轴向力径向力及其平衡
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
式有关,用 A4表示;
5.影响轴向力的其它因素。
一.产生盖板A力1 的原因
离心泵工作时,由于叶轮两侧液体压力分 布不均匀,如图1所示,而产生一个与轴 线平行的轴向力,其方向指向叶轮入口。
图1离心泵轴向力示意图
计算过程
假设: 1.盖板两侧腔的液体无泄漏径 向流动 2.盖板两侧液体以叶轮旋转角 速度之半 2 旋转
2 gH
p
( Rm2
2
Rh2
)
2 2gR22 8g
( Rm2
2
Rh2
)
2g 2 8g
( Rm4
4
Rh4
)
A1
g(Rm2
Rh2 )[ H p
2 8g
( R22
Rm2
2
Rh2
)]
按压力体体积来计算
A1 =圆柱体重量十抛物体重量
( Rm2
Rh2 ) g(H p
2 8g
R22
2 8g
Rh2 )
任意半径R 处的h压 头
h h h
(u2 )2 2 2g
(u)2 2
2g
1 8g
(u
2 2
u2) 2 8g
(R22
R2)
假设:vm1 vm2 vu1 0
Hp
p2 p1 g
Ht
v22 v2 2g
Ht
(vm2 2
vu22 ) (vm21 vu21 ) 2g
Ht
vu22 2g
ab
R22
Re
2
)
ac
H
P
2
8g
( R2 2
R2
)
ab
HG
2
8g
( Re 2
R2
)
可以得bc……省略
将bc从轮毂Rh
积Re 分到 得到平衡方程
F1
Re Rh
bc
g
2R
dR
3 2
16 g
g
Re 2
Rh2
2
或
F1
3 8
(
Ae
Ah
)
1 2g
(ue 2
uh2 )g
上面的计算是基于叶片端部和壳体的间隙很小时,但间隙大时 液体转'速 (应1该t ) 为
1 2
( R22h
Rh2 )g
2 8g
( R22h
Rh2 )
(
R22h
Rh2
) g [
H
p
2
16 g
(
R22h
Rh2
)]
F2 (R220 Rm2 )gH p
1 2
( R220
Rm2 )g
2 8g
( R220
Rm2 )
(
R220
Rm2
)g[ H
p
2
16 g
(
R220
Rm2
)]
半开式混流泵叶轮的轴向力
A1 F3 F1 F2
F3 ( R220 R22h )gH p
F1 (R22h Rh2 )gH p
1 2
( R22h
Rh2 )g
2 8g
( R22h
Rh2 )
(
R22h
Rh2
)g[ H
p
2
16 g
(
R22h
Rh2
)]
F2
1 2
H P g(R2h
R1h )2 (R1h
2 3
(R2h
R1h ))
1.悬臂式叶轮轴头吸入压力和大气压力不同
引起的轴向力
A3
d
2 h
4
( p1
pa )
2.对称布置叶轮由于轴细部结构不同引起 的轴向力
A3 p( Ah As2 )
P gH
H为单级扬程
四.影响轴向力的其它因素
1.叶轮前后盖板泵腔内的径向流
前泵腔总是存在着内向径向流,后泵 腔的惰况有所不同,一般无平衡孔的单 级泵则无径向流,有平衡孔时存在内向径向流,多级泵因级间泄漏 在外向的径向流。对不同的泵,按内向流压力减小,外向流压力增 分析对轴向力的影响。 2.叶轮两侧密封环不同
四.背叶片平衡轴向力
已知未加背叶片的时候轴向力大小为
A1
g ( Rm2
Rh2 )[ H
p
2
8g
( R22
Rm2
2
Rh2
)]
加背叶片后,背叶片强迫液体旋转,液体的旋转角度增加。后侧 水头如曲线AGK所示,它和线AGF相差的曲线既为背叶片平衡的
计算方法:(设液体以 旋转)
bc
HG
=
HP
ac-2
( 8g
双吸泵从理论上讲无轴向力作用,由于上述原因,当两侧密封环 长度不同、磨损不同时,会产生指向泄漏大的一侧的附加轴向力
第二节 轴向力的平衡
危害:如果不设法消除或平衡作用在叶轮上(传到轴上)的轴向力,此 将拉动转子轴向串动,与固定零件接触,造成泵零件的损坏以至不
一、推力轴承 对于轴向力不大的小型泵,采用推力轴承承受轴向力,通常是简单 的方法。即使采用其它平衡装置,考虑到总有一定的残余轴向力, 装设推力轴承。
轴向力径向力及其平衡
第一节 产生轴向力的原因及其计算方法
1.叶轮前、后盖板不对称产生的轴向力,此
力指向叶轮吸入口方向,用 A1表示;
2.叶轮推动液体运动产生的动反力,此力指向叶轮
后面,用 A2表示;
3.轴台、轴端等结构因素引起的轴向力,其
方向视具体情况而定,用 A3表示;
4.转子重量引起的轴向力,与转子的布置方
二.动反力A2 的计算
动反力;液体通常沿轴向进入叶轮,受到叶 轮作用力沿径向或斜向流出。反之,液体 给叶轮一个大小相等方向相反的反作用 力由,动该量力定即理为得动反力
A2 Q1 (vm0 vm3 cos )
对于一般离心泵,可按下式估算轴向力
A kgH1 (Rm2 Rh2 )i
三.轮毂轴端等结构引起的轴A3向力 的计算
1 2
(
Rm2
Rh2 )g
2 8g
( Rm2
Rh2 )
( Rm2
Rh2 )g[H
p
3 8g
( R22
Rm2
2
Rh2
)]
半开式叶轮轴向力 的计算
作用于后盖板的轴向力(抛物体的重量) 为
F1
(R22
Rh2 )gH
p
1 2
(R22
Rh2
) gh
h
2 8g
(R22
Rh2
)
作用在前侧的轴向力(三角形压力体重量)为
二.平衡孔或者平衡管
在叶轮后盖板上附设密封环,密封环所在直径 一般与前密封环相等,同时在后盖板下部开 孔,或设专用连通管与吸入侧连通。由于液 体流经密封环间隙的阻力损失,使密封下部的 液体的压力下降,从而减小作用在后盖板上 的三.轴双向吸力叶。轮
使用双吸叶轮由于结构对称,能平衡轴向力。 但由于制造误差,或者两边密封环 磨损不同会存在一定的残余轴向力。
F2
1 2
H p g(R2
Rm )2[Rm
2 3
(
R2
Rm )]
总的轴向力
A1 F1 F2
混流泵叶轮轴向力 的计算
当原动机带动叶轮旋转后,对液体
的作用既有离心力又有轴向推力,
A1 F3 F1 F2
是离心泵和轴流泵的综合,液体斜向流出叶轮
F3 ( R220 R22h )gH p
ຫໍສະໝຸດ Baidu
F1 (R22h Rh2 )gH p
Ht
(gHt u2 )2 2g
Hp
H t (1
gHt 2u22
)
叶轮后盖板任意半径处,作用的压头差为
h
H
p
h
H
p
2
8g
( R22
R2)
将上式两侧乘以液体密度和重力加速度 ,并从轮毂半径积分到密
封环直径,则得盖板轴向力
A1
Rm 2RdRhg
Rh
2 g
[ H Rm
Rh
p
2 8g
( R22
R 2 )]RdR
5.影响轴向力的其它因素。
一.产生盖板A力1 的原因
离心泵工作时,由于叶轮两侧液体压力分 布不均匀,如图1所示,而产生一个与轴 线平行的轴向力,其方向指向叶轮入口。
图1离心泵轴向力示意图
计算过程
假设: 1.盖板两侧腔的液体无泄漏径 向流动 2.盖板两侧液体以叶轮旋转角 速度之半 2 旋转
2 gH
p
( Rm2
2
Rh2
)
2 2gR22 8g
( Rm2
2
Rh2
)
2g 2 8g
( Rm4
4
Rh4
)
A1
g(Rm2
Rh2 )[ H p
2 8g
( R22
Rm2
2
Rh2
)]
按压力体体积来计算
A1 =圆柱体重量十抛物体重量
( Rm2
Rh2 ) g(H p
2 8g
R22
2 8g
Rh2 )
任意半径R 处的h压 头
h h h
(u2 )2 2 2g
(u)2 2
2g
1 8g
(u
2 2
u2) 2 8g
(R22
R2)
假设:vm1 vm2 vu1 0
Hp
p2 p1 g
Ht
v22 v2 2g
Ht
(vm2 2
vu22 ) (vm21 vu21 ) 2g
Ht
vu22 2g
ab
R22
Re
2
)
ac
H
P
2
8g
( R2 2
R2
)
ab
HG
2
8g
( Re 2
R2
)
可以得bc……省略
将bc从轮毂Rh
积Re 分到 得到平衡方程
F1
Re Rh
bc
g
2R
dR
3 2
16 g
g
Re 2
Rh2
2
或
F1
3 8
(
Ae
Ah
)
1 2g
(ue 2
uh2 )g
上面的计算是基于叶片端部和壳体的间隙很小时,但间隙大时 液体转'速 (应1该t ) 为
1 2
( R22h
Rh2 )g
2 8g
( R22h
Rh2 )
(
R22h
Rh2
) g [
H
p
2
16 g
(
R22h
Rh2
)]
F2 (R220 Rm2 )gH p
1 2
( R220
Rm2 )g
2 8g
( R220
Rm2 )
(
R220
Rm2
)g[ H
p
2
16 g
(
R220
Rm2
)]
半开式混流泵叶轮的轴向力
A1 F3 F1 F2
F3 ( R220 R22h )gH p
F1 (R22h Rh2 )gH p
1 2
( R22h
Rh2 )g
2 8g
( R22h
Rh2 )
(
R22h
Rh2
)g[ H
p
2
16 g
(
R22h
Rh2
)]
F2
1 2
H P g(R2h
R1h )2 (R1h
2 3
(R2h
R1h ))
1.悬臂式叶轮轴头吸入压力和大气压力不同
引起的轴向力
A3
d
2 h
4
( p1
pa )
2.对称布置叶轮由于轴细部结构不同引起 的轴向力
A3 p( Ah As2 )
P gH
H为单级扬程
四.影响轴向力的其它因素
1.叶轮前后盖板泵腔内的径向流
前泵腔总是存在着内向径向流,后泵 腔的惰况有所不同,一般无平衡孔的单 级泵则无径向流,有平衡孔时存在内向径向流,多级泵因级间泄漏 在外向的径向流。对不同的泵,按内向流压力减小,外向流压力增 分析对轴向力的影响。 2.叶轮两侧密封环不同
四.背叶片平衡轴向力
已知未加背叶片的时候轴向力大小为
A1
g ( Rm2
Rh2 )[ H
p
2
8g
( R22
Rm2
2
Rh2
)]
加背叶片后,背叶片强迫液体旋转,液体的旋转角度增加。后侧 水头如曲线AGK所示,它和线AGF相差的曲线既为背叶片平衡的
计算方法:(设液体以 旋转)
bc
HG
=
HP
ac-2
( 8g
双吸泵从理论上讲无轴向力作用,由于上述原因,当两侧密封环 长度不同、磨损不同时,会产生指向泄漏大的一侧的附加轴向力
第二节 轴向力的平衡
危害:如果不设法消除或平衡作用在叶轮上(传到轴上)的轴向力,此 将拉动转子轴向串动,与固定零件接触,造成泵零件的损坏以至不
一、推力轴承 对于轴向力不大的小型泵,采用推力轴承承受轴向力,通常是简单 的方法。即使采用其它平衡装置,考虑到总有一定的残余轴向力, 装设推力轴承。
轴向力径向力及其平衡
第一节 产生轴向力的原因及其计算方法
1.叶轮前、后盖板不对称产生的轴向力,此
力指向叶轮吸入口方向,用 A1表示;
2.叶轮推动液体运动产生的动反力,此力指向叶轮
后面,用 A2表示;
3.轴台、轴端等结构因素引起的轴向力,其
方向视具体情况而定,用 A3表示;
4.转子重量引起的轴向力,与转子的布置方
二.动反力A2 的计算
动反力;液体通常沿轴向进入叶轮,受到叶 轮作用力沿径向或斜向流出。反之,液体 给叶轮一个大小相等方向相反的反作用 力由,动该量力定即理为得动反力
A2 Q1 (vm0 vm3 cos )
对于一般离心泵,可按下式估算轴向力
A kgH1 (Rm2 Rh2 )i
三.轮毂轴端等结构引起的轴A3向力 的计算
1 2
(
Rm2
Rh2 )g
2 8g
( Rm2
Rh2 )
( Rm2
Rh2 )g[H
p
3 8g
( R22
Rm2
2
Rh2
)]
半开式叶轮轴向力 的计算
作用于后盖板的轴向力(抛物体的重量) 为
F1
(R22
Rh2 )gH
p
1 2
(R22
Rh2
) gh
h
2 8g
(R22
Rh2
)
作用在前侧的轴向力(三角形压力体重量)为
二.平衡孔或者平衡管
在叶轮后盖板上附设密封环,密封环所在直径 一般与前密封环相等,同时在后盖板下部开 孔,或设专用连通管与吸入侧连通。由于液 体流经密封环间隙的阻力损失,使密封下部的 液体的压力下降,从而减小作用在后盖板上 的三.轴双向吸力叶。轮
使用双吸叶轮由于结构对称,能平衡轴向力。 但由于制造误差,或者两边密封环 磨损不同会存在一定的残余轴向力。
F2
1 2
H p g(R2
Rm )2[Rm
2 3
(
R2
Rm )]
总的轴向力
A1 F1 F2
混流泵叶轮轴向力 的计算
当原动机带动叶轮旋转后,对液体
的作用既有离心力又有轴向推力,
A1 F3 F1 F2
是离心泵和轴流泵的综合,液体斜向流出叶轮
F3 ( R220 R22h )gH p
ຫໍສະໝຸດ Baidu
F1 (R22h Rh2 )gH p
Ht
(gHt u2 )2 2g
Hp
H t (1
gHt 2u22
)
叶轮后盖板任意半径处,作用的压头差为
h
H
p
h
H
p
2
8g
( R22
R2)
将上式两侧乘以液体密度和重力加速度 ,并从轮毂半径积分到密
封环直径,则得盖板轴向力
A1
Rm 2RdRhg
Rh
2 g
[ H Rm
Rh
p
2 8g
( R22
R 2 )]RdR