闭环电码化技术方案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
车站闭环电码化
及
机车信号载频自动切换系统技术方案
北京全路通信信号研究设计院
二〇〇四年十一月北京
目录
1.电码化闭环检测系统 (1)
1.1. 正线电码化的闭环检测 (1)
1.1.1. 发码 (1)
1.1.2. 发码的切断 (2)
1.1.3. 闭环检测 (2)
1.2. 正线闭环化方向的切换 (3)
1.3. 侧线股道闭环电码化 (3)
1.3.1. 股道发码盒的配置 (3)
1.3.2. 单套闭环电码化 (3)
1.3.3. 双套闭环电码化 (4)
1.4. 闭环检查的电缆配置 (5)
2.机车信号载频自动切换系统 (5)
2.1. 机车信号设备 (5)
2.1.1. 载频自动切换的时机 (5)
2.1.2. 载频自动切换的逻辑 (6)
2.2. 地面切换频率的发送 (7)
2.2.1. 载频频谱的排列 (7)
2.2.2. 自动切换换信息的发送 (7)
2.2.3. 直向通过并有载频变化时的切换 (8)
在信号系统设备中,车站电码化是一个重要的组成部分,它对于加强站内行车安全以及机车信号的发展起着重要作用。
但是到目前为止,车站电码化一直是一个薄弱环节,存在主要的问题是:机车信号信息是否确实发送到了轨道上,并未得到有效的检测(现有的检测报警电路只是检测发送设备本身是否正常工作,而不能检测整个系统的工作是否完好)。
随着列车运行速度进一步提高,装备主体机车信号已势在必行,这对地面信息发送设备的安全可靠性提出了更高的要求,对地面设备来说,首先应实现地面设备信息发送的闭环检测,即能够实时全程检测机车信号信息是否确实发送至轨道,否则,系统将立即作出反应并发出设备故障报警。
在ZPW2000(包括UM系列)自动闭塞区段,列车通过车站有转线运行(即由上行线转下行线或由下行线转上行线)时,存在着需要由列车司机使用开关进行机车信号接收载频切换的问题,而这种切换操作是比较复杂的,一旦操作失误,将可能对行车安全造成威胁,因此,机车信号载频的自动切换是十分必要的。
车站闭环电码化及机车信号载频自动切换系统是为实现上述功能而设计的。
1. 电码化闭环检测系统
1.1. 正线电码化的闭环检测
1.1.1.发码
a、将车站每条正线分为三个发码区:咽喉区接车进路、正线股道和发车进路分别由三个ZPW2000发送盒发码,(如附图一所示下行正线);
b、列车进路未建立时,各发送盒对所属各区段同时发送低频为27.9Hz的检测码;
c、当防护该进路的信号机(图中为X或XI)开放并且列车压入该进路后,由各发送盒向所属各区段同时发送与该信号机显示相应的低频信息码;
d、接车进路或发车进路解锁后,恢复向各区段发送27.9Hz检测码;
e、发送盒通过防雷调整变压器可同时向5个轨道电路区段发码,若车站接车进路或发车进路多于5个区段时,则需增加发码设备;
1.1.
2.发码的切断
a、列车出清以后的区段,向轨道上发送的信息应及时切断,以防后续列车的冒进,因此,需设一套发码切断系统(如附图一所示)。
b、相对于每个发码区段设一切断发码继电器QMJ,平时在吸起状态,在每区段的发码电路中,接入QMJ前接点。当列车出压入下一区段时,本区段切断发码继电器QMJ落下,切断该区段的发码。
c、当列车出清该进路后,发送盒恢复向所属各区段发送27.9Hz检测码;
1.1.3.闭环检测
a、在车站正线各发码区段相对发码端的另一端分别向室内接入检测盒,对各区段发码电路、发码电缆、发码轨道电路等进行全程闭环检测;
b、检测盒未收到某区段的低频码,可判断为发送盒、防雷调整变压器、隔离盒、轨道变压器等设备故障及发码线、发码电缆、轨道电路引接线等线路断线故障;
c、若某区段未收到发码信息时,检测盒所控制的报警检测继电器BJJ落下,向系统进行故障报警,必要时可关闭防护该进路的信号机;
d、正线接车进路、发车进路各设一套检测盒,每套检测盒设有8路输入,可同时检测8个正线轨道区段;
e、当列车压入正线接车进路或发车进路时,将检测盒的报警切断,当区段出清进路解锁后,恢复对各区段进行闭环检测。
1.2. 正线闭环化方向的切换
闭环电码化系统在一般车站每条正线设三个发送盒,在工程设计中可按正方向分别称为接车进路发送JFS,发车进路发送FFS和正线股道发送IGFS或IIGFS。
当办理了正线反方向运行的接车或发车进路后,通过条件将发码电路和检测电路在本发码区段内反转。
1.3. 侧线股道闭环电码化
1.3.1.股道发码盒的配置
a、单套发码盒
在一般车站(简单车站,即只有一进一出信号机的车站),每股道仅设一套发码盒,当列车从不同方向接入该股道时,发码及检测系统根据接车的方向进行切换;
b、双套发码盒
在有第三方向、多方向线路接入的车站或在侧线股道有列车折返作业的车站,相应侧线股道应在两端各设一套发码盒;
1.3.
2.单套闭环电码化
a、发码
●以股道正方向(相对正线方向)为系统定位方向;
●当向该股道的接车进路未建立时,发送盒向股道发送27.9Hz检测码;
●当向该股道的接车进路建立后且列车压入轨道后,发送盒向股道发送2秒钟25.7Hz低频码,之后发送与出站信号机相应的低频码;
●当建立另一方向的接车进路后,发送盒的发码方向随之切换;
●反方向接车并发车,列车出清股道后,发码系统恢复定位方向;
b、闭环检测
●在股道相对于发码端的另一端向室内接入股道检测盒;
●每套股道检测盒设有8路输入,每股道一路输入,可检测8个侧线股道;
●股道检测盒对应每股道设一个报警检测继电器BJJ;
●当股道有车占用时,系统切断该股道的检测报警,占用出清后恢复;
1.3.3.双套闭环电码化
如附图二所示
a、发码
●每股道两端各设一套发码盒;
●未向该股道建立接车进路时,两端向股道发送27.9Hz检测码;
●当向该股道的接车进路建立后且列车压入轨道后,发送盒向股道发送2秒钟25.7Hz低频码,之后发送与出站信号机相应的低频码;
●当股道占用出清后,恢复发送27.9Hz检测码;
b、闭环检测
●双套发送盒侧线股道闭环电码化采用分时检测方式;
●由侧线检测盒驱动一个分时切换继电器QHJ,该继电器1分钟吸起1分钟落下,分别对股道两端的发送状态进行闭环检测;