无铅压电陶瓷材料的研究现状

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

无铅压电陶瓷材料的研究现状

作者:吴思华王平付鹏

来源:《佛山陶瓷》2008年第02期

摘要本文综述了近年来国内外无铅压电陶瓷材料方面的研究进展,重点介绍了钛酸钡基、铋层状结构、钛酸铋钠基、碱金属铌酸盐系以及钨青铜结构无铅压电陶瓷体系的研究现状,并对无铅压电陶瓷的发展作了展望。

关键词无铅压电陶瓷,铋层状结构,钛酸铋钠基,钨青铜结构

1引言

随着社会可持续发展战略的实施和人们环保意识的增强,无铅压电陶瓷材料的研究和应用更日益引起人们的关注。压电陶瓷被广泛应用于通信、家电、航空、探测和计算机等诸多领域,是最重要的电子材料之一,然而,目前使用的压电陶瓷材料仍是含铅的,其中铅基压电陶瓷中氧化铅约占原材料总量的70%,由于氧化铅是一种易挥发的有毒物质,在生产过程中,氧化铅粉尘以及高温合成或烧结过程中挥发出来的氧化铅极易造成环境污染,在使用和废弃后的处理过程中也会给人类及生态环境造成严重危害。于是近年来,为了保护人类及生态环境,许多国家都在酝酿立法禁止使用含铅的压电陶瓷材料,因此,开发无铅基的环境协调性(绿色)压电陶瓷材料是一项紧迫而具有重要科学意义的课题。

近年来,国内外研究的无铅压电陶瓷体系主要有:钛酸钡基、铋层状结构、钛酸铋钠基、碱金属铌酸盐系及钨青铜结构无铅压电陶瓷。

2钛酸钡基无铅压电陶瓷

钛酸钡(BaTiO3)是最早发现的典型无铅压电材料,其居里温度较低,工作温度范围较窄,压电性能属于中等水平,难以通过掺杂改性来大幅度改善其压电性能,且在室温附近存在相变,所以其在压电方面的应用受到限制。目前,BaTiO3基无铅压电陶瓷体系主要有:

(1)(1-x)BaTiO3-xABO3(A=Ba、Ca等;B=Zr、Sn、Hf、Ce等);

(2) (1-x)BaTiO3-xA′B′O3(A′=K、Na等;B′=Nb、Ta等);

(3) (1-x)BaTiO3-xA0.5〞NbO3(A〞= Ba、Ca、Sr等)。

研究结果表明,在上述三个体系中,都存在顺电立方-铁电四方相变,此相变具有弛豫铁电性的特征,而某些组分不再出现宏观上的铁电四方到铁电正交的相变,因而有利于室温下使用。对于某些配比,比如以Zr取代Ti的位置,可得到压电性能和铁电弛豫性都较好的陶瓷[1],如Ba(Til-xZrx)O3基压电陶瓷的 d33可达340pC/N,而且工作温区有所拓宽[2]。

3铋层状结构无铅压电陶瓷

含铋层状结构是由二维的钙钛矿和(Bi2O2)2+ 层有规则地相互交替排列而成。它的通式为:(Bi2O2)2+(Ax-1BxO3x+1)2-,此处A为适合于12配位的1、2、3、4价离子或它们的复合,B为适合于八面体配位的离子或它们的复合,x为整数,称为层数,即钙钛矿的层数。理论上讲从x=l到x=∞(纯钙钛矿结构)都可能,都能满足离子堆积的几何规则,对于x≤5的物质的存在已经有大量电子衍射和高分辨电镜实验证明,但对于其它情况则存在疑问。到目前为止,含铋层状结构主要可以归纳为以下几大类[3]:

(1) Bi4Ti3O12基无铅压电陶瓷;

(2) MBi4Ti4015基无铅压电陶瓷;

(3) MBi2N209基无铅压电陶瓷(M=Sr、Ca、Ba、Na0.5Bi0.5、K0.5Bi0.5;N=Nb、Ta);

(4) Bi3TiNO9基无铅压电陶瓷(N=Nb、Ta);

(5) 复合铋层状无铅压电陶瓷。

铋层状结构压电陶瓷材料具有以下特点:低介电常数、高居里温度、压电性各向异性明显、高绝缘强度、高电阻率、低老化率。这类材料是适合于高温高频场合使用的压电材料,但这类材料的压电活性低,极化场强高,为了改善铋层状结构的压电活性,通常采用两种方法,即掺杂改性和工艺改进[4]。

研究表明[5]:Nb5+和V5+离子分别掺入Bi4Ti3O12,取代B位的Ti4+,可以提高其电阻率,掺杂后可以获得相对密度达95%以上的致密化陶瓷,而且通过施主掺杂,电阻率大大提

高,而电阻率的提高可以有效地改善极化性能,象Bi4Ti2.86Nb0.14O12的d33可以达到

20.0pC/N,而V掺杂后,可以在不降低其它性质的同时,将Pr提高40×10-6C/cm[5]。

另外,通过新的制作工艺可以改进陶瓷的显微结构,从而提高非铅压电陶瓷的压电性能,通过工艺上控制这类陶瓷的晶粒取向,可使材料在某一方向具有所需要的最佳性能。采用适当的热处理技术可以在高温下使晶粒内发生位错运动和晶粒间的晶界滑移,使陶瓷晶粒实现定向排列[6]。

表1列出了分别采用流延和挤压工艺定向后得到的织构化CaBi4Ti4015陶瓷的电学性能[7],同时将它们与任意取向的陶瓷进行比较,可以看出晶粒定向以后陶瓷的电学性能得到了有效的提高。

4钛酸铋钠基无铅压电陶瓷

钛酸铋钠Bi0.5Na0.5TiO3(BNT)是1960年Smolensky等人首次合成并发现的具有钙钛矿结构的铁电体,通式为A0.5 A′0.5TiO3,是钛酸盐系列的典型代表[8]。BNT在室温下是三方铁电相,在230℃时经历弥散相变转变为反铁电相,在320℃转变为四方顺电相,520℃以上BNT为立方相。BNT具有弛豫铁电体的特征,具有相对较大的剩余极化强度Pr(38uC/cm)、压电系数大(kt、kp约50%)、介电系数小(240~340)、声学性能好(其频率常数NP=3200 Hz·m)和极高的矫顽场(7.5 kV/mm)。由于其矫顽电场高以及在铁电相区电导率较高,因而极化困难,难以制得实用的压电陶瓷。

为了克服BNT陶瓷的极化困难和难以烧结成致密样品的缺点,人们通过添加多种钙钛矿结构掺杂物对BNT进行改性。日本学者Takennka等人[9~12]通过引入Pb、Ba、Ca、Sr、Mn 等元素后,降低了BNT过高的矫顽场强,避免了因BNT铁电相较高的电导率导致的极化困难,成功解决了BNT材料极化难的问题。他们主要对以下体系进行了较详细的研究:

(1) (1-x)BNT-xBaTiO3;

(2) (1-x)BNT-xMNbO3(M为Na,K);

(3) (1-x)BNT-x/2 (Bi2O3Sc2O3)。

表2列出了上述体系中性能较好的代表性配方的压电性能。

相关文档
最新文档