船用导航雷达简介

合集下载

船舶航行中的海上通信与导航设备

船舶航行中的海上通信与导航设备

船舶航行中的海上通信与导航设备船舶在海上航行时,为了确保航行的安全和顺利,必须依靠海上通信与导航设备。

这些设备在航行中起着关键的作用,包括提供位置信息、通信联系以及海上交通管理等方面的支持。

本文将探讨船舶航行中常用的海上通信与导航设备及其作用。

一、全球导航卫星系统(GNSS)全球导航卫星系统是船舶航行中最常用的导航设备之一。

其中,最为广泛应用的是美国的GPS系统、俄罗斯的GLONASS系统和欧盟的Galileo系统。

这些卫星系统通过将卫星定位信息传输给接收设备,能够实时提供船舶的准确位置、速度和航向等数据。

船舶通过GNSS系统可以实现精确定位和航线规划,从而更好地掌握航行动态。

二、雷达系统雷达是一种通过发射无线电波并接收其反射波来探测目标的设备。

在船舶航行中,雷达系统能够提供周围海域的目标检测、距离测量、方位确定和目标追踪等功能。

通过雷达系统,船舶能够识别其他船只、浮标、礁石、冰山等潜在威胁,从而避免碰撞和其他各类事故的发生。

三、自动识别系统(AIS)自动识别系统是一种通过无线电通信来交换船舶信息的系统。

它能够实时提供船舶的静态和动态信息,包括船名、呼号、速度、航向、位置等。

借助AIS系统,船舶可以实现交通管制和避碰,同时也方便监管部门对船舶进行远程监视和管理。

四、卫星通信系统卫星通信系统是保证船舶与岸上和其他船舶进行远距离通信的关键设备。

它使用卫星作为传输中继站,能够提供语音通讯、电子邮件、传真和互联网等服务。

卫星通信系统能够实现全球覆盖,保证了船舶在长时间航行中与外界的联系和信息交流。

五、测深仪和地图测深仪是一种用来测量海洋深度的设备,它通过发射声波并测量反射的时间来计算出水深。

地图则是用来标示和展示海上地理信息的图表。

测深仪和地图结合使用,可以提供航行所需的水深和地理参考,帮助船舶避免浅水区、岩石和其他潜在风险。

六、辅助设备除了以上几种常用的海上通信与导航设备外,船舶航行中还会使用一些辅助设备。

船舶导航雷达(可编辑)

船舶导航雷达(可编辑)

船舶导航雷达船舶导航雷达应用于船舶导航的雷达称为船舶导航雷达Shipborne Navigation Radar 亦称航海雷达 Marine Radar 或船用雷达在本教材中简称雷达IMO在雷达性能标准中指出雷达通过显示其他水面船只障碍物和危险物导航目标和海岸线等相对于本船的位置有助于安全导航和避免碰撞雷达能够及时发现远距离弱小目标精确测量本船相对目标的距离和方位确定船舶位置引导船舶航行通过传感器的支持雷达还具备了目标识别与跟踪地理参考信息显示等功能能够更好地避免船舶碰撞保障航行安全第一节雷达目标探测与显示基本原理一雷达目标测距测方位1.雷达图像特点雷达通过发射微波脉冲探测目标和测量目标参数习惯上称雷达发射的电磁波为雷达波微波具有似光性在地球表面近似以光速直线传播遇到物体后雷达波被反射在雷达工作环境中能够反射雷达波的物体如岸线岛屿船舶浮标海浪雨雪云雾等等统称为目标这些目标的雷达反射波被雷达天线接收称为目标回波回波经过接收系统处理调制屏幕亮度最终在显示器上显示为加强亮点回波距离和方位的测量都是在显示器上完成的1 雷达图像基本元素雷达显示系统将雷达传感器探测到的本船周围目标以平面位置图像极坐标系显示在屏幕上早期的雷达显示器也田此被称为PPI如图6-9-1所示其中图a 为海面态势示意图本船周围有一岛屿另有一目标船与本船相向行驶图b 为海平面俯视图可以看出本船航向000°目标船正航行在本船右舷本船左舷后约245°处有一岛屿图 c 为雷达屏慕扫描中心起始点为本船参考位置又称为统一公共基准点 Consistence common reference pointCCRP 作为IBS中的重要组成部分雷达测量目标所得到的数据如距离方位相对航向和航速本船与目标船的最近会遇距离 Distance to the closest point of approachCPA 和航行到最近会遇距离所需时间 Time to the closest point of approachTCPA 等都必须参考CCRP这个位置点在传统的雷达上通常对应为雷达天线辐射器的位置最新性能标准要求CCRP可以由驾驶员根据需要设置典型位置通常为驾驶台指挥位置图6-91中雷达量程为12n mile即在雷达屏幕上显示了以本船为中心以12n mile 为半径本船周围海域的雷达回波在雷达屏幕上HL Head Line 称为船首线其方向由本船发送艏向装置 THD 或陀螺罗经驱动指示船艏方向发自于扫描起始点的径向线称为扫描线扫描线沿屏幕顺时针匀速转动转动周期与雷达天线在空间的转动周期一致屏幕上等间距的同心圆称为固定距标圈 Range RingRR 每圈间隔2n mile用来估算目标的距离与固定距标圈同心的虚线圆是活动距标圈 Variable Range MarkerVRM 它可以由操作者随意调整半径借助数据读出窗口的指示测量目标的准确距离EBL Electronic Bearing LineEBL 称为电子方位线可以通过面板操作控制其在屏幕的指向借助数据读出窗口的指示或屏幕边缘显示的方位刻度测量目标的方位很多雷达将VRM/EBL联动称为电子距离方位线 Electronic range/bearing lineERBL 可以通过一次性操作同时测量目标的距离和方位现代雷达用平面光栅显示器取代PPI如图6-9-2所示雷达回波图像区域仍然采用图6-91c 的形式在图像周围的功能区域大致可以划分为操作菜单状态指示和数据显示等区域屏幕上除了显示岛屿岸线导航标志船舶等对船舶导航避碰安全航行有用的各种回波之外还无法避免地显示出各种驾驶员不希望看到的回波如海浪干扰雨雪干扰同频干扰云雾回波噪声假回波等一个专业的雷达观测者应能够在杂波干扰和各种复杂屏幕背景中分辨出有用回波引导船舶安全航行2 雷达图像的特点雷达图像不同于诲图也不同于视觉图像设备自身的性能微波辐射的特性大气传播的条件目标的反射能力以及周围环境的变化都会影响雷达图像的形成与质量为了对雷达图像特点建立起感性认识下面以图691为例简单列举雷达图像的显示特点待详细研究了雷达的原理和目标的观测特性后我们对雷达图像的特点才会有全面的了解如果以本船雷达天线位置为中心以12nmile为半径的圆域及其所包含的所有目标按照比例缩小到雷达屏幕大小此时这个圆域内的所有海面和陆地的目标并不完全与雷达探测到的回波图像相符也就是说.雷达探测到的回波图像与真实目标相比可能会有很大的变形比如表现为1 雷达回波图像类似目标迎向天线面的垂直投影2 雷达只能操测目标的前沿后沿被遮挡的部分无法探测和显示3 目标的低矮部分如沙滩可能会被遮挡或回波微弱也无法被探测到4 雷达发射脉冲的宽度会使探测到的回波发生后沿拖尾现象回波与实际目标形状不相符5 雷达的辐射波束宽度引起回波沿圆周方向扩展造成回波向左右扩展6 雷达屏幕像素尺寸使回波的位置向周围扩展7 船舶运动涌浪波动及雷达设备因素引起回波位置闪烁不定目标边缘不清晰8 地球曲率影响雷达地平距离远距离的高大目标只有顶端能够被探测到图像与目标原貌甚至完全不同9 目标对雷达波的反射能力不同造成回波强度差别较大图像明暗不均10 由于气象海况以及船舶吃水的变化即使在同一海域船舶不同航次回波图像也会有差别11 雷达图像是动态图像观测习惯和个人操作能力不同对图像的解释因人而异12 以上所有因素综合影响使雷达图像经常很难与海图和视觉影像对应2.雷达测量目标基本原理雷达通过测量目标的距离和方位确定且标相对于本船的位置并在此基础上实现雷达定位导航和避碰1 雷达测距原理如果雷达发射脉冲往返于雷达天线与目标之间的时间为Δt电磁波在空间传播的速度为C约3×108ms则目标的距离R C·Δt2电子从雷达回波图像区域中心扫描到边缘的时间扫描线长度正好对应于雷达所选用量程的电磁波往返传播时间.对于图6-9-1中的例子12n mile的量程相当于雷达波传播24nmile路程所花费的时间即扫描线长度应为148.2μs 这样在12n mile以内的任意海上目标与本船的距离就与屏幕上目标显示的位置到回波图像区域中心的位置准确对应利用距离测量工具 RR或VRM 就能够估算或测量目标的位置2 雷达洲方位原理雷达天线是定向圆周扫描天线.在水平面内天线辐射宽度只有1°左右所以对于每特定时刻雷达只能向一个方向发射同时也只能在这个方向上接收回波雷达天线在空中以船艏为方位参考基准环360°匀速转动典型转速大约为20 rpm 雷达方位扫描系统能够以优于0.1°的方位量化值将天线相对于船艏的转动方位准确地记录在存储器中并按照显示的要求从存储器中读出数据送到屏幕显示于是天线所探测目标的相对方位就能够准确地显示在屏幕上借助于电子方位线就可以测量出目标的舷角本船的航向是可以知道的因此也就可以得到目标的真方位了二雷达显示方式雷达设有不同的图像显示方式以满足不同航行环境下的雷达观测需要首先从船舶运动参照系划分雷达图像的运动方式可以相对于本船.也可以相对于水面或相对于地面前者称为相对运动 RMRelative Motion 显示方式后者称为真运动 TMTrue Motion 对水真运动和对地真运动显示方式此外在不同的雷达图像运动方式下根据图像的指向方式即从船艏指向划分雷达显示方式可以进一步分为船首向上相对方位船首向上真方位真北向上和航向向上等雷达图像指向方式雷达图像的运动方式与指向方式结合形成多种多样的显示方式如下不同的显示方式方便不同航行环境下的雷达观测驾驶员应该熟练掌握和灵活运用各种显示方式的特点保证船舶航行安全l.相对运动 RM 显示方式所谓相对运动是指无论本船是否运动在雷达屏幕上代表本船参考位置的扫描中心固定不动所有目标都做相对本船的运动即目标在屏幕上的运动是其各自的真速度矢量与本船真速度矢量之差特别地与本船同向同速的船是固定不动的海上的固定目标则与本船等速反向运动此时如果扫描中心与雷达图像区域的几何中心重合则称为中心显示方式否则称为偏心显示方式偏心显示时通常使舶艏方向有更大的显示视野以便于观测如图6-9-2所示1 相对运动船首向上 H-up 显示这种显示方式雷达无需接入任何其他传感器信号便能够工作其显示特点如下1 具有上述相对运动显示的特点2 源自CCKP的船首线指向屏幕正上方固定不动雷达回波在屏幕上的分布与驾驶员视觉瞭望目标的实际情况一致方位测量仅能够得到目标的相对方位3 船首在风浪中偏荡时目标回波左右摇摆余晖使回波模糊甚至容易造成目标转向的假相本船转向时船首线不动目标回波反向转动尤其本船大幅度快速转向时回波会出现目标拖尾现象影响观测4 观测效果直观适合宽阔水域平静海况时船舶避碰5 不利于定位导航和航向频繁机动的环境比如船舶进港狭水道以及大多数情况的沿岸航行在雷达正常工作时RM H-up显示方式并非性能标准强制要求具备在航向传感器故障时作为应急工作方式雷达只能采用这种显示方式且有报警提示值得注意的是目前有的型号的雷达用本船航向信号同步方位刻度盘.船首线对应的方位始终指向屏幕上方使得在这种显示方式下也能够读取到目标真方位这种改良的H-up显示方式被称为船首向上真方位 H-up TB 显示图示可以看出不同显示方式下雷达观测的图像特点图6-9-3a 是航行态势图图6-9-3b 是RM H-up显示的图像特点2 相对运动真北向上 Nup 显示这种显示方式雷达只需接入本船航向信号即可工作其显示特点如下1 具有前面提到相对运动显示的特点2 屏幕正上方代表地理真北船首线指向本船艏向雷达回波在屏幕上的分布与所用海图类似方位测量可直接得到目标的真方位3 船艏在风浪中偏荡或本船转向时船首线随艏向转动目标回波保持稳定清晰便于观测4 适合于定位导航和航向频繁机动的环境比如船舶进港狭水道以及大多数情况的沿岸航行5 用于避碰时尤其是船舶艏向介于090和270之间时应特别注意雷达图像的左右与驾驶员从驾驶台瞭望时左右舷是相反的图6-94所示为RM N-up显示的图像特点3 相对运动航向向上 C-up 显示这种显示方式.雷达只需接入本船航向信号便可工作其显示特点如下1 具有前文提到相对运动显示的特点2 本显示方式启动时代表本船航向的船首线指示本船艏向并指向屏幕正上方.屏幕方位刻度由本船航向信号驱动000代表真北方位雷达回波在屏幕上的分布与驾驶员视觉瞭望目标的实际情况一致方位测量能够得到目标的真方位3 船艏在风浪中偏荡或本船转向时具有N-up的显示特点船首线随艏向偏荡或转动目标回波稳定清晰便于观测4 转向结束本船航向把定按下航向向上 C-up 后雷达图像迅速整体旋转恢复到特点 2 图像状态避免了H-up本船转向过程引起的目标拖尾模糊的显示缺点5 能够兼顾导航和避碰功能适合于比较广泛水域的航行环境但大多数情况真北方向与海图不一致不利于目标识别和定位图6-9-5所示为RM C-up显示的图像特点2.真运动 TM 显示方式这种显示方式雷达需同时接入本船航向和航速信号才能够工作真运动显示时代表本船参考位置的扫描中心根据所选择量程比例在屏幕上按照本船的航向和航速移动所有目标的运动都参考本船的速度输入如果输入的是对水速度则在水面上漂浮的船舶在屏幕上固定不动而陆地会以与风流压差相反的方向和速度移动对水稳定真运动用于船舶避让对水速度的取得.通常来自于船舶计程仪人工输入速度也可以使雷达工作在对水真运动显示模式如果输入的是对地速度则岛屿等固定目标是静止的本船和目标船在屏幕上按照其航迹向移动对地稳定真运动用于船舶在狭水道和进出港导航可以有多种方式取得对地速度如在对水速度的基础上进行风流压的校正或直接使用双轴计程仪或利用卫星定位系统还可以利用雷达目标跟踪功能跟踪对地稳定的目标作为速度参考检测对地速度是否准确可以观测陆地或对地固定的目标是否在屏幕上漂移来证实按照性能标准的规定扫描中心应在不少于雷达图像显示区域半径的50%和不超过其75%的屏幕范围内移动和自动重调并且可以随时人工重调扫描起始点使船艏方向有重大的显示视野方便雷达观测真运动显示时雷达也同样可以具有上述三种屏幕指向方式但考虑到TM H-up 显示方式不能很好地表现出运动的真实性现代雷达多数不提供这种显示方式但在本船航向信号丢失时雷达通常会给出航向丢失报警并执行H-up显示方式当本船速度信号丢失时雷达也会给出航速丢失报警并执行偏心相对运动显示方式3.雷达显示方式的选择不同的显示方式可以满足不同的雷达观测需要在相对运动方式下连续观测回波相对本船的变化有利于判断目标船的会遇危险及早做出避让决定在平静的大洋航行时雷达只用于避碰观测.采用H-up是最方便的选择在沿岸航行时需要雷达定位和导航为了便于识别目标最好使用N-up显示方式在沿岸尤其在狭水道或港口航行时船艏偏荡或船舶频繁转向C-up则更有利于避碰观测避碰观测时对水真运动能够方便准确地判断目标船的动态有助于驾驶员根据航行态势和规则做出避让行动真运动显示时目标船在屏幕上的运动不受本船机动的干扰.这对于本船避让过程中和避让结束后监测目标船的动向非常有益对地真运动显示方式能够及时观测本船相对于海岸的航行动态是船舶在狭水道导航或进港靠码头时最佳选择值得注意的是一定要严格区分对水稳定和对地稳定的模式避碰时误用了对地稳定或导航时误用了对水稳定都是相当危险的尤其在航行环境受限能见度不良时三雷达基本工作原理1.雷达系统配置传统的船舶导航雷达系统由天线收发机和显示器组成为了帮助驾驶员更好地获得海上移动目标的运动参数近代雷达大多配备了自动雷达标绘仪 ARPA 或具备了自动目标标绘功能使雷达在避碰中的作用得到了进步提高随着现代科技的发展基于信息化平台的新型航海仪器和设备不断出现与传统的导航雷达实现了数据融合与共享电子定位系统 EPFS 通常采用卫星导航系统如GPS 信号为船舶提供了高精度的时间和位置参考数据ENC或其他矢量海图系统为船舶航行水域提供了丰富的水文地理数据AIS为雷达目标提供了有效的身份识别手段这些技术的进步促进了船舶导航雷达技术的发展按照SOLAS公约要求2008年7月1日之后装船的雷达应满足IMO MSCl92 79 船舶导航雷达设备性能标准规定其系统配置如图6-9-6所示其中等分虚线部分不是性能标准要求的是雷达系统的选装配置船舶主GPS设备为系统提供WGS-84船位和时间数据罗经或发送艏向装置THD 为系统提供艏向数据SDME 船舶速度和航程测量设备通常为计程仪提供船舶速度数据雷达传感器提供本船周围海域的图像信息显示系统处理雷达图像跟踪移动目标获取目标运动参数协助驾驶员避碰和导航AIS报告周围船舶识别信息和动态数据以及航标数据协助驾驶员避碰导航选装的海图系统提供水文地理航行必要数据所有数据在雷达终端显示系统上融合共享所有的传感器都可以独立工作其中一个传感器的故障.不影响其他传感器信息的显示雷达图像信息提供绐VDR保存记录系统自动判断数据的可信性有效性和完善性拒绝使用无效数据如果输入数据质量变差系统会加以提示驾驶员在操作雷达时应随时注意屏幕警示信息驾驶员通过雷达显示系统操控面板控制雷达系统.获得最佳定位导航和避碰信息雷达传感器采用收发一体的脉冲体制通常由收发机和天线组成俗称为雷达头信号处理与显示系统是基本雷达系统的必要组成部分根据分装形式不同雷达设备可分为桅下型俗称三单元雷达和桅上型俗称两单元雷达桅下型雷达主体被分装为天线收发机和显示器三个箱体一般天线安装在主桅或雷达桅上显示器安装在驾驶台收发机则安装在海图室或驾驶台附近的设备舱室里如果收发机与天线底座合为一体装在桅上这样的分装形式就称为桅上型雷达桅上型雷达便于维护保养多安装在大型船舶上.一般发射功率较大而中小型船舶常采用发射功率较低的桅上配置设备成本也较低2.基本雷达系统组成框图一个基本雷达系统的工作原理框图如图69-7所示与雷达出厂分装相比原理图中的定时器发射系统双工器和接收系统构成了雷达收发机3.基本雷达系统工作原理1 定时器定时器或定时电路又称为触发脉冲产生器或触发电路是协调雷达系统的基准定时电路单元该电路产生周期性定时触发脉冲分别输出到发射系统接收系统信号处理与显示系统以及雷达系统的其他相关设备用来同步和协调各单元和系统的工作2 发射系统雷达发射系统主要由调制器磁控管和发射控制电路组成通过发射开关和量程转换发射控制电路控制着雷达发射机工作和发射脉冲参数的改变在触发脉冲的控制下调制器产生10KV以上的矩形调制脉冲控制磁控管产生具有一定宽度和幅度的大功率射频矩形脉冲通过微波传轴线送到天线向空间辐射雷达采用磁控管作为发射器件其典型的工作寿命大约为10000小时磁控管在能够正常发射之前需要大约3 min的预热时间在这段时间之内驾驶员应将雷达置于备机 standby 状态与雷达观测密切的发射机主要技术指标包括发射频率发射功率脉冲宽度脉冲重复频率等雷达的工作频率有3cm波段和9 cm波段两种又分别称为x波段和S波段前者探测精度较高在晴好天气中使用后者目标的发现能力和抗雨雪杂波能力较强在恶劣天气探测远距离目标时使用较多雷达的发射功率根据船舶的航区和吨位大小通常在几至几十千瓦发射脉冲的起始时间由触发脉冲的前沿决定脉冲的宽度受雷达面板上量程和/或脉冲宽度选择控钮控制在近量程采用窄脉冲随着量程段增加脉冲宽度逐段增加量程段改变时脉冲重复频率也由随之变化近量程重复频率高远量程重复频率低这些技术参数的变化是为了满足目标探测距离回波强度距离分辨力等观测指标的要求参看本章第二节获得最佳观测效果3 双工器双工器又称收发开关雷达采用收发共用天线发射的大功率脉冲如果漏进接收系统就会烧坏接收系统前端电路发射系统工作时双工器使天线只与发射系统连接发射结束后双工器自动断开天线与发射系统的连接恢复天线与接收系统的连接实现天线的收发共用显然双工器阻止发射脉冲进入接收系统保护了接收电路目前雷达通常采用铁氧体环流器作为双工器雷达天线的收发转换时间t′影响了雷达的近距离探测性能参看本章第二节4 天线1 雷达天线基本特性雷达采用隙缝波导天线具有较强的方向性能够定向发射和接收微波天线的辐射特性由图6-9-8所示的方向性图描述分为主瓣和旁瓣雷达是靠天线主瓣来探测目标的波瓣的水平波束 HBW 较窄只有1°左右垂直波束 VBW 较宽为20°左右.波束的空间示意图如图6-9-8a 所示主瓣轴线方向根据不同天线的生产加工以及装配在不同的雷达发射机上的情况可以偏离天线辐射窗口的法线方向3°5°如图6-98b 所示称为偏离角雷达安装时应考虑偏离角的因素调整好方位误差在雷达辐射主瓣方向周围还对称分布了许多旁瓣辐射这些旁瓣辐射功率通常较弱且不稳定对于正常距离上的通常目标而言旁瓣辐射对雷达观测不会构成重要影响但对于近距离强回波而言旁瓣辐射也会探测到目标形成旁瓣假回波参看本章第四节对雷达观测构成比较严重的干扰①阴影扇形成因通常雷达天线安装在龙骨正上方主桅之上的船舶最高处以减少障碍物的阻挡保持良好的探测视野尽管如此雷达天线也不可避免由于安装环境限制受到障碍物或船舶建筑结构的遮挡在一定扇形区域内雷达探测目标的能力减弱甚至无法探测到目标这样的区域称为阴影扇形区域②阴影扇形观测特性由于雷达天线的辐射窗口有一定长度水平波束宽度大约为1°左右而且雷达波具有一定的绕射能力因此被障碍物遮挡的阴影扇形区域并非完全探测不到目标其中在阴影扇形的核心可能存在无法探测到目标的区域称为阴影扇形盲区其他目标探测能力减弱的区域称为阴影扇形灵敏度降低弧船舶建筑结构如船艏楼前桅桅顶横杆将军柱主桅烟囱和船尾楼等引起的阴影扇形对于雷达是永久的对航行安全的影响也最大图6-9-9a 和 b 定性图示了船舶建筑结构引起雷达阴影扇形的成因及对雷达观测的影响图69-9d 为实际船舶雷达屏幕截图可以看到由于本船主桅和烟囱而形成的阴影扇形对雷达观测的影响阴影扇形区域的大小与障碍物的大小障碍物到天线的距离障碍物相对天线的高度以及天线尺寸等因素有关障碍物越高体积越大离天线越近所形成的阴影扇形区域就越大在安装雷达时应精心考虑雷达天线的安装位置按照IMO雷达安装导则要求雷达天线的位置应保证阴影扇形区最小而且不应出现在从正前方到左右舷正横后22.5°的范围内在余下的扇区内不应出现大于5°的独立的或整体之和大于20°的阴影扇形实际的船舶上一般大船前桅造成的阴影扇形区范围约为1°-3°雷达天线附近若有大型吊杆和桅杆存在时其产生的阴影扇形区范围可达5°10°粗大的烟囱且离天线较近时其阴影扇形区范围可达10°以上在雷达阴影扇形区范围内向本船驶近的大船其雷达的发现距离可能从12nmile降到6nmile以下在此区域内的小型船舶探测距离可从4n mile 阴影扇形区域外降到0.5nmile 阴影扇形区域内以下为了更好地理解阴影扇形对雷达观测的影响我们假设一目标船正在。

船用雷达的操作和使用

船用雷达的操作和使用

船用雷达的操作和使用船用雷达是船舶上常见的导航设备,它通过发射和接收微波信号来探测周围环境,并提供相关的信息给船舶驾驶员,以确保航行的安全。

以下是关于船用雷达的操作和使用的详细说明。

1.雷达系统组成船用雷达一般由以下几个部分组成:-雷达发射器:产生微波信号并向四周发射。

-雷达接收器:接收反弹回来的信号,并将其转化为图像。

-显示器:显示雷达所接收到的图像,并提供相关的信息。

-软件控制系统:用于控制雷达的各项参数和功能。

2.雷达的工作原理船用雷达利用微波信号来测量和跟踪目标物体的位置和距离。

当雷达发射器发射出的微波信号遇到物体时,一部分信号会被物体反射回来,雷达接收器接收到反射回来的信号后,通过信号处理和图像重建,形成雷达图像。

3.雷达的操作步骤以下是一般的雷达操作步骤:-打开雷达开关:将雷达接通电源,打开相关开关。

-设置雷达参数:根据航行需求,设置雷达的工作频率、功率、扫描范围等参数。

-定位雷达:将雷达安装到适当的位置,确保雷达可以360度无阻碍的扫描周围环境。

-调整雷达扫描模式和范围:根据航行需求,调整雷达的扫描模式和范围,可以选择水平扫描、垂直扫描、或者组合扫描等模式。

-观察雷达图像:通过观察雷达的显示器,获取周围环境的信息,包括航道、目标物体、岩礁、其他船只等。

-自动或手动跟踪目标:根据需要,雷达可以根据用户设置自动跟踪目标,也可以手动选择跟踪目标。

-分析和决策:根据雷达提供的信息,船舶驾驶员进行分析和决策,选择适当的航向和航速。

4.雷达的使用注意事项在使用船用雷达时,需要注意以下几个方面:-正确设置雷达参数:根据航行条件和需求,合理设置雷达的频率、功率、扫描范围等参数,以获取准确的雷达图像。

-关注目标物体:通过观察雷达图像,及时发现与船只航行有关的目标物体,如其他船只、浮标、岩礁等,并根据需要采取相应的行动。

-定期校准雷达:定期对雷达进行校准和维护,以确保其准确性和可靠性,同时保持雷达设备的清洁。

船用雷达

船用雷达

船用雷达0引言雷达概念形成于20世纪初。

雷达是英文radar的音译,为Radio Detection And Ranging的缩写,意为无线电检测和测距的电子设备。

它是利用电磁波探测目标的电子设备。

雷达的基本任务是探测感兴趣的目标,测定有关目标的距离、方向、速度等状态参数。

雷达主要由天线、发射机、接收机(包括信号处理机)和显示器等部分组成。

船上装备雷达始自第二次世界大战期间,战后逐渐扩大到民用商船。

1雷达的基本工作原理雷达发射机产生足够的电磁能量,经过收发转换开关传给天线。

天线将这些电磁能量辐射至大气中,集中在某一个很窄的方向上形成波束,向前传播。

电磁波遇到波束内的目标后,将沿着各个方向产生反射,其中的一部分电磁能量反射回雷达的方向,被雷达天线获取。

天线获取的能量经过收发转换开关送到接收机,形成雷达的回波信号。

由于在传播过程中电磁波会随着传播距离而衰减,雷达回波信号非常微弱,几乎被噪声所淹没。

接收机放大微弱的回波信号,经过信号处理机处理,提取出包含在回波中的信息,送到显示器,显示出目标的距离、方向、速度等。

2船用导航雷达2.1 船用导航雷达简介船用导航雷达(marine radar )是保障船舶航行,探测周围目标位置,以实施航行避让、自身定位等用的雷达,也称航海雷达。

它特别适用于黑夜、雾天引导船只出入海湾、通过窄水道和沿海航行,主要起航行防撞作用。

2.2 船用雷达与普通雷达的区别一般雷达把自身作为不动点表示在平面位置显示器的中心。

但在航海中,船舶自身在运动,总是与固定目标或运动目标作相对运动。

适应航海环境的雷达,应是真正运动的雷达,须能自动输入船舶自身的航速和航向,数据必须相当准确。

2.3船用导航雷达的最小作用距离—盲区导航雷达是用来探测水上目标的方位和距离,它不受气候影响,可以全天候引导船舶进出港口、码头和海上安全航行。

导航雷达最大作用距离主要取决于雷达脉冲的传播天线,如雷达天线高度、目标大小、形状及反射天线等。

船用雷达与定位与导航

船用雷达与定位与导航
实时监测船只位置、航速、航向等信息,确保船舶安 全航行。
雷达导航系统
探测障碍物
利用雷达发射的电磁波探测周围 障碍物,提供实时、准确的距离
和方位信息。
气象监测
雷达系统可以监测海洋气象信息, 如风向、风速、海浪等,为航行提 供参考。
自动避障
通过雷达探测周围障碍物,自动调 整航向和航速,避免碰撞事故。
惯性导航系统
船用雷达的应用场景
船用雷达广泛应用于船舶导航、避碰、气象观测和海洋调查等领域。在船舶导航中,雷达可以帮助船员探测周围的目标,避 免碰撞事故的发生。
在避碰中,雷达可以实时监测周围船舶的动态,为船舶提供安全航行的信息。在气象观测中,雷达可以探测降雨、风向和风 速等信息,为航行提供气象保障。在海洋调查中,雷达可以用于探测海底地形、水深和流速等信息,为海洋科学研究提供数 据支持。
标准化和互操作性
为了促进集成系统的广泛应用和发展,需要制定统一的标准和规范, 提高不同设备和系统之间的互操作性和兼容性。
05 安全与法规考虑
安全与法规考虑 国际海上避碰规则
雷达设备的合规性
船用雷达设备必须符合国际电工委员会(IEC)和国际海事组织(IMO)的相关标准和规定,以确保其性 能、安全性和可靠性。在使用船用雷达设备时,应确保其符合相关法规和标准的要求,并定期进行维护和 校准。
船用雷达与定位与导航
目录
• 船用雷达系统 • 定位系统 • 导航系统 • 船用雷达与定位与导航的集成应用 • 安全与法规考虑
01 船用雷达系统
船用雷达工作原理
船用雷达通过发射电磁波并接收反射 回来的信号来探测目标,根据目标距 离、方位和高度等信息,形成雷达图 像。
雷达波在传播过程中会受到气象、海 浪等因素的干扰,因此需要对接收到 的信号进行滤波、放大和去噪等处理 ,以提高探测精度。

船用雷达详细介绍演示幻灯片

船用雷达详细介绍演示幻灯片

1. 基本原理:
基本雷达 a 天线
方位量化
d PPI /
b 定时
光栅扫描
收发机
转换
c 视频量化 e
扫描信号 光栅雷达信号 发生器
直角坐标 数据内存
a — 原始方位和船首信号;b — 触发脉冲;c — 原始视频;光雷栅达扫描 d — 数字方位信号;e— 数字视频
①将原始视频杂波抑制,然后与天线方位信号、船艏信号量化 ②进行坐标转换,产生光栅扫描信号
防管内打火
老练方法:
1.只加灯丝电压工作半小时以上 2.加较低的高压工作一段时间(时间视具体情况定) 3.如无打火现象,逐渐加高压到正常值
17
第一节 雷达发射机(Transmitter)
四、正常工作标志
通过收发箱内的表头或显示器上的磁控管电流指示判断
有——正常;无——不正常
五、性能检测
1.磁控管工作是否正常
2、二单元雷达: 天线收发机、显示器、中频电源
10
三、雷达传感器与 IBS
现代雷达 IBS的重要组成部分 定位、导航、避碰
主要传感器
雷达 罗经 计程仪 GNSS AIS ECDIS
11
第二章 船用雷达设备
12
第一节 雷达发射机(Transmitter)
一、组成部分及作用
至显示器 至接收机
脉冲调制器
触发脉冲 产生器
予调制器
调制器
发射机
至天线
磁控管
特高压 调制器
磁控管
低压 电源 来自电源
发 射 开 关
延 时 开 关
门 特高压 开 电源 关
雷达发射机
收发 开关
门开关 至接收机
触发脉冲产予调制器 生器

船用导航雷达资料

船用导航雷达资料
CWNR-20 船用导航雷达集雷达、电子海图为一体,并能接入 GPS、 AIS、罗经等传感器。
雷达组成
CWNR-20 船用导航雷达由雷达主机,显示终端以及电缆三部分组成。
技术特点与优势
CWNR-20 船用导航雷达采用宽带调频连续波体制,能清晰分辨多种量程 下的各种目标。与传统脉冲雷达相比,具有超高距离分辨率、超低电磁辐射、超 高可靠性、几乎没有距离探测盲区等特点。
4. 超低功耗。待机功耗小于 3W,工作功耗小于 19W。 5. 开机见图。固态功放技术彻底消灭了磁控管发射机的预热时间,雷达开
机即见导航图像,瞬时启停
6. 无距离盲区。连续波雷达同时接收与发射,理论上没有距离盲区 7. 工作频带宽。实现频率分集抗海杂波,抑制同频干扰 8. 全天候工作。采用先进海杂波和雨杂波抑制算法,可适应各种复杂环境 9. 美观好用。流线型设计,美观大方。提供自动参数设置、港口与海面等
CWNR-20 船用导航雷达
产品型号
CWNR-20(连续波导航雷达,天线罩口径 20 英寸)
功能用途
CWNR-20 船用导航雷达安装在各类船舶上(游艇,渔船,货船、等),探 测船舶载体周围的各类物体:如船只、浮标、桥墩、堤岸、浮冰、海岛、冰山、 海岸线等,给船员提供直观的目标距离与方位信息,根据需要发出告警信息,以 规避各类危险障碍物,防止碰撞事故,保证船舶安全航行。
使用方式
1. 单独使用。对远距离探测没有特殊要求的各种船舶:如普通游艇,渔 船、小型客货运输船等,单独使用连续波雷达即可满足要求
2. 盘式雷达与杆式雷达搭配使用。要求远距离探测有足够的方位角度分辨 率的情况下,盘式连续波雷可以和杆式雷达搭配使用
1. 超高清晰度。宽带调频连续波体制,最高距离分辨率达 2.6 米,超高距 离分辨率保证了雷达导航图像的超高清晰度

船用雷达详细介绍

船用雷达详细介绍
发射机故障
如发射功率不足、发射脉冲宽 度不正确或发射机频率不稳定 等。
接收机故障
如接收机灵敏度下降、接收机 噪声增大或接收机动态范围减 小等。
显示器故障
如显示器黑屏、显示器亮度不 足或显示器色彩失真等。
故障排除流程和方法
观察故障现象
首先观察雷达的故障 现象,了解故障的具 体表现。
分析故障原因
根据故障现象,分析 可能的原因,缩小故 障范围。
检查发射机的工作状态,测试 发射功率和波形,确保符合规 定要求。
天线系统
检查天线转动是否灵活,馈线 连接是否良好,天线罩是否破 损。
雷达主机
检查主机外观是否完好,各部 件连接是否紧固,散热系统是 否正常工作。
接收机
检查接收机灵敏度、噪声系数 等参数,确保接收性能良好。Fra bibliotek电源系统
检查电源输出电压和电流是否 稳定,电池组是否正常充电和 放电。
将雷达与其他传感器(如红外、光电等)数据进 行融合,提高探测和识别能力。
多功能一体化设计趋势
导航与避碰一体化
将雷达导航与自动避碰系统相结合,实现船舶安全航行。
雷达与通信系统融合
通过共享硬件和信号处理算法,实现雷达探测与通信功能的集成。
多频段、多极化技术
采用多频段、多极化技术,提高雷达抗干扰能力和探测性能。
正确使用操作规范
开机前检查
在开机前,应对雷达系统进行检查,确保各 部件连接正确、紧固可靠。
参数设置
根据航行需要和海况条件,合理设置雷达参 数,如量程、增益、雨雪抑制等。
正确开机
按照规定的开机顺序进行操作,避免误操作 导致设备损坏。
观察与瞭望
在使用雷达时,应始终保持对周围海况和航 行环境的观察与瞭望。

船用雷达工作原理

船用雷达工作原理

船用雷达工作原理雷达是利用电磁波进行遥感探测的无线电传感技术。

船用雷达利用超高频电磁波能够穿透雾、雨、霜、雪等恶劣气象环境,对水面、陆地、船只等进行探测,以实现船舶导航、安全警示和通讯等功能。

船用雷达主要由雷达天线、发射、接收、信号处理等部分组成,其工作原理为:雷达天线发出一束高功率、短脉冲的电磁波,并接收回波信号,在信号处理装置中将回波信号转换为可视化的雷达图像,以指引船只航行和避免风险。

船用雷达的发射部分包括频率发生器、高频功率放大器、脉冲调制器等。

频率发生器产生电波,高频功率放大器将电波放大,脉冲调制器将电波转换成短脉冲形式,控制发射时间和频率,从而实现雷达的发射功能。

雷达天线是船用雷达中的核心部分,用于发射和接收电磁波,在不同方向上扫描目标并接收回波信号。

雷达天线的构造形式有大臂、小臂、座式、开合式等多种,其选用应依据不同的使用场景和需求来决定。

接收部分由接收器、低噪声放大器、中频放大器、检波器、A/D转换器等组成。

接收器接收到回波信号后将其放大,并通过中频放大器将信号转换为中频信号,检波器将中频信号解调成低频信号,A/D转换器将模拟信号转换为数字信号,供信号处理部分进一步处理。

信号处理部分由波形处理器、滤波器、调制解调器、图像处理器等组成。

波形处理器将数字信号转换为基本波形,滤波器对信号进行滤波、降噪处理,调制解调器将信号转换成可视化图像信号,图像处理器将信号转换为雷达图像,供船员使用。

总之,船用雷达通过发射短脉冲电磁波、接收回波信号并进行处理,能够精确定位船只位置和目标方位、距离,提高船舶导航和安全性能。

在恶劣气象、强光干扰等环境中,船用雷达仍能实现高精度探测,为航行带来便利和保障。

船用导航雷达

船用导航雷达

2
按显示 目标动 态方式 不同分
①矢量型
目标动态矢 量显示
②图示型 (PAD型)
目标动态用 PAD显示
精度高、 画面清晰
直观方便
不 如 PAD 直观
精度差、 图象画 电 视 光
栅光标
《航海雷达与ARPA〉第二篇
计程仪
雷达
陀螺罗经
Ch1 绪论
传感器
信号预处理与目标检测
目标船相对速度relspd相对航向relcrs真速度truespd和真航向truecrs5cpatcpa安全界限值mincpamintcpamincpacpa安全界限值允许目标安全通过本船所需的最小会遇距离mintcpatcpa的安全界限值允许目标到达cpa点的最小时间航海雷达与arpa第二篇ch1绪论6在arpa中mincpamintcpa由驾驶员来设定输入7设置mincpamintcpa应考虑的因素1本船大小速度操纵性能若船大速度mincpa大2水域宽阔程度船舶密度若窄密mincpa小3气象条件风浪雾雪若风浪大雾大nincpa大航海雷达与arpa第二篇ch1绪论mincpatcpamintcpa则判断为安全船无碰撞危险mincpatcpamintcpa危险船但尚不紧迫本船应考虑避让措施mintcpa非常危险船本船应立即采取避让措施航海雷达与arpa第二篇ch1绪论图214相对运动雷达人工标绘避碰流程图传感器在crt上观测目标检测目标目标录取选择避让目标确定目标初始位置数据人工标绘避碰作图按规定的时间间隔观测目标位置数据并标绘计算目标的航向航速方位距离cpatcpa分析每个目标速度三角形及避碰三角形计算目标参数人工设定mincpamintcpa设置安全判据危险船
CPA、MIN
设置安全判据
危险船?
TCPA

船用雷达详细介绍

船用雷达详细介绍

船用雷达详细介绍船用雷达是指安装在船舶上,用来探测和测量周围环境的雷达系统。

它是船舶上必备的重要设备之一,具有广泛的应用领域,包括航海、渔业、船舶导航和安全等。

船用雷达的基本原理是利用电磁波的反射和回波来探测目标物体的位置和距离。

雷达系统会通过发射器发射一束脉冲电磁波,并追踪这些波的回波来确定目标物体的位置和距离。

通过测量回波的时间和频率,船用雷达能够计算出目标的位置、距离和速度等重要信息。

船用雷达通常由以下几个主要部件组成:天线、发射器、接收器、显示器和控制装置。

天线用于发射和接收电磁波,发射器产生电磁波脉冲,接收器接收和处理回波信号,显示器显示目标物体的信息,控制装置用于操作和控制雷达系统。

船用雷达的主要功能包括航海导航、碰撞防范、目标检测和跟踪等。

船舶在海上航行时,通过船用雷达可以确定周围环境的情况,包括其他船只、浮标、礁石等。

船用雷达能够提供目标物体的位置、距离和速度等信息,帮助船舶避免碰撞和安全导航。

船用雷达的技术特点主要包括雷达分辨率、探测距离、工作频率和功率等。

雷达分辨率是指雷达系统能够分辨出的最小目标物体的大小,通常与天线的直径有关。

探测距离是指雷达系统能够探测到目标物体的最远距离,通常取决于功率和工作频率。

工作频率是指雷达系统发射和接收电磁波的频率,通常根据不同的应用需求选择合适的频率。

船用雷达有多种不同类型,包括X波段雷达、S波段雷达、L波段雷达、K波段雷达等。

不同类型的雷达在性能和应用方面有所差异。

例如,X波段雷达具有较高的分辨率和探测距离,适用于长距离航行和海上作业;而S波段雷达则适用于近距离导航和安全防范。

除了基本功能外,现代船用雷达还具有一些先进的特性和功能,如自动目标跟踪、天气雷达、海上目标识别系统等。

自动目标跟踪可以自动追踪目标物体的运动轨迹,方便船舶管理和操作;天气雷达可以探测和预测天气情况,提供给船舶相关的气象信息;海上目标识别系统可以识别和跟踪目标物体,确保船舶的安全航行。

2024年船用导航雷达市场分析现状

2024年船用导航雷达市场分析现状

2024年船用导航雷达市场分析现状引言船用导航雷达是船舶上的重要导航设备,用于检测和跟踪周围海域中的船只和障碍物。

通过使用雷达技术,船只能够提前预警,避免碰撞和其他潜在危险。

本文将对船用导航雷达市场的现状进行分析。

市场规模船用导航雷达市场是一个庞大且持续增长的市场。

根据市场研究公司的报告,全球船用导航雷达市场在过去几年中保持了稳定的增长趋势。

预计到2025年,市场规模将达到XX亿美元。

市场驱动因素日益增加的海上贸易随着全球化的发展,海上贸易不断增加。

大量的货物需要通过海洋运输,因此船只的数量也在不断增加。

这促使船舶运营者更加重视导航雷达的使用,以确保航行的安全性。

政府法规的要求政府对船只航行安全的要求逐渐增加,船舶必须配备可靠的导航雷达。

这些法规的实施进一步推动了船用导航雷达市场的增长。

技术进步和创新雷达技术在过去几年中得到了显著改进和创新。

新型的船用导航雷达具有更高的分辨率、更长的探测距离和更准确的目标识别能力。

这些技术进步吸引了船舶运营者的关注,推动了市场需求的增加。

市场竞争格局船用导航雷达市场是一个竞争激烈的市场,主要的竞争者包括:•公司A:该公司是市场的领先者,拥有广泛的产品线和强大的研发能力。

他们在航海雷达领域享有良好的声誉。

•公司B:该公司专注于低成本船用导航雷达的生产,并在价格上具有竞争优势。

他们主要通过价格战来吸引客户。

•公司C:该公司在技术创新方面具有优势,他们推出的新型导航雷达具有独特的特性和功能,吸引了一部分高端市场客户。

市场前景随着航海业的发展和技术的进步,船用导航雷达市场有望在未来几年中保持稳定的增长。

全球船舶数量的增加和政府法规的要求将继续推动市场需求的增长。

同时,技术创新将为市场带来新的机遇和挑战。

结论船用导航雷达市场是一个庞大且不断增长的市场,受到海上贸易增加、政府法规要求和技术创新的推动。

市场竞争激烈,主要竞争者在产品特性、价格和研发能力方面存在差异。

展望未来,市场有望保持稳定增长,并面临着新的机遇和挑战。

海上导航雷达的使用教程和注意事项

海上导航雷达的使用教程和注意事项

海上导航雷达的使用教程和注意事项海上导航雷达是现代航海技术中不可或缺的重要设备,它通过接收和发送电磁信号来探测、跟踪和定位船只、岛屿和其他物体。

它在船舶导航中发挥着关键作用,为船员提供了准确和即时的信息,以确保航行的安全和顺利。

然而,正确使用海上导航雷达并非易事,需要一定的培训和实践经验。

本文将为您提供海上导航雷达的使用教程和注意事项,以帮助您更好地理解和应用这一关键航海工具。

一、了解雷达原理在学习如何使用海上导航雷达之前,我们首先需要了解雷达的基本原理。

雷达工作基于微波的特性。

雷达将微波的脉冲发送出去,并通过接收返回的回波来确定目标物体的位置和距离。

回波的特征会在雷达屏幕上显示出来,帮助船员识别和跟踪目标物。

二、熟悉雷达显示海上导航雷达的显示屏通常显示船舶和其他物体的位置、距离和方位角。

当使用雷达时,您需要熟悉这些显示,并能准确地解读和理解它们。

在雷达屏幕上,船舶通常以一个点的形式显示,而岛屿和其他物体则以固定的形状显示。

此外,船舶的运动方向也会以箭头或线段的形式显示在屏幕上。

三、调整雷达设置正确的雷达设置对于准确和可靠的导航至关重要。

您应该熟悉如何调整雷达的增益、脉冲长度和脉冲重复频率等参数。

增益控制调整回波信号的强度,脉冲长度控制雷达发送的脉冲时长,而脉冲重复频率则控制雷达发送脉冲的速度。

根据不同的环境和海况,您需要根据需要灵活调整这些设置,以获得最佳的导航效果。

四、理解雷达反射特性在使用雷达时,您需要了解各种物体对雷达信号的反射特性。

船舶、岛屿和其他物体都具有不同的雷达反射截面积,这直接影响到它们在雷达屏幕上的显示效果。

大而坚固的物体通常有较大的雷达反射截面积,而小而脆弱的物体则有较小的截面积。

因此,在识别和判断目标物体时,您需要根据反射特性来进行推测和判断。

五、掌握雷达的航道标识功能海上导航雷达还具有航道标识功能,它可以帮助船员准确地判断船舶是否偏离航道。

雷达会在航道两侧显示虚线,并在航道中心显示一条实线。

航海导航的导航操作技术

航海导航的导航操作技术

航海导航的导航操作技术导航操作技术在航海领域起着至关重要的作用。

航海导航是指通过各种手段确定船舶的位置、航程以及安全导航的技术。

导航操作技术的发展使得航海更加安全、便捷和准确。

本文将对航海导航的导航操作技术进行详细探讨。

一、星位导航技术星位导航技术是导航操作中常用的一种技术,它利用人造卫星发射的导航信号来确定位置。

目前,全球范围内有多个卫星导航系统,包括GPS、GLONASS和Beidou等系统。

船舶上的导航设备接收卫星信号,并通过多个卫星的信号交叉验证来计算船舶的位置。

这种技术具有高精度和高可靠性的特点,广泛应用于大范围的海洋航行。

二、雷达导航技术雷达导航技术是航海导航中的另一种重要技术。

雷达可以通过电磁波的反射来探测船舶周围的物体,并利用反射信号确定船舶的位置。

船舶上的雷达设备可以显示周围物体的位置、距离和速度等信息,帮助船长进行航行决策。

雷达导航技术适用于近距离海洋航行和复杂水域中,为船舶提供了强大的导航支持。

三、惯性导航技术惯性导航技术是航海导航中的一种传统技术,它通过感知船舶加速度和角速度的变化来确定位置和航向。

惯性导航系统通常包括陀螺仪和加速度计等传感器,可以提供连续的船舶姿态和位置信息。

优点是其独立性和高精度性,在某些情况下,如卫星信号受阻碍或环境干扰较大的情况下,惯性导航技术仍然能够提供可靠的导航数据。

四、电子海图技术电子海图技术是航海导航中的一项重要技术。

通过将海图数字化,并将其显示在电子设备上,使船舶航行过程更加直观和便捷。

电子海图可以提供详细的航行信息,包括水深、岩石和航道等。

船舶上的导航设备可以将船舶的实时位置与电子海图进行比较,从而提供船舶的导航警告和建议。

电子海图技术大大提高了航海的安全性和效率。

五、自动驾驶技术随着技术的不断发展,自动驾驶技术在航海领域的应用越来越广泛。

自动驾驶技术利用先进的传感器和控制系统,能够自主地控制船舶的航行。

船舶上的导航系统可以收集各种传感器的数据,并根据预设的航线进行船舶的自动导航。

2023年船用导航雷达行业市场前景分析

2023年船用导航雷达行业市场前景分析

2023年船用导航雷达行业市场前景分析船用导航雷达是一种将电波发射至目标物后接收反射波,通过处理测量信号距离与方位角度,实现对船舶位置和环境的监测、导航和安全警示的设备。

随着航海技术的不断发展和船舶数量的增加,船用导航雷达得到广泛应用。

本文从市场规模、技术趋势、应用领域三个方面对船用导航雷达行业市场前景进行分析。

一、市场规模船用导航雷达市场规模庞大,未来增长前景广阔。

全球船用导航雷达市场规模正在持续增长,行业分析师预计,到2025年,该市场将达到50亿美元。

随着全球海洋与航运产业的不断发展和升级,航海技术的应用和需求将不断增加。

特别是在民船配备雷达,改善涉海安全方面,政策的加大支持力度不断刺激着市场的扩张。

中国船用导航雷达市场正在逐步开放,也成为全球船用导航雷达市场不容忽视的重要部分。

二、技术趋势船用导航雷达技术正在不断改进和升级,未来将具备更多智能化应用。

传统的雷达技术采用红外线和激光进行多点测距,然而,2000年后立体成像雷达技术的出现,实现机器视觉下的三维物体成像,使得雷达技术不断发展。

未来,随着人工智能、物联网和大数据等技术的发展与应用,船用导航雷达将实现更多应用。

目前已有智能识别雷达技术应用于无人驾驶船和海洋生态保护,未来智能化的应用将突破传统雷达功能,在自主导航、绿色环保、海洋资源勘探、船险理赔等领域发挥更多优势。

三、应用领域船用导航雷达市场应用广泛,未来有望进一步拓展。

目前,船用导航雷达已经应用于各种船舶,不仅满足了船舶导航、监控和预警等功能,还增加了船舶气象监测、环境保护等功能,同时,也有些船舶直接将雷达测量结果绘制成电子海图等。

未来,随着现代船舶设备互联互通和智慧化的发展,船用导航雷达还将与无人机等智能设备结合,实现无人化监测与控制。

同时,随着人们对海洋环保意识的提高,船用导航雷达在海洋环保、油污清理、海洋资源勘探等方面的应用将逐渐增加。

综上所述,船用导航雷达市场前景广阔,未来增长潜力巨大。

船舶导航仪器使用方法说明书

船舶导航仪器使用方法说明书

船舶导航仪器使用方法说明书一、简述本文旨在提供有关船舶导航仪器的使用方法,以帮助船员合理、高效地操作和利用导航仪器完成航海任务。

船舶导航仪器是航海过程中不可或缺的工具,它能够帮助船舶确定航向、测量距离、监测航行环境并提供安全警示等功能。

只有熟练掌握导航仪器的使用方法,才能确保航行顺畅、安全。

二、导航仪器简介船舶导航仪器主要包括罗盘、雷达、GPS、测深仪、声纳等。

它们各自具备独立的功能,同时也可以在实际航行中相互补充、配合使用,提高导航准确性和安全性。

1. 罗盘罗盘是用来确定船舶航向的重要工具,有指南针罗盘和陀螺罗盘两种类型。

船员需要确保罗盘的正常工作状态,不受外部干扰。

2. 雷达雷达主要用于监控船舶与海上障碍物的距离、位置以及环境变化情况。

船员应熟悉雷达的操作界面、图像解读和警示灯的含义。

3. GPS全球卫星定位系统(GPS)是现代航海中最常用的导航工具之一。

通过GPS可以确定船舶的准确位置和速度,为船员提供精准的导航信息。

4. 测深仪测深仪用于测量水下的深度,并提供该深度与海图上标记的深度之间的比较,帮助船员避免水深不足的区域。

5. 声纳声纳主要用于海底地形测量,能够帮助船员及时发现潜在的海底障碍物,确保船舶安全通过。

三、船舶导航仪器的使用方法1. 熟悉导航仪器的布局和功能在操作导航仪器之前,船员需要详细了解每个导航仪器的布局和功能,包括按钮、屏幕显示、指示灯等。

熟悉导航仪器的布局有助于快速准确地完成各项操作。

2. 准备和启动导航仪器确保导航仪器处于良好的工作状态,检查电源和连接线路的连接情况。

根据各个导航仪器的启动步骤,依次开启设备并等待系统自检完成。

3. 设置船舶相关参数根据实际航行需求,设置导航仪器的相关参数,如船舶尺寸、速度、目标位置等。

正确设置参数有利于导航仪器提供准确的导航信息。

4. 使用罗盘确定航向根据罗盘指示,判断船舶是否偏离航向。

如有偏差,及时调整舵角确保航向正确。

5. 使用雷达监测船舶周围环境通过雷达监测船舶周围的障碍物和其他船只,根据雷达图像和声音警报,判断船舶的安全状态并及时采取行动。

船舶雷达知识点总结图表

船舶雷达知识点总结图表

船舶雷达是一种用于船舶导航和安全的重要设备。

它通过发射和接收无线电波来探测周围环境,帮助船舶避免障碍物、识别其他船只并保持安全距离。

船舶雷达的使用对于船舶的航行至关重要,因此船员需要掌握相关的知识和技能来正确操作雷达。

下面将对船舶雷达的知识点进行总结,包括雷达的工作原理、常见的雷达显示和功能、雷达的使用注意事项等内容。

一、雷达的工作原理1. 电磁波的发射和接收雷达通过发射一定频率的电磁波,然后接收并分析被目标反射回来的信号来探测目标的位置和距离。

2. 雷达回波的处理雷达系统会对接收到的回波信号进行处理,包括计算目标的距离、方位和速度,并在雷达显示器上显示出来。

3. 雷达的波束和分辨率雷达发射的电磁波是由天线发射出去的,形成一个类似于手电筒光束的范围,被称为“波束”。

雷达的分辨率取决于波束的宽度,波束越窄,分辨率越高。

二、雷达的显示和功能1. 雷达的显示器雷达显示器通常是采用脉冲波形显示,用于显示探测到的目标物体的位置、距离和方位。

2. 雷达的操作控制雷达设备通常有一系列的操作控制,包括调整雷达的灵敏度、增益、对比度等参数,以获得更清晰的目标显示。

3. ARPA和AIS功能一些先进的雷达设备具有自动雷达目标追踪(ARPA)和自动识别系统(AIS)的功能,可以自动追踪目标并显示其关键信息。

4. 雷达报警系统雷达设备通常配备有报警系统,能够在发现潜在危险或规避目标时发出声音或视觉警报提示船员。

1. 遵守雷达使用规定船舶雷达的使用需要遵守相关的法规和规定,船员需要熟悉并严格遵守这些规定。

2. 定期维护检查船舶雷达需要定期进行维护和检查,确保设备的正常运行和准确性。

3. 熟悉目标特征船员需要熟悉各种不同目标的雷达反射特征,以便正确识别和区分目标。

4. 与其他导航设备的配合雷达在船舶导航中通常需要与其他导航设备如GPS、电子海图等配合使用,船员需要掌握这些设备的协调使用方法。

以上是对船舶雷达知识点的总结,船员需要熟悉这些知识,合理使用雷达设备,保障船舶的安全航行。

航海雷达知识点总结

航海雷达知识点总结

航海雷达知识点总结一、航海雷达的基本原理和工作方式航海雷达是一种利用电磁波进行探测和导航的装置,它能够通过发射电磁波,然后接收并分析返回的信号来检测目标物体的位置和距离。

航海雷达的基本原理是利用电磁波的反射来探测目标物体,然后通过计算反射的时间,来确定目标物体的位置和距离。

航海雷达的工作方式主要分为发射、接收和信号处理三个步骤。

首先,雷达发射器发射一束电磁波,然后这束电磁波遇到目标物体时会被反射回来。

接着,雷达接收器接收反射回来的信号,并将其转化为电信号。

最后,计算机对接收到的信号进行处理,然后将目标物体的位置和距离显示在雷达屏幕上。

二、航海雷达的技术特点和应用领域航海雷达具有以下技术特点和应用领域:1. 雷达分辨率高:航海雷达能够在复杂的海洋环境中精确地探测到目标物体的位置和距离,其分辨率高,能够显示出目标物体的细节信息。

2. 雷达距离远:航海雷达的作用距离远,可以在数公里的范围内探测到目标物体,适用于海上导航和目标探测。

3. 雷达可靠性高:航海雷达具有很高的抗干扰性和可靠性,能够在恶劣的海上环境中稳定工作。

4. 应用领域广泛:航海雷达主要用于船舶导航、海上巡逻、目标探测等领域。

三、航海雷达的主要组成部分和工作原理航海雷达主要由以下几个组成部分构成:天线、发射器、接收器和信号处理设备。

其工作原理如下:1. 天线:航海雷达的天线主要负责发射和接收电磁波,能够将电磁波聚焦成一束束的射线,然后进行发射和接收。

2. 发射器:航海雷达的发射器是用来发射电磁波的装置,能够将电磁波转化为一定频率的信号,并将其发送到目标物体。

3. 接收器:航海雷达的接收器主要负责接收返回的信号,并将其转化为电信号,然后传送给信号处理设备。

4. 信号处理设备:航海雷达的信号处理设备主要负责对接收到的信号进行处理,能够计算目标物体的位置和距离,并将其显示在雷达屏幕上。

四、航海雷达的使用方法和注意事项航海雷达的使用方法和注意事项如下:1. 使用方法:在使用航海雷达时,应按照操作手册上的要求进行操作,首先打开雷达系统,然后设置波长、增益等参数,然后将天线对准目标物体,最后观察雷达屏幕上显示的目标信息。

雷达基本工作原理

雷达基本工作原理

19
二 雷达显示方式
按船舶运动参照系划分
真运动TM 相对运动RM
按图像的指向模式划分
艏向上(H-UP) 航向向上(C-UP) 真北向上(N-UP)
20
1、 相对运动显示方式
是指无论本船是否运动,在雷达屏幕 上,代表本船位置的扫描中心固定不动, 所有目标都与本船作相对运动即目标在屏 幕上的运动是其各自的真速度矢量与本船 真速度矢量之差.
圈0°为止。
26
海图平面
270°(T)
240°(T)
Course 240 航海视景
Course 270
240
240
0
0 270
0
0
Course up
270 0
0
27
2、 真运动雷达显示方式
需要接入罗经(航向)和计程仪(航速)信号. 显示特点:
代表本船的扫描中心在屏上按本船的航向航速 移动,固定物标在屏上稳定不动,活动物标与其在海 上实际运动状态相同,按各自的航向和航速移动。 屏上画面像在空中俯看海面一样。
31
32
航海雷达与ARPA
1、 组成框图
绪论
原理组成——七部分
33
航海雷达与ARPA
1、 组成框图
绪论
原理组成——七部分
2、各部分作用
1)触发电路(Trigger) (又称定时电路,或称定时器)
每隔一定时间(Tr)产生一触发脉冲(定时脉冲) 它是雷达整机的定时系统. Tr--------脉冲重复周期
船用雷达只研究水平面 和垂直面的方向性图。
L
CB
半功率点
P
θH ABiblioteka BRC半功率点
水平方向性图
54
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

船用导航雷达简介
摘要:本文简单介绍了雷达的工作原理,并以此为基础重点介绍了船用导航雷达与普通雷达的区别、相关规范要求、基本组成及作用,技术指标。

关键词:雷达雷达的工作原理船用导航雷达盲区基本组成及作用技术指标自动雷达标绘仪
Abstract: this paper briefly introduces the working principle of the radar, and, on this basis, focusing on the Marine navigation radar and common radar difference, relevant specification requirements, basic composition and function, the technical indexes.
Keywords: radar radar principle of work of the Marine navigation radar blind area basic composition and function technical indicators to be automatic radar instrument plot
0引言
雷达(radar)概念形成于20世纪初。

雷达是英文radar的音译,为Radio Detection And Ranging的缩写,意为无线电检测和测距的电子设备。

它是利用电磁波探测目标的电子设备。

雷达的基本任务是探测感兴趣的目标,测定有关目标的距离、方向、速度等状态参数。

雷达主要由天线、发射机、接收机(包括信号处理机)和显示器等部分组成。

船上装备雷达始自第二次世界大战期间,战后逐渐扩大到民用商船。

1雷达的基本工作原理
雷达发射机产生足够的电磁能量,经过收发转换开关传给天线。

天线将这些电磁能量辐射至大气中,集中在某一个很窄的方向上形成波束,向前传播。

电磁波遇到波束内的目标后,将沿着各个方向产生反射,其中的一部分电磁能量反射回雷达的方向,被雷达天线获取。

天线获取的能量经过收发转换开关送到接收机,形成雷达的回波信号。

由于在传播过程中电磁波会随着传播距离而衰减,雷达回波信号非常微弱,几乎被噪声所淹没。

接收机放大微弱的回波信号,经过信号处理机处理,提取出包含在回波中的信息,送到显示器,显示出目标的距离、方向、速度等。

2船用导航雷达
2.1 船用导航雷达简介
船用导航雷达(marine radar )是保障船舶航行,探测周围目标位置,以实施航行避让、自身定位等用的雷达,也称航海雷达。

它特别适用于黑夜、雾天引导船只出入海湾、通过窄水道和沿海航行,主要起航行防撞作用。

国际海事组织(IMO)规定,1600吨位以上的船支须装备导航雷达。

导航雷达的一项重要任务是目标标绘,这项任务正逐渐改由自动雷达标绘装置来担任。

国际海事组织还规定所有1万吨位以上的船支逐步装设这种装置。

SOLAS第V章第19条2.3.2项也指明:“所有300总吨及以上的船舶和不论尺度大小的客船,应有1台9GHz雷达或其他装置,用于确定和显示雷达应答器其它水上船舶、碍航物、浮标、海岸线和航标的距离和方位,借以助航和避碰”;第2.3.3项指明:要有“1套电子标绘装置(EPA)或其它装置,用于电子标绘目标的距离和方位,以便确定碰撞危险;”;对所有10,000总吨及以上的船舶,要求要有“1台自动雷达标绘仪(ARPA)或其他装置,与1台指示船舶相对于水的速度和航程的装置相联,用于自动标绘至少20个其它目标的距离和方位,以确定碰撞危险和模拟试验性操纵”。

2.2 船用雷达与普通雷达的区别
一般雷达把自身作为不动点表示在平面位置显示器的中心。

但在航海中,船舶自身在运动,总是与固定目标或运动目标作相对运动。

适应航海环境的雷达,应是真正运动的雷达,须能自动输入船舶自身的航速和航向,数据必须相当准确。

2.3船用导航雷达的最小作用距离—盲区
导航雷达是用来探测水上目标的方位和距离,它不受气候影响,可以全天候引导船舶进出港口、码头和海上安全航行。

导航雷达最大作用距离主要取决于雷达脉冲的传播天线,如雷达天线高度、目标大小、形状及反射天线等。

雷达最小作用距离是一个重要指标,所谓最小作用距离是指在此距离内,不管目标有多大,均发现不了目标,常称为雷达的盲区。

雷达的最小作用距离是由雷达脉冲宽度和天线架设的高度决定的。

一般情况下雷达的最小作用距离小于30m。

2.4 船用导航雷达的基本组成及作用
2.4.1发射机
1. 基本组成:脉冲调制器(预调制器、调制器)、磁控管振荡器、电源(低压、高压)
2.作用:在触发脉冲控制下产生周期性的大功率射频脉冲。

——微波脉冲、发射脉冲、雷达波
3.主要与船厂相关的技术指标
1)工作频率(波长):超高频(正弦波)的频率范围,即船用雷达磁控管工作频率。

S 波段:λ=10cm; f=2 900~3100 MHz如:3050 MHz
X波段: λ=3cm; f=9 000~9500 MHz如:9375 MHz
为了保证船舶在恶劣海况中航行安全,导航雷达配备双雷达系统,即10cm(S 波段)和3cm(X波段)两部雷达。

这种配备主要是两种波段雷达互为备份,取长补短,提高设备可靠性,保证船舶安全航行。

正常情况下,使用X波段雷达工作,探测精度高,显示画面清晰,但在恶劣气候海况下,它受雨雪干扰大,使用性能较差;而S 波段雷达却受雨雪干扰较小,抑制海浪干扰能力强;尽管气候恶劣,显示画面仍然清晰,作用距离也比X波段大。

2.4.2 收发开关
发射时,关闭接收机,大功率射频脉冲送天线;
接收时,接通接收机,微弱回波能量送接收机。

2.4.3 天线
1.天线:定向收发天线,将发射机送来的射频脉冲聚成细束,集中向一个方向发射,并接收此方向物标反射回来的雷达波(回波)送接收机。

天线与扫描系统
2.微波传输线:
1)要求:损耗小,防止辐射、干扰、失真
2)种类:波导、同轴电缆
3) 同轴电缆:用于10 cm雷达,由内外两层导体构成,严格同轴。

3. 波导:用于3 cm雷达, 由矩形空心管构成—由铜拉制成。

2.4.4接收机
接收机:超外差式,将微弱回波信号放大千万倍以符合显示器要求。

1、组成简介
接收机组成框图
1).混频器:把回波信号(fS)与本振信号(fL)通过非线性元件混频产生含许多新频率的信号,经过选频电路选出本振信号与回波信号的差频——中频信号(fI)。

2).本振调谐:调节本振频率使之比回波频率正好高一个中频,
回波图象最佳。

①粗调:大范围改变振荡频率。

○机械调谐:调节谐振腔尺寸(决定中心振荡频率)
○电气调谐:调节工作电压
②细调:小范围改变振荡频率
○自动调谐:自动频率控制电路(AFC)完成
○人工调谐:手动调节电位器改变本振工作电压
平时操作雷达的控制面板调谐标准:图象清晰饱满,调谐指示表指示最大。

2、主要技术指标
接收机灵敏度:接收微弱信号的能力。

用最小可辩功率Pmin表示,一般10-12 ~ 10-14 W,接收机放大量应106 ~ 108(120 ~ 160 dB)。

3、接收机工作状态判断
1).噪声斑点: 调节增益,噪声变化。

2).晶体电流: 收发机内的表头,是否正常。

2.4.5显示器
显示器:平面位置显示器(PPI)。

显示与测量目标,目标回波按目标的实际距离和方位显示在荧光屏上,且配有测量系统供随时测量。

一般安装于驾驶室
内的驾控台内。

3、自动雷达标绘仪
自动雷达标绘仪,Automatic Radar Plotting Aid,即ARPA,能使观测者自动获得信息,并能自动处理和标绘多处物标。

它不但能够连续、准确和迅速的航行形式估计,并能显示船舶周围的事态,确保船舶安全航行。

它是结合雷达和电子计算机技术应用的一种船舶避碰仪器。

该系统采用微机技术控制整个系统,与导航雷达配套作为主显示器和分显示器。

它具有多批目标录取及自动跟踪,并显示目标的航向和速度,根据设定的最近会遇距离和到最近会遇距离的时间的允许界限,给出警示信号或显示预测危险区,提醒驾驶员采取避让措施。

如有必要,还可进行试操船,以决定所需采取的避让措施。

并能自动校准,自动调整,还能故障自检和指示。

2.4.6雷达单元构成
导航雷达一般分成二单元或三单元雷达,工作在X或S波段上,功率在10kW 到30kW不等。

从结构来看二单元雷达由天线、齿轮箱、收发机一体化箱和控制显示单元组成;三单元雷达由天线、齿轮箱,收发机箱和控制显示单元组成。

二单元雷达易于安装调试,收发机不占室内空间,但不太方便维修;三单元雷达维护方便,但收发机占用室内空间,电缆也较多。

3结束语
在船厂的实际应用中,雷达设备属于厂家已经做的比较完备的产品,而船用导航雷达的技术指标很多,本文也主要是围绕着与船厂有关的一些技术指标做了相关的介绍,因此篇幅有限。

希望在今后的工作当中,能够对设计雷达系统的工作有所帮助。

[参考文献]
[1]中国传播工业总公司。

船舶设计实用手册(电气分册)
[2]中国船级社。

钢质海船入级规范2006.
[3]船用导航雷达。

相关文档
最新文档