 3.3单色发散光束经透射型布拉格体光栅的特性 (15) 3.4多色平面波经透射型布拉格体光栅的特性 (17) 4 调试过程及结论 (18) 5 心得体会 (20) 6 思考题 (20) 7 参考文献 (20) 8 附录 (21)

高斯光束经透射型体光栅后的光束传输 特性分析 1 基本原理 1.1耦合波理论 耦合波理论分析方法基于厚全息光栅产生的布拉格衍射光。当入射波被削弱且产生强衍射效率时,耦合波理论分析方法适用耦合波理论分析方法适用于透射光栅。 1.1.1耦合波理论研究的假设条件及模型 耦合波理论研究的假设条件: (1) 单色波入射体布拉格光栅; (2) 入射波以布拉格角度或近布拉格角度入射; (3)入射波垂直偏振与入射平面; (4)在体光栅中只有两个光波:入射光波 R 和衍射光波 S; (5)仅有入射光波 R 和衍射光波 S 遵守布拉格条件,其余的衍射能级违背布拉格 条件,可被忽略; (6)其余的衍射能级仅对入射光波 R 和衍射光波 S 的能量交换有微小影响; (7)将耦合波理论限定于厚布拉格光栅中; 图1为用于耦合波理论分析的布拉格光栅模型。z 轴垂直于介质平面,x 轴在介质平面内,平行于介质边界,y 轴垂直于纸面。边界面垂直于入射面,与介质边界成Φ角。光栅矢量K垂直于边界平面,其大小为2/ =Λ,Λ为光栅周期,θ为入射角。 Kπ 图1布拉格光栅模型

高斯函数的一个重要性质

西南民族大学学报·自然科学版第33卷第2期 Journal of Southwest University for Nationalities ?Natural Science Edition Apr. 2007___________________________________________________________________ ___________________________ 收稿日期:2006-11-25 作者简介:付萍(1984-), 四川师范大学数学与软件科学学院2006级硕士研究生, 廖群英(1974-), 女, 河南师范大学副教授. 基金项目:四川省教育厅青年基金(2005B024)项目资助. 文章编号:1003-2843(2007)02-0295-04 高斯函数的一个重要性质 付萍1, 廖群英2, 李莎2 (1. 四川师范大学数学与软件科学学院, 四川成都 610066;2. 河南师范大学数学与信息科学学院, 河南新乡 453002) 摘 要: 从素数与合数两方面入手, 研究阶乘、整除及高斯函数三者间的关系, 归纳出高斯函数的一个重要性质:若n 是一个正整数, 则()()1!1n n n ?????+?? 是偶数. 关键词: 高斯函数; 素数; 合数 中图分类号: O156.1 文献标识码: A 1 引言 设x 为任一实数, 用[x ]表示不超过x 的最大整数, 称[x ]为高斯函数. 由定义立刻得到下列性质[1]: (1) [][]1x x x ≤<+, []1x x x ?<≤. (2) [][]n x n x +=+, n 是整数. (3) [][][]x y x y +≤+. (4) 当x 不是整数时, [][]1x x ?=??;当x 是整数时, [][]x x ?=?. (5) 若,a b 是任意两个正整数, 则不大于a 而为b 的倍数的正整数的个数是a b ?????? . 1957年闵嗣鹤教授、严士健教授在文[1]中利用以上的性质(3)和(5)已解决了!n 的分解、组合数是整数等问 题. 2000年殷堰工老师[2]将!n 的标准分解式、 组合数是整数等结论很好地运用到数学竞赛中, 提供了解含阶乘整除问题的一种有效的方法. 本文进一步从素数与合数两方面入手, 对阶乘、整除及高斯函数三者间的关系进行分析, 最终得出高斯函数的一个重要性质, 即如下定理: 定理 设n 是一个大于零的整数, 则??????+?)1()!1(n n n 是偶数. 2 预备知识 为完成定理的证明, 先做以下的准备工作. 引理2.1[3](Wilson 定理) 设p 是素数, 则()()1!10mod p p ?+≡.

高斯函数

高斯函数[x] 程乐根 1 一、定义 ,[][]R x R x x y x Z ∈=1、定义:设用表示不超过的最大整数。 通常称函数为取整函数,也叫高斯函数。显然,其定义域是,值域是。 {}=[]{}R [0,1)x x x y x x -=2、进一步,记则称函数为小数部分函数,它表示的是的小数部分, 显然,其定义域是,值域是。 2 二、高斯函数y=[x]的性质 121212121212**,1[]. [],,,[][]. ,[][],().,,[][][].,[][],(). [] ,[][],(). x R x x x y x x x R x x x x m Z m x m x x R x x R x x x x n N nx n x x R x x n N x R n n ?∈-<≤=?∈≤≤∈+=+∈∈+≥+∈≥∈∈=∈性质1:性质2:函数是不减的函数,即若则性质3:若则有其中性质4:若则性质5:若则其中性质6:若则其中3 二、高斯函数y=[x]的性质 **23,[1,][],![][][]... n N x x x n n n N n n n n p p p p ∈∈+++定理1:若是正实数,则在区间中内, 恰有个整数是的倍数。 定理2::若则在的质因数分解式中, 质数的指数是4 三、函数y={x}的性质 *{}0. ,{}{},().,,, 0,{}{}. x x Z m Z m x x x R m aq r m Z a N m r r a a a =∈∈+=∈=+∈∈≤<=性质1:的充要条件是性质2:若则有其中性质3:若则53[] 3.(20) x x -=例1:解方程:第届莫斯科数学竞赛题6

高斯光束的特性实验

实验二 高斯光束的测量 一 实验目的 1.熟悉基模光束特性。 2.掌握高斯光速强度分布的测量方法。 3.测量高斯光速的远场发散角。 二 实验原理 众所周知,电磁场运动的普遍规律可用Maxwell 方程组来描述。对于稳态传输光频电磁场可以归结为对光现象起主要作用的电矢量所满足的波动方程。在标量场近似条件下,可以简化为赫姆霍兹方程,高斯光束是赫姆霍兹方程在缓变振幅近似下的一个特解,它可以足够好地描述激光光束的性质。使用高斯光束的复参数表示和ABCD 定律能够统一而简洁的处理高斯光束在腔内、外的传输变换问题。 在缓变振幅近似下求解赫姆霍兹方程,可以得到高斯光束的一般表达式: ()2 2 2 () [ ] 2() 00 ,() r z kr i R z A A r z e e z ωψωω---= ? (6) 式中,0A 为振幅常数;0ω定义为场振幅减小到最大值的1的r 值,称为腰斑,它是高斯光束光斑半径的最小值;()z ω、()R z 、ψ分别表示了高斯光束的光斑半径、等相面曲率半径、相位因子,是描述高斯光束的三个重要参数,其具体表达式分别为: ()z ωω= (7) 000 ()Z z R z Z Z z ?? =+ ??? (8) 1 z tg Z ψ-= (9) 其中,2 00Z πωλ = ,称为瑞利长度或共焦参数(也有用f 表示)。 (A )、高斯光束在z const =的面内,场振幅以高斯函数2 2 () r z e ω-的形式从中心向外平滑的减小, 因而光斑半径()z ω随坐标z 按双曲线:

2 20 ()1z z Z ωω - = (10) 规律而向外扩展,如图四所示 高斯光束以及相关参数的定义 图四 (B )、 在(10)式中令相位部分等于常数,并略去()z ψ项,可以得到高斯光束的等相面方程: 2 2() r z const R z += (11) 因而,可以认为高斯光束的等相面为球面。 (C )、瑞利长度的物理意义为:当0z Z = 时,00()Z ω= 。在实际应用中通常取0z Z =±范 围为高斯光束的准直范围,即在这段长度范围内,高斯光束近似认为是平行的。所以,瑞利长度越长,就意味着高斯光束的准直范围越大,反之亦然。 (D )、高斯光束远场发散角0θ的一般定义为当z →∞时,高斯光束振幅减小到中心最大值1e 处与z 轴的交角。即表示为: 00 ()lim z z z ωθλπω→∞ == (12) 三、实验仪器 He-Ne 激光器, 光电二极管, CCD , CCD 光阑,偏振片,电脑 四 实验内容: (一)发散角测量 关键是如何保证接收器能在垂直光束的传播方向上扫描,这是测量光束横截面尺寸和发散角的必要条件。

高斯光束强度分布特性研究

- 108 - 第19期2018年10月No.19October,2018 无线互联科技 Wireless Internet Technology 激光器自产生以来,已广泛应用于科学技术、通信、医学等各个领域。高斯光束在激光器中的研究是更好地利用激光器的关键。高斯光束(如厄米-高斯光束、拉盖尔-高斯光束[1],可用于描述矩形和圆形对称下的高阶激光模,其性质已被人们深入研究。高斯光束的束腰半径和位置、远场发散角、衍射放大系数和高斯光束通过透镜的变换规律是描述高斯光束基本特性的重要物理量和规律,也是激光物理教学的重要内容。1 设计思想 本文激光实验采用等距四点采光测量法[2],激光光束被定义为垂直于光轴的截面上,强度分布为最大值e 的平方分之一。在坐标轴上任意取4个点,其中一个点等于c ,其他3个点与该点差的绝对值相等,并且值相等,该值小于所测的光束半径,经过计算可得到强度分布。通过搭建实验平台并调试,能够接收到高斯光斑。这种方法的优势在于,它可以较为准确地判断这一被测量的光束是否为高斯光 束,而且还能求出此光束的束径和径向强度分布。系统方案流程如图1所示。 图1 系统方案流程 2 实验结果2.1 实验原理 等距四点采光测量法其实是一种基于等距离三点采光测量方法的新原理。根据这个原理,只需要同时测量光束截 面中任意相等间隔的4个点的光强,就可以定量地确定被测光束是否为高斯光束。在高斯光束的情况下,可以根据四点强度给出高斯光束的光束直径和径向强度分布。高斯光束的鉴别测量仪是一种基于四点法原理的新型仪器。这种发明将阵列接收元件以及计算机技术有机地结合起来,可以同时对光束截面中等距坐标点的光强进行采光测量,并且可以对测量数据以及光谱图进行打印和说明,从而达到定量判别和 测量高斯光束的目的[3] 。2.2 界面设计 实验中采用CCD 来接收光斑,利用Matlab 对激光的输出特性进行GUI 界面设计,界面中可以对像素值、波长、束腰半径、传播距离等进行选择,通过设置不同的参数值,可以 得到高斯光束传播距离不同时,振幅强度分布的示意图[4] 。 当输入的像素值为500,波长为0.568 μm ,束腰半径为1 mm ,传播距离为1 m 时,高斯光束传播强度分布仿真如图2所示。 图2 传播距离1 m时高斯强度分布 作者简介:田园(1984— ),女,陕西西安人,讲师,硕士;研究方向:测试计量技术与仪器。 高斯光束强度分布特性研究 田 园1,周 勖2 (1.西安工业大学北方信息工程学院,陕西 西安 710025;2.西安电力高等专科学校,陕西 西安 710032) 摘 要:随着高科技的发展和物理光学的研究和探索不断深入,高斯光束的研究产品已广泛应用于科技、通信和医学等各个 领域。文章在GUI 界面下完成对高斯光束强度分布的仿真,能够通过Matlab 软件比较准确地分别获得高斯光束传播1 m ,10 m ,20 m 时不同强度分布图,以及能够通过系统程序显示输出的参数值。通过高斯光束强度分布的仿真图能够比较直观地看到不同传播距离时高斯光束强度分布的不同变化。这一系统能够将抽象的高斯光束传输特性以及强度分布的理论知识,通过一步一步模拟仿真,将其形象化,因而易学易懂。关键词:高斯光束;Matlab ;强度分布

激光原理第二章答案

第二章开放式光腔与高斯光束 1.证明如图所示傍轴光线进入平面介质界面的光线变换矩阵为 1 2 1 0 η η ?? ?? ?? ?? ?? 。 证明:设入射光线坐标参数为 11 ,rθ,出射光线坐标参数为22 ,rθ,根据几何关系可知 211122 ,sin sin r rηθηθ ==傍轴光线sinθθ则1122 ηθηθ =,写成矩阵形式 21 21 1 2 1 0 r r θθ η η ?? ???? ?? = ???? ?? ???? ?? ?? 得证 2.证明光线通过图所示厚度为d的平行平面介质的光线变换矩阵为 1 2 1 0 1 d η η ?? ?? ?? ?? ?? 。 证明:设入射光线坐标参数为 11 ,rθ,出射光线坐标参数为22 ,rθ,入射光线首先经界面1折射,然后在介质2中自由传播横向距离d,最

后经界面2折射后出射。根据1题的结论和自由传播的光线变换矩阵可得 212121121 0 1 01 0 0 0 1r r d θθηηηη??????????????=???????????????????????? 化简后2121121 0 1d r r θθηη? ? ???? ??=????? ???????? ? 得证。 3.试利用往返矩阵证明共焦腔为稳定腔,即任意傍轴光线在其中可以往返无限多次,而且两次往返即自行闭合。 证:设光线在球面镜腔内的往返情况如下图所示: 其往返矩阵为: 由于是共焦腔,则有 12R R L == 将上式代入计算得往返矩阵 1 21122 110101A B L L T C D R R ?????? ????==??????????--?????????????? 1001T -?? =??-??

高斯函数

高斯函数定理2 设f(x) x x,贝y f(x)是一有界、周期为1的非单调函数,其图像如(b). 一、知识概要 1、定义:设x R,用x表示不超过x的最大整数。贝U y x称为高斯函数,也叫取整函数。显然, y x的定义域是R,值域是Z。任一实数都能写成整数部分与非负纯小数之和, 即x x a 0 a 1,因此,x x x 1,这里,x为x的整数部分,而x x x 为x的小数部分。 2、性质 1、函数y x是一个分段表达的不减的无界函数,即当x1 x2时,有x1x2; 2、n x n x,其中n Z ; 3、x 1x x x 1; 4、若x y n ,则x n a, y n b,其中0a, b 5、对于「切实数x, y有x y x y ; 6、若x0,y0 ,则xy x y ; 7、x x 1(x不是整数时) x (x是整数时) 8若n N 5 x 则 x;当n 1时,x x n n 9、若整数a,b适合a bq r ( b 0,q,r是整数,Orb),贝U - q ; b x 10、x是正实数,n是正整数,则在不超过x的正整数中,n的倍数共有 - 个; n 下面再来讨论高斯函数x的图像及x的图像和性质. 对于函数y x ,如何做出它的图像呢?我们先来分析一下高斯函数x的图像的基本性质和特征? (1) 由y x的性质知x的图形在y x的图形的下方? (2) 由y x的性质知x的图像是一组阶高为1的平行于x轴的平行线段,这组平行线段呈阶 梯形? 可见函数y x是一个不减(非单调)的非周期的函数,其图像如下(a) (b) 例1、方程[x] x 1实数根的个数 例2、函数f (x)定义在R上,对任意x R,有f(x 1) 为增函数, 请说明理由。 例3、作出函数为y [sin x]的图像. 例4、定义函数y x n, n x n 1, n N ,若— 2 f (x),则函数f (x)在R上是否 x的取值范 围。

高斯(核)函数简介

高斯(核)函数简介 1函数的基本概念 所谓径向基函数(Radial Basis Function简称RBF),就是某种沿径向对称的标量函数。通常定义为空间中任一点x到某一中心xc之间欧氏距离的单调函数,可记作k(||x-xc||),其作用往往是局部的,即当x远离xc时函数取值很小。最常用的径向基函数是高斯核函数,形式为k(||x-xc||)=exp{-||x-xc||^2/(2*σ)^2)}其中xc为核函数中心,σ为函数的宽度参数,控制了函数的径向作用范围。 高斯函数具有五个重要的性质,这些性质使得它在早期图像处理中特别有用.这些性质表明,高斯平滑滤波器无论在空间域还是在频率域都是十分有效的低通滤波器,且在实际图像处理中得到了工程人员的有效使用.高斯函数具有五个十分重要的性质,它们是: (1)二维高斯函数具有旋转对称性,即滤波器在各个方向上的平滑程度是相同的.一般来说,一幅图像的边缘方向是事先不知道的,因此,在滤波前是无法确定一个方向上比另一方向上需要更多的平滑.旋转对称性意味着高斯平滑滤波器在后续边缘检测中不会偏向任一方向. (2)高斯函数是单值函数.这表明,高斯滤波器用像素邻域的加权均值来代替该点的像素值,而每一邻域像素点权值是随该点与中心点的距离单调增减的.这一性质是很重要的,因为边缘是一种图像局部特征,如果平滑运算对离算子中心很远的像素点仍然有很大作用,则平滑运算会使图像失真. (3)高斯函数的付立叶变换频谱是单瓣的.正如下面所示,这一性质是高斯函数付立叶变换等于高斯函数本身这一事实的直接推论.图像常被不希望的高频信号所污染(噪声和细纹理).而所希望的图像特征(如边缘),既含有低频分量,又含有高频分量.高斯函数付立叶变换的单瓣意味着平滑图像不会被不需要的高频信号所污染,同时保留了大部分所需信号. (4)高斯滤波器宽度(决定着平滑程度)是由参数σ表征的,而且σ和平滑程度的关系是非常简单的.σ越大,高斯滤波器的频带就越宽,平滑程度就越好.通过调节平滑程度参数σ,可在图像特征过分模糊(过平滑)与平滑图像中由于噪声和细纹理所引起的过多的不希望突变量(欠平滑)之间取得折衷. (5)由于高斯函数的可分离性,大高斯滤波器可以得以有效地实现.二维高斯函数卷积可以分两步来进行,首先将图像与一维高斯函数进行卷积,然后将卷积结果与方向垂直的相同一维高斯函数卷积.因此,二维高斯滤波的计算量随滤波模板宽度成线性增长而不是成平方增长. 2函数的表达式和图形 在这里编辑公式很麻烦,所以这里就略去了。可以参看相关的书籍,仅给出matlab绘图的

高斯函数

高斯函数[]X 的应用及其推广 郭胜红 (甘肃建筑职业技术学院,甘肃 兰州 730050) 摘 要 给出了高斯函数的定义、性质、函数图象的特征,讨论了其应用,并将其做了推广. 关键词 高斯函数,广义高斯函数 (一)高斯函数[]x 的一些性质 高斯函数[]x ,在数论中是一种极为重要的函数,但它的运用却并不仅限于在数论中,在数学的许多分支及其它学科领域中有广泛的应用,均显示了该函数的优越性.本文主要从高斯函数的定义出发类比讨论了广义高斯函数的一些基本性质及其有关的积分问题,并给了一些关于广义高斯函数的例子. 定义1 ,R x ∈[]x 表示不超过x 的最大整数,则函数[]x y =称为高斯函数. 我们记{}[]x x x -=称为x 小数部分, {}10≤≤x . 由高斯函数的定义立刻可以得到如下简单的性质: 定理1 设R y x ∈,,我们有 (1) [][]1+≤≤x x x . (2) 若,y x ≤则[][]y x ≤. (3) [][]x n x n +≤+. (4) [][][]?? ??--∈-=-) (1 )(Z x x Z x x x (5) [][][]y x y x +≤+. (6) [][][]y x y x -≤-或[]1+-y x . (7) [][][][][]y y x x y x +++≥+22. 下面再来讨论高斯函数[]x 的图像及{} x 的图像和性质. 对于函数[]x y =,如何做出它的图像呢?我们先来分析一下高斯函数[]x 的图像的基本性质和特征. (1)由[]x y =的性质知[]x 的图形在 x y =的图形的下方. (2) 由[]x y =的性质知[]x 的图像是一组阶高为1的平行于x 轴的平行线段,这组平行线段呈阶梯形. 可见函数[]x y =是一个不减(非单调) 的非周期的函数,其图像如下 (a) (a) 定理2 设[]x x x f -=)(,则)(x f 是一有界、周期为1的非单调函数,其图像如 (b). (b) (二)高斯函数的拓广 下面讨论广义高斯函数的问题 定义2 假定函数)(x f 为定义在区间I 上

习题答案第二章

第二章 开放式光腔与高斯光束 习题 1.试利用往返矩阵证明共焦腔为稳定腔,即任意傍轴光线在其中可以往返无限多次,而且两次往返即自行闭合。 证:设光线在球面镜腔内的往返情况如下图所示: 其往返矩阵为: 由于是共焦腔,有 12R R L == 往返矩阵变为 若光线在腔内往返两次,有 可以看出,光线在腔内往返两次的变换矩阵为单位阵,所以光线两次往返即自行闭合。 于是光线在腔内往返任意多次均不会溢出腔外,所以共焦腔为稳定腔。 2.试求平凹、双凹、凹凸共轴球面镜腔的稳定性条件。 解:共轴球面腔的稳定性条件为0

0<1- 1 R L <1,即01, L R >2或L R <1L R <2且 L R R >+21 (c)对凹凸腔:R 1=1R ,R 2=-2R , 01且L R R <-||21 3.激光器的谐振腔由一面曲率半径为1m 的凸面镜和曲率半径为2m 的凹面镜组成,工作物质长0.5m ,其折射率为1.52,求腔长L 在什么范围内是稳定腔。 解:设两腔镜1M 和2M 的曲率半径分别为1R 和2R ,121m,2m R R =-= 工作物质长0.5m l =,折射率 1.52η= 根据稳定条件判据: 其中 由(1)解出 2m 1m L '>> 由(2)得 所以得到: 2.17m 1.17m L >> 4.图2.1所示三镜环形腔,已知l ,试画出其等效透镜序列图,并求球面镜的曲率半径R 在什么范围内该腔是稳定腔。图示环形腔为非共轴球面镜腔。在这种情况下,对于在由光轴组成的平面内传输的子午光线,式(2.2.7)中的(cos )/2f R θ=,对于在与此垂直的平面内传输的弧矢光线,/(2cos )f R θ=,θ为光轴与球面镜法线的夹角。 011 1 (1) 21L L ''? ???<-+< ???? ???() (2) l L L l η '=-+ 1 0.5(1)0.171.52 L L L ''=+?- =+

激光的基本原理1相干性的光子描述

考试内容:激光器的基本原理和理论。内容包括激光器谐振腔理论、速率方程理论和半径典理论;典型激光器、激光放大器及改善与控制激光器特性的若干技术等相关基础知识。 激光的基本原理 1.1 相干性的光子描述 1.2 光的受辐射基本概念 1.3 光的受激辐射放大 1.4 光的自激振荡 1.5 激光的特性 开放式光腔与高斯光束 2.1 光腔理论的一般问题 2.2 共轴球面腔的稳定性条件 2.3 开腔模式的物理概念和衍射理分析方法 2.4 平行平面腔模的迭代解法 2.5 方形镜共焦腔的自再现模 2.6 方形镜共焦腔的行波场 2.7 圆形镜共焦腔 2.8 一般稳定球面腔的模式特征 2.9 高斯光束的基本性质及特征参数 2.1 0高斯光束q参数的变换规律 2.1 1高斯光束的聚焦和准直 2.1 2高斯光束的自再现变换与稳定球面腔 2.1 3光束衍射倍率因子 2.1 4非稳腔的几何自再现波型 2.1 5非稳腔的几何放大率及自再现波型的能量损耗 空心介质波导光谐振腔 3.1 空心波导光谐振腔的构成和特征 3.2 空心圆柱波导管中的本征模 3.3 圆波导本征模的传输常数和损耗特性 3.4 空心矩形介质波导管中的本征模 3.5 空心介质波导光谐振腔的反馈耦合损耗 电磁场和物质的共振相互作用 4.1 光和物质相互作用的经典理论简介 4.2 谱线加宽和线型函数 4.3 典型激光器速率方程 4.4 均匀加宽工作物质的增益系数 4.5 非均匀加宽工作物质的增益系数 4.6 综合加宽工作物质的增益系数 激光振荡特性

5.1 激光器的振荡阈值 5.2 激光器的振荡模式 5.3 输出功率与能量 5.5 单模激光器的线宽极限 5.6 激光器的频率牵引 激光放大特性 6.1 激光放大器的分类 6.2 均匀激励连续激光放大器的增益特性6.3 纵向光激励连续激光放大器的增益特性6.4 脉冲激光放大器的增益特性 6.5 放大的自发辐射(ASE) 6.6 光放大器的噪声 激光器特性的控制与改善 7.1 模式选择 7.2 频率稳定 7.3 Q调制 7.4 注入锁定 7.5 锁模 激光振荡的半经典理论 8.1 激光振荡的自洽方程组 8.2 原子系统的电偶极矩 8.3 密度矩阵 8.4 静止原子激光器理论 典型激光器和激光放大器 9.1 固体激光器 9.2 气体激光器 9.3 染料激光器 9.4 光纤放大器 9.5 光纤激光器 半导体二极管激光器和激光放大器 10.1 半导体工作物质中的光增益 10.2 半导体二极管激光器的基本结构10.3 对称三层介质平板波导中的本征模10.4 光强分布与约束因子 10.5 半导体二极管激光器的主要特性10.6 半导体光放大器的主要特性

高斯核函数

高斯核函数所谓径向基函数(Radial Basis Function 简称RBF), 就是某种沿径向对称的标量函数。通常定义为空间中任一点x到某一中心xc之间欧氏距离的单调函数, 可记作k(||x-xc||), 其作用往往是局部的, 即当x远离xc时函数取值很小。 最常用的径向基函数是高斯核函数,形式为k(||x-xc||)=exp{- ||x-xc||^2/(2*σ)^2) } 其中xc 为核函数中心,σ为函数的宽度参数, 控制了函数的径向作用范围。 计算机视觉中的作用 在计算机视觉中,有时也简称为高斯函数。高斯函数具有五个重要的性质,这些性质使得它在早期图像处理中特别有用.这些性质表明,高斯平滑滤波器无论在空间域还是在频率域都是十分有效的低通滤波器,且在实际图像处理中得到了工程人员的有效使用.高斯函数具有五个十分重要的性质,它们是:(1)二维高斯函数具有旋转对称性,即滤波器在各个方向上的平滑程度是相同的.一般来说,一幅图像的边缘方向是事先不知道的,因此,在滤波前是无法确定一个方向上比另一方向上需要更多的平滑.旋转对称性意味着高斯平滑滤波器在后续边缘检测中不会偏向任一方向.(2)高斯函数是单值函数.这表明,高斯滤波器用像素邻域的加权均值来代替该点的像素值,而每一邻域像素点权值是随该点与中心点的距离单调增减的.这一性质是很重要的,因为边缘是一种图像局部特征,如果平滑运算对离算子中心很远的像素点仍然有很大作用,则平滑运算会使图像失真.(3)高斯函数的付立叶变换频谱是单瓣的.正如下面所示,这一性质是高斯函数付立叶变换等于高斯函数本身这一事实的直接推论.图像常被不希望的高频信号所污染(噪声和细纹理).而所希望的图像特征(如边缘),既含有低频分量,又含有高频分量.高斯函数付立叶变换的单瓣意味着平滑图像不会被不需要的高频信号所污染,同时保留了大部分所需信号.(4)高斯滤波器宽度(决定着平滑程度)是由参数σ表征的,而且σ和平滑程度的关系是非常简单的.σ越大,高斯滤波器的频带就越宽,平滑程度就越好.通过调节平滑程度参数σ,可在图像特征过分模糊(过平滑)与平滑图像中由于噪声和细纹理所引起的过多的不希望突变量(欠平滑)之间取得折衷.(5)由于高斯函数的可分离性,大高斯滤波器可以得以有效地实现.二维高斯函数卷积可以分两步来进行,首先将图像与一维高斯函数进行卷积,然后将卷积结果与方向垂直的相同一维高斯函数卷积.因此,二维高斯滤波的计算量随滤波模板宽度成线性增长而不是成平方增长.

离散高斯函数

图像高斯平滑滤波分析 来源:发表时间:2009-11-27 浏览率:[1876] 图像高斯平滑滤波分析 王耀贵 山东省潍坊卫生学校 261041 摘要:在图像预处理中,对图像进行平滑,去除噪声,恢复原始图像是一个重要内容。本课题设计出了一个平滑尺度和模板大小均可以改变的高斯滤波器,用它对多幅加入各种噪声后的图像进行平滑,经过对各个结果图像的对比可知高斯滤波对服从正态分布的噪声去除效果比较好,并且相比各个不同参数,在平滑尺度为2,模板大小为7时效果最佳。 关键词:图像预处理;平滑处理;平滑尺度;模板大小;高斯滤波 1、前言 一幅原始图像在获取和传输过程中会受到各种噪声的干扰,使图像质量下降,对分析图像不利。反映到图像画面上,主要有两种典型的噪声。一种是幅值基本相同,但出现的位置随机的椒盐噪声,另一种则每一点都存在,但幅值随机分布的随机噪声。为了抑制噪声、改善图像质量,要对图像进行平滑处理。图像平滑处理的方法多种多样,有邻域平均、中值滤波,高斯滤波、灰度最小方差的均值滤波等。这里主要就是分析高斯滤波器的平滑效果。以下即为本课题研究的主要内容及要求: 第一,打开显示对应图像; 第二,编写给图像加噪声的程序; 第三,程序中实现不同平滑尺度、不同模板大小的高斯模板设计,并将设计结果显示出来; 第四,以Lean图像为例,进行加噪声,分析平滑的实验效果。 2、高斯平滑滤波器的原理 高斯滤波器是根据高斯函数的形状来选择权值的线性平滑滤波器。高斯平滑滤波器对去除服从正态分布的噪声是很 有效果的。一维零均值高斯函数为。其中,高斯分布参数决定了高斯滤波器的宽度。对图像来说,常用二维零均值离散高斯函数作平滑滤波器,函数表达式如下: 式(1) 高斯函数具有5个重要性质: 2.1二维高斯函数具有旋转对称性,即滤波器在各个方向上的平滑程度是相同的。一般来说一幅图像的边缘方向是不知道的。因此,在滤波之前是无法确定一个方向比另一个方向上要更多的平滑的。旋转对称性意味着高斯滤波器在后续的图像处理中不会偏向任一方向。 2.2高斯函数是单值函数。这表明,高斯滤波器用像素邻域的加权均值来代替该点的像素值,而每一邻域像素点的权值是随着改点与中心点距离单调递减的。这一性质是很重要的,因为边缘是一种图像局部特征。如果平滑运算对离算子中心很远的象素点仍然有很大的作用,则平滑运算会使图像失真。 2.3高斯函数的傅立叶变换频谱是单瓣的。这一性质是高斯函数傅立叶变换等于高斯函数本身这一事实的直接推论。图像常被不希望的高频信号所污染,而所希望的图像特征,既含有低频分量,又含有高频分量。高斯函数傅立叶变换的单瓣意味着平滑图像不会被不需要的高频信号所污染,同时保留了大部分所需要的信号。 2.4高斯滤波器的宽度(决定着平滑程度)是由参数σ表证的,而且σ和平滑程度的关系是非常简单的。σ越大,高斯滤波器的频带就越宽,平滑程度就越好。通过调节平滑程度参数σ,可在图像特征分量模糊(过平滑)与平滑图像中由于噪声和细纹理所引起的过多的不希望突变量(欠平滑)之间取得折衷。

高斯函数具有五个重要的性质

高斯函数具有五个重要的性质高斯函数具有五个重要的性质,这些性质使得它在早期图像处理中特别有用.这些性质表明,高斯平滑滤波器无论在空间域还是在频率域都是十分有效的低通滤波器,且在实际图像处理中得到了工程人员的有效使用.高斯函数具有五个十分重要的性质,它们是:(1)二维高斯函数具有旋转对称性,即滤波器在各个方向上的平滑程度是相同的.一般来说,一幅图像的边缘方向是事先不知道的,因此,在滤波前是无法确定一个方向上比另一方向上需要更多的平滑.旋转对称性意味着高斯平滑滤波器在后续边缘检测中不会偏向任一方向. (2)高斯函数是单值函数.这表明,高斯滤波器用像素邻域的加权均值来代替该点的像素值,而每一邻域像素点权值是随该点与中心点的距离单调增减的. 这一性质是很重要的,因为边缘是一种图像局部特征,如果平滑运算对离算子中心很远的像素点仍然有很大作用,则平滑运算会使图像失真. (3)高斯函数的付立叶变换频谱是单瓣的.正如下面所示,这一性质是高斯函数付立叶变换等于高斯函数本身这一事实的直接推论.图像常被不希望的高频信号所污染(噪声和细纹理).而所希望的图像特征(如边缘),既含有低频分量,又含有高频分量.高斯函数付立叶变换的单瓣意味着平滑图像不会被不需要的高频信号所污染,同时保留了大部分所需信号. (4)高斯滤波器宽度(决定着平滑程度)是由参数σ 表征的,而且σ 和平滑程度

的关系是非常简单的.σ 越大,高斯滤波器的频带就越宽,平滑程度就越好. 通过调节平滑程度参数σ ,可在图像特征过分模糊(过平滑)与平滑图像中由于噪声和细纹理所引起的过多的不希望突变量(欠平滑)之间取得折衷. (5)由于高斯函数的可分离性,大高斯滤波器可以得以有效地实现.二维高斯函数卷积可以分两步来进行,首先将图像与一维高斯函数进行卷积,然后将卷积结果与方向垂直的相同一维高斯函数卷积.因此,二维高斯滤波的计算量随滤波模板宽度成线性增长而不是成平方增长.2 函数的表达式和图形在这里编辑公式很麻烦,所以这里就略去了。可以参看相关的书籍,仅给出matlab 绘图的代码alf=3;n=7;%定义模板大小n1=floor((n+1)/2);%确定中心for i=1:n a(i)=exp(-((i-n1).^2)/(2*alf^2));for j=1:n b(i,j)=exp(-((i- n1)^2+(j-n1)^2)/(4*alf))/(4*pi*alf);end end subplot(121),plot(a),title('一维高斯函数')subplot(122),surf(b),title('二维高斯函数')

高斯分布

几乎所有的经济模型都有假设前提,学过计量经济学的同学都知道古典假设,而正态分布又在假设中占有十分重要的作用,小编偶然间在我爱自然语嫣处理这个博客中发现了《正态分布前世今生》的系列文章,文章以名人、故事为主线简单的描述了正态分布的前世今生,这里特推荐给大家。 神说,要有正态分布,就有了正态分布。 神看正态分布是好的,就让随机误差就服从了正态分布。 创世纪-数理统计 一、正态分布

学过基础统计学的同学大都对正态分布非常熟悉。这个钟型的分布曲线不但形状优雅,其密度函数写成数学表达式e ?( x ?μ) 2 2 σ2 也非常具有数学的美感。其标准化后的概率密度函数 e ?x 2 2

更加的简洁漂亮,两个最重要的数学常量π和e都出现在了公式之中。在我个人的审美之中,它也属于top-N 的最美丽的数学公式之一,如果有人问我数理统计领域哪个公式最能让人感觉到上帝的存在,那我一定投正态分布的票。因为这个分布戴着神秘的面纱,在自然界中无处不在,让你在纷繁芜杂的数据背后看到隐隐的秩序。

正态分布又通常被称为高斯分布,在科学领域,冠名权那是一个很高的荣誉。去过德国的兄弟们还会发现,德国的钢镚和10马克的纸币上都留有高斯的头像和正态密度曲线。正态分布被冠名高斯分布,我们也容易认为是高斯发现了正态分布,其实不然,不过高斯对于正态分布的历史地位的确立是起到了决定性的作用。

正态曲线虽然看上去很美,却不是一拍脑袋就能想到的。我在本科学习数理统计的时候,课本一上来介绍正态分布就给出密度分布函数,却从来不说明这个分布函数是通过什么原理推导出来的。所以我一直搞不明白数学家当年是怎么找到这个概率分布曲线的,又是怎么发现误差服从这个奇妙的分布的。直到我读研究生的时候我的导师给我介绍了陈希儒院士的《数理统计简史》这本书,看了之后才了解了正态分布曲线从发现到被人们重视进而广泛应用,也是经过了几百年的历史。

激光原理第二章标准答案

第二章开放式光腔与高斯光束 1.证明如图 2.1所示傍轴光线进入平面介质界面的光线变换矩阵为 1 2 1 0 η η ?? ?? ?? ?? ?? 。 证明:设入射光线坐标参数为 11 ,rθ,出射光线坐标参数为 22 ,rθ,根据几何关系可知211122 ,sin sin r rηθηθ ==傍轴光线sinθθ B则 1122 ηθηθ =,写成矩阵形式 21 21 1 2 1 0 r r θθ η η ?? ???? ?? = ???? ?? ???? ?? ?? 得证 2.证明光线通过图2.2所示厚度为d的平行平面介质的光线变换矩阵为 1 2 1 0 1 d η η ?? ?? ?? ?? ?? 。 证明:设入射光线坐标参数为 11 ,rθ,出射光线坐标参数为 22 ,rθ,入射光线首先经界面1折射,然后在介质2中自由传播横向距离d,最后经界面2折射后出射。根据1题的结论和自由传播的光线变换矩阵可得 21 21 21 12 1 0 1 0 1 0 0 0 1 r r d θθ ηη ηη ???? ???? ?? ???? = ???? ?? ???? ?? ???? ???? ???? 化简后21 21 1 2 1 0 1 d r r θθ η η ?? ???? ?? = ???? ?? ???? ?? ?? 得证。 3.试利用往返矩阵证明共焦腔为稳定腔,即任意傍轴光线在其中可以往返无限多次,而且两次往返即自行闭合。 证:设光线在球面镜腔内的往返情况如下图所示:

其往返矩阵为: 由于是共焦腔,则有 12R R L == 将上式代入计算得往返矩阵 () ()()1 2 101 0110101n n n n n n r L r L ??????===-=-???????????? A B C D T T T T T 可以看出,光线在腔内往返两次的变换矩阵为单位阵,所以光线两次往返即自行闭合。 于是光线在腔内往返任意多次均不会溢出腔外,所以共焦腔为稳定腔。 4.试求平凹、双凹、凹凸共轴球面镜腔的稳定性条件。 解:共轴球面腔稳定性条件1201g g <<其中1212 11,1L L g g R R =-- =- 对平凹共轴球面镜腔有12,0R R =∞>。则122 1,1L g g R ==- ,再根据稳定性条件 1201g g <<可得2 2011L R R L <- <>?。 对双凹共轴球面腔有,120,0R R >>则1212 1,1L L g g R R =- =-,根据稳定性条件1201g g << 可得11221 212010 01 1R L R L R L R L R R L L R R L <?? <????<-- ?????? 或。 对凹凸共轴球面镜腔有,120,0R R ><则1212 1,1,0L L g g R R =- =>-根据稳定性条件1201g g << 可得121120111R L R R R L L R L ???? <--

相关文档
最新文档