铌酸盐的结构及光学性质

铌酸盐的结构及光学性质
铌酸盐的结构及光学性质

铌酸盐的结构及光学性质

摘要:应用含有组态作用的INDO/1量子化学方法, 计算了LiNbO3和kNbO3三聚体的基态电子结构及激发态的有关信息, 再利用态求和以及性能叠加方法, 计算了LiNbO3和LiNbO3晶休的线性和炸线性光学系数[1]。理论与实验结果进行比较后表明计算得到的LiNbO3晶体的动态光折射率较接近测量值;适用于相匹配的宏观晶体非线性光学系数在d轨道相当好地重现了实验量值。同时, 说明了的kNbO3大LiNbO3于的原因, 在于离子大的半径和大的电荷离域, 加强了晶体对非线性效应的贡献[4]。

关键词:铌酸盐LiNbO3和kNbO3结构,光学性质。

前言:有机材料在光学领域的应用研究迅速发展, 且其研究结果令人鼓舞[1]。然而时至今日, 尚未研制成功具有好的化学性质和强的机械性质、适宜于广泛实用的有机晶体光学材料[2]。事实上, 至今无机晶体材料仍是非线性光学应用方面最为重要的材料类型[2]。其中。晶体的非线性光学性质及其应用, 是被最彻底研究的光学材料之一。它具有高于晶体的非线性光学系数、宽的光透过范围和合适的相匹配, 它作为参量振荡器可在。到拌光谱范围产生可调辐射光源。另外, 正交相单晶, 在室温时具有高于晶体的非线性光学系数和二次谐波生成的转变效率.非线性光学现象是应用电子结构研究非线性光学效应和作用, 仅仅是近几年才开始引人重视。非线性光学材料的分子设计受到量子尺寸效应、几何结构变化、聚合行为等因素的影响。人们在探索和选择大的非线性光学响应的分子研究中, 量子化学起着十分重要的作用。因此, 我们试图通过量子化学方法, 在求得微观体系的电子结构信息后, 结合态求和(Sum-Over-States)方法, 计算了LiNbO3和KNbO3三聚体的非共振电子极化系数, 然后计及微观分子在晶体环境中的相互作用和排列分布校正后, 采用性能叠加方法, 得到了LiNbO3和KNbO3晶体的宏观非线性光学系数。

1 测量和计算电子结构和作用

采用固相反应合成法制备LiNbO3和KNbO3陶瓷。首先,按配比称量分析纯的Na2 CO3 ( ≥99. 8 %) 、K2 CO3(99 %) 、Li2 CO3 ( ≥97 %) 、Nb2O5 ( ≥99.

9 %) ,以无水乙醇为媒介,球磨12 h 后压成块体并在850 ℃保温5 h预烧; 再经

粉碎后加入质量分数为15 %的PVA 粘合剂造粒,在一定压力下制成厚约0. 9 mm、

直径约á10 mm的圆片,排胶后于1 000~1 100 ℃保温2 h 烧结得到陶瓷样品。样品被银后在120 ℃硅油中极化25 min ,静置24 h 后测定其电学性能。

用DX21000 X2射线衍射仪(XRD) 对试样进行XRD 物相分析,用J SM25900LV 型扫描电子显微镜(SEM) 对样品断面进行观察研究; d33 采用准静态d33 测量仪测试。采用谐振2反谐振法用HP4194A测得薄圆片样品的谐振频率f r 和反谐振频率f a 后计算出k p 和品质因数( Q m ) 。用HP4278A 测得陶瓷样品在1 kHz 下的电容量,并计算出相对介电常数εr。

陶瓷体系的断面形呈明显的四方钙钛矿结构。图2 ( b) 中的结构较混乱,

但还是以四方相为主,这是因为同时存在四方钙钛矿相和少量K3Li2Nb5O15 的四方钨青铜相,图中还能看到晶粒间融合较严重,可能是由于烧结温度过高所致。[3]由图2 (c) 中断面形貌上可看出,四方结构较明显,这是由K3Li2Nb5O15 四方相

的增加引起的。由图2 ( d) ~ (f ) 可看出,由于LiNbO3 相加,LiNbO3 三方结构逐渐明显,图2 (f ) 中主晶相LiNbO3 的间隙中有很多小的排列整齐的四方相出现,这是因为Na0. 5 K0. 5 NbO3 (N KN) 与LiNbO3 并不是无限固溶体,从而部分析出排列整齐的四方钙钛矿相小晶粒。[3]

2 计算方法和过程

计算微观体系的线性和非线性非共振电子极化系数, 利用与时间有关的微扰理论, 把体系的微扰波函数以电子激发态波函数展开, 此种做法通常称为态求和方法。[4]线性极化张量和非线性极化张量风二次倍频系数的计算公式分别表示

为了能够应用这两个公式进行计算, 需要有电子激发态能量, 态一态跃迁矩阵元以及基态和激发态偶极矩阵元。这些数值通过半经验分子轨道方法, 把H-F基态函数中一个或多个占据轨道用空轨道取代后, 构造组态函数, 再进行组态作用计算求得。实际上, 我们是应用INDO法, 并限于占据轨道的单电子激发构造成的组态函数。在组态作用计算中, 态函数必须满足自旋多重度M(M=2S+1)为1的对称性。简写成INDO/SCI着微观分子偶极矩向量分量的方向

(3)

其中u表示基态分子偶极矩, 并且有

(4)

以上各式中的,I,j,k代表微观分子坐标的x,y,z方向。[4]

对于无机晶体材料, 实验上观察到的往往是宏观极化率。但我们可以利用宏观极化率与

对应微观极化系数的关系

(5)

计算二阶宏观极化率。式(5)中代表微观分子密度数, 它与微观分子摩尔质量和晶体的比重

有关;F表示晶体环境中分子一分子作用校正因子(即局域场校正), 它是通过一阶极化系数x或光折射率计算得到;P为微观分子在晶体中取向排列分布的统计平均因子。假设分子

向与外电场E方向平行, P因子可以从下面两种模型图估计

对于实际的无机晶体材料, 分布函数P是介于

这两种极端之间, 因而宏观极化率也是介于这两种模型之间。在我们针对和LiNbO3晶体KNbO3宏观二阶极化率计算过程中, 为了得到满足相匹配的非线性光学系数Xxxx, 取值为其中为晶体单胞的c轴轴长, n为单胞的a或b轴轴长和(a和b

结果和讨论

3.1 能带结构

根据INDO/1分子轨道计算结果分析表明, 由LiNbO3聚合体占据轨道能级形成的价带主要源于氧原子轨道的贡献。其中, 从低能量到高能量的带区, 至少含有61.3%的氧原子轨道s成份。因此, 该带区属于s价带区。能量从-0.648a.u到-0.260a.u的价带区, 除位于价带顶部的个别能级混进金属原子轨道外, 其余能级含有60% 以上氧原子p轨道成份, 该带区可近似地归属为p价带区。由空轨道能级构成的导带主要是铌和锂原子轨道的贡献, 位于导带底部的能级主要源于铌原子轨道贡献, 而位于导带顶部的能级主要源于锂原子轨道的贡献。(KNbO3)3聚合体与(LiNbO3)3具有相似的能带结构, 但(KNbO3)3导带与价带间的带沟(0.146a.u)比(LiNbO3)3的带沟(0.245a.u)小。因此, (KNbO3)3中的氧原子到金属原子的电荷转移跃迁与(NiNbO3)3的比较, 前者向低频长

波方向移动。

3.2 线性和非线性光学性质

图1表示(NiNbO3)3聚合体定态输入频率为0时, 线性极化张量分量简写

成axx随体系态的数目变化曲线。从图1看到尽管收敛非常缓慢, 但到60个态以上, 曲线渐渐趋于平稳。因此, 我们在计算不同的非共振线性极化系数时含有120个态。[4]

对于描述晶体材料宏观线性光学性质的物理参量, 通常用电极化率x或光折率n表示。假若忽略局域场和分子取向效正, 微观极化系数a与宏观极化率x存在

简单的加和关系

其中大写字母N是单位体积聚合体分子数。对于(NiNbO3)和(K NbO3)3的N值都很小。图2表示出实验测定的和利用前面给出的关系式计算得到的NiNbO3晶体的光折射率随波长变化曲线。该图中。表示寻常光折射率, n表示不寻常光折射率。比较图中实验和理论曲线看到, 在波长550nm时, 计算得到的和从分别比实验值大0.08和0.03左右, 而波长大于550nm段, 理论值大约小于实验

值0.1-0.2。高频区的反常行为, 是由于激发态跃迁能接近于输入电场能量, 从而造成NiNbO3晶体大的光色散。

NiNbO3晶体的空间对称群属于3m或R3 点群, 实验上从0.42um拼到4.00um

拌波长范围测量得到的光折射率已说明NiNbO3是负单光轴型晶体。以最高对称轴作为选取的坐标系的z轴方向计算得到的结果, 也表明了晶体是负单光轴型晶体。KNbO3晶体是双光轴型晶体, 情况较复杂, 这里不准备讨论它的线性光学性质.[4]

为了讨论NiNbO3和KNbO3晶体的非线性光学性质, 我们首先研究聚合体(LiNbO3)3、(KNbO3)3的二阶非线性极化系数对态求和的收敛行为。图3示出沿偶极矩z方向的分量随态的数目变化曲线。从图3发现, (LiNbO3)3和(LiNbO3)3聚合体都在30个态求和以后, 的变化趋于平稳, 90个态求和后, 值几乎没有改变。

图4示出(LiNbO3)3和(KNbO3)3的值。与频率变化有关的曲线, 曲线形状非常类似于洛伦兹线形状。从该图看到, 在(LiNbO3)3的hw人小于0.75eV 和1.78eV频段, b随频率增加过程缓慢地变化, 这种现象表明该区段的二次非线性光色

散小。

总结:铌酸盐ANiO3的光学性质正在研究着,在不久的将来其能带调控、能

量结构、能级跃迁将会得到进一步完善,更好的解说。而铌酸盐也将开采出更多的用处。

参考文献:

【1】周宏明, 郑诗礼, 张懿 (中国科学院过程工程研究所, 北京100080) 中国有色金属学报

【2】冯斌,晋勇,肖定全,吴良,李香(四川大学材料化学与工程学院四川成都 610064)压电和声光学报

【3】孙策,邢献然,陈俊,邓金霞,刘桂荣(北京科技大学物理化学系,北京中国 100083)发光学报

【4】程文旦陈久桐郭国聪黄锦顺(中国科学院福建物质结构研究所, 结构化学国家重点实验室 350002)结构化学报

半导体材料硅的基本性质

半导体材料硅的基本性质 一.半导体材料 1.1 固体材料按其导电性能可分为三类:绝缘体、半导体及导体,它们典型的电阻率如下: 图1 典型绝缘体、半导体及导体的电导率范围 1.2 半导体又可以分为元素半导体和化合物半导体,它们的定义如下: 元素半导体:由一种材料形成的半导体物质,如硅和锗。 化合物半导体:由两种或两种以上元素形成的物质。 1)二元化合物 GaAs —砷化镓 SiC —碳化硅 2)三元化合物 As —砷化镓铝 AlGa 11 AlIn As —砷化铟铝 11 1.3 半导体根据其是否掺杂又可以分为本征半导体和非本征半导体,它们的定义分别为: 本征半导体:当半导体中无杂质掺入时,此种半导体称为本征半导体。 非本征半导体:当半导体被掺入杂质时,本征半导体就成为非本征半导体。 1.4 掺入本征半导体中的杂质,按释放载流子的类型分为施主与受主,它们的定义分别为: 施主:当杂质掺入半导体中时,若能释放一个电子,这种杂质被称为施主。如磷、砷就是硅的施主。 受主:当杂质掺入半导体中时,若能接受一个电子,就会相应地产生一个空穴,这种杂质称为受主。如硼、铝就是硅的受主。

图1.1 (a)带有施主(砷)的n型硅 (b)带有受主(硼)的型硅 1.5 掺入施主的半导体称为N型半导体,如掺磷的硅。 由于施主释放电子,因此在这样的半导体中电子为多数导电载流子(简称多子),而空穴为少数导电载流子(简称少子)。如图1.1所示。 掺入受主的半导体称为P型半导体,如掺硼的硅。 由于受主接受电子,因此在这样的半导体中空穴为多数导电载流子(简称多子),而电子为少数导电载流子(简称少子)。如图1.1所示。 二.硅的基本性质 1.1 硅的基本物理化学性质 硅是最重要的元素半导体,是电子工业的基础材料,其物理化学性质(300K)如表1所示。

17种稀土元素名称及用途

17种稀土元素名称及用途 镧(La) "镧"这个元素是1839年被命名的,当时有个叫"莫桑德"的瑞典人发现铈土中含有其它元素,他借用希腊语中"隐藏"一词把这种元素取名为"镧"。镧的应用非常广泛,如应用于压电材料、电热材料、热电材料、磁阻材料、发光材料(兰粉)、贮氢材料、光学玻璃、激光材料、各种合金材料等。她也应用到制备许多有机化工产品的催化剂中,光转换农用薄膜也用到镧,在国外,科学家把镧对作物的作用赋与"超级钙"的美称。 铈(Ce)"铈"这个元素是由德国人克劳普罗斯,瑞典人乌斯伯齐力、希生格尔于1803年发现并命名的,以纪念1801年发现的小行星--谷神星。 铈的广泛应用: (1)铈作为玻璃添加剂,能吸收紫外线与红外线,现已被大量应用于汽车玻璃。不仅能防紫外线,还可降低车内温度,从而节约空调用电。从1997年起,日本汽车玻璃全加入氧化铈,1996年用于汽车玻璃的氧化铈至少有2000吨,美国约1000多吨. (2)目前正将铈应用到汽车尾气净化催化剂中,可有效防止大量汽车废气排到空气中。美国在这方面的消费量占稀土总消费量的三分之一强。 (3)硫化铈可以取代铅、镉等对环境和人类有害的金属应用到颜料中,可对塑料着色,也可用于涂料、油墨和纸张等行业。目前领先的是法国罗纳普朗克公司。 (4)Ce:LiSAF激光系统是美国研制出来的固体激光器,通过监测色氨酸浓度可用于探查生物武器,还可用于医学。铈应用领域非常广泛,几乎所有的稀土应用领域中都含有铈。如抛光粉、储氢材料、热电材料、铈钨电极、陶瓷电容器、压电陶瓷、铈碳化硅磨料、燃料电池原料、汽油催化剂、某些永磁材料、各种合金钢及有色金属等。 镨(Pr) 大约160年前,瑞典人莫桑德从镧中发现了一种新的元素,但它不是单一元素,莫桑德发现这种元素的性质与镧非常相似,便将其定名为"镨钕"。"镨钕"希腊语为"双生子"之意。大约又过了40多年,也就是发明汽灯纱罩的1885年,奥地利人韦尔斯巴赫成功地从"镨钕"中分离出了两个元素,一个取名为"钕",另一个则命名为"镨"。这种"双生子"被分隔开了,镨元素也有了自己施展才华的广阔天地。镨是用量较大的稀土元素,其用于玻璃、陶瓷和磁性材料中。 镨的广泛应用: (1)镨被广泛应用于建筑陶瓷和日用陶瓷中,其与陶瓷釉混合制成色釉,也可单独作釉下颜料,制成的颜料呈淡黄色,色调纯正、淡雅。

tio2光催化技术

纳米TiO2光催化剂安全环保性能研究 作者:北京化工大学徐瑞芬教授 纳米科技的发展为人类治理环境开辟了 一条行之有效的途径,我们可以合理利用 自然光资源,通过纳米TiO2半导体的光催化效应,在材料内部由吸收光激发电子,产生电子-空穴对,即光生载流子,迅速迁移到材料表面,激活材料表面吸附氧和水分,产生活性氢氧自由基(oOH)和超氧阴离子自由基(O2·-),从而转化为一种具有安全化学能的活性物质,起到矿化降解环境污染物和抑菌杀菌的作用。 纳米TiO2光催化应用技术工艺简单、成本低廉,利用自然光即可催化分解细菌和污染物,具有高催化活性、良好的化学稳定性和热稳定性、无二次污染、无刺激性、安全无毒等特点,且能长期有益于生态自然环境,是最具有开发前景的绿色环保催化剂之一。 本研究在用亚稳态氯化法合成纳米二氧化钛的技术基础上,根据光催化功能高效性的需要,进行掺杂和表面处理,制成特有的在室内自然光和黑暗区微光也能显著发挥光催化作用的纳米二氧化钛,将其作为功能粉体材料,复合到塑料、皮革、纤维、涂料等材料中,研制成无污染、无毒害的纳米TiO2光催化绿色复合材料,充分发挥抗菌、降解有机污染物、除臭、自净化的功能,这类环保型功能材料实施方便、应用性强,能实用到生活空间的多种场合,发挥其多功能效应,成为我们生活环境中起长期净化作用的环保材料。 2 纳米TiO2光催化剂对环境的净化功能研究 2.1室内环境的净化 随着建筑材料中各种添加物的使用,室内装饰材料和各种家用化学物质的使用,室内空气污染的程度越来越严重。调查表明,室内空气污染物浓度高于室外,甚至高于工业区。据有关部门测试,现代居室内空气中挥发性有机化合物高达300多种,其中对人体容易造成伤害、甚至致癌的就有20多种,极大地威胁着人类的健康生活。随着人们健康和环保意识的增强,人们对具有光催化净化室内外空气、抗菌杀毒等功能性绿色环保材料的需求日益迫切,纳米TiO2光催化剂的出现为环境净化材料的发展开辟了一片新天地,也为人们对健康环境需求的解决提供了有效的途径。

胶体及其性质

胶体及其性质 一、胶体的由来及其认识的发展 胶体一词,来自1861年T.格雷姆研究物质在水中扩散的论文《应用于分析的液体扩散》。当时发现有些物质(如某些无机盐、糖和甘油等)在水中扩散很快,容易透过一些膜;而另一些物质,如蛋白质、明胶和硅胶类水合氧化物等,则扩散很慢或不扩散。前者容易形成晶态,称为晶质;后者不易形成晶态,多呈胶态,则称为胶体。此种分类并未说明胶体的本质,因为胶状的胶体在适当条件下可以形成晶态,而晶质也可以形成胶态。直到20世纪初超显微镜的发明以及后来电子显微镜的应用,对胶体才逐渐有较清楚的了解. 二、胶体体系的特点 自质点大小这一特点考虑,高分子与胶体质点的大小差不多。例如,分子量为36000的胰岛素(球状)直径约4.0纳米;分子量为42000的蛋白朊长椭球长约11纳米,与一般金溶胶和硅溶胶质点大小相近。有的高分子甚至长达100纳米以上。因此,与大小有关的性质,如扩散、沉降、渗透压、光散射(见胶体光散射)等性质,二者全都相似。胶体研究的许多结果可以应用于高分子体系,从而大大推动了高分子的研究,高分子化学的部分领域也就归入胶体化学的范畴。经典的胶体体系是热力学不稳定体系,是一相(质点)分布在另一相(介质)中的多相分散体系;而高分子质点分散在介质中的这种胶体体系却是热力学稳定的体系,是均相溶液,即高分子溶于溶剂而形成的溶液。如同小分子的溶液一样,只要溶剂不挥发,高分子溶液就可以永久存在。高分子溶液的溶剂挥发后,得到高分子化合物;但若把高分子放入溶剂中,则又自动溶解而形成溶液。于是就把高分子溶液称为可逆胶体,也叫做亲液胶体,以与疏液胶体相对照、相区别。 胶体质点与经典化学所研究的分子不同的另一特点,是其形状的千差万别,从完全对称的球形和比较对称的椭球形,到极不对称的不规则薄片,以至细长的线条。这将对体系的性质,特别是流变性质有重大影响。例如高分子溶液、钻井泥浆、油漆涂料、胶团溶液,以及乳状液、泡沫等的粘度、弹性、塑性及触变性等皆与质点的形状和结构有关(见非牛顿流体)。三、胶体化学中的基本术语 ⑴相—是指物质的物理化学性质都完全相同的均匀部分。体系中有两个或两个以上的相,称为多相体系。 ⑵相界面—是指相与相之间的接触面称为相界面,相与相之间的宏观物理界面。在相互接触的两相中,若一相为气体,相界面称为表面,若是液—固分界面,称为界面。 ⑶分散相—是指在多相分散体系中,被分散的物质。 ⑷分散介质—是指分散相所在的连续介质,又叫连续相。例如:钻井液中,粘土颗粒分散在水中。粘土为分散相;水为分散介质。 ⑸分散度D—是指分散相的分散度,是分散程度的量度,通常用分散相颗粒平均直径或长度a的倒数来表示。D=1/a。 ⑹比表面—是指单位体积(重量)物质的总表面积。比表面= S/V(m-1 )或比表面= S/W (m2 /kg)。 ⑺吸附—是指物质在两相界面上自动浓集(界面浓度大于内部浓度)的现象。 ⑻吸附质—是指被吸附的物质。

半导体材料课程教学大纲

半导体材料课程教学大纲 一、课程说明 (一)课程名称:半导体材料 所属专业:微电子科学与工程 课程性质:专业限选 学分: 3 (二)课程简介:本课程重点介绍第一代和第二代半导体材料硅、锗、砷化镓等的制备基本原理、制备工艺和材料特性,介绍第三代半导体材料氮化镓、碳化硅及其他半导体材料的性质及制备方法。 目标与任务:使学生掌握主要半导体材料的性质以及制备方法,了解半导体材料最新发展情况、为将来从事半导体材料科学、半导体器件制备等打下基础。 (三)先修课程要求:《固体物理学》、《半导体物理学》、《热力学统计物理》; 本课程中介绍半导体材料性质方面需要《固体物理学》、《半导体物理学》中晶体结构、能带理论等章节作为基础。同时介绍材料生长方面知识时需要《热力学统计物理》中关于自由能等方面的知识。 (四)教材:杨树人《半导体材料》 主要参考书:褚君浩、张玉龙《半导体材料技术》 陆大成《金属有机化合物气相外延基础及应用》 二、课程内容与安排 第一章半导体材料概述 第一节半导体材料发展历程 第二节半导体材料分类 第三节半导体材料制备方法综述 第二章硅和锗的制备 第一节硅和锗的物理化学性质 第二节高纯硅的制备 第三节锗的富集与提纯

第三章区熔提纯 第一节分凝现象与分凝系数 第二节区熔原理 第三节锗的区熔提纯 第四章晶体生长 第一节晶体生长理论基础 第二节熔体的晶体生长 第三节硅、锗单晶生长 第五章硅、锗晶体中的杂质和缺陷 第一节硅、锗晶体中杂质的性质 第二节硅、锗晶体的掺杂 第三节硅、锗单晶的位错 第四节硅单晶中的微缺陷 第六章硅外延生长 第一节硅的气相外延生长 第二节硅外延生长的缺陷及电阻率控制 第三节硅的异质外延 第七章化合物半导体的外延生长 第一节气相外延生长(VPE) 第二节金属有机物化学气相外延生长(MOCVD) 第三节分子束外延生长(MBE) 第四节其他外延生长技术 第八章化合物半导体材料(一):第二代半导体材料 第一节 GaAs、InP等III-V族化合物半导体材料的特性第二节 GaAs单晶的制备及应用 第三节 GaAs单晶中杂质控制及掺杂 第四节 InP、GaP等的制备及应用 第九章化合物半导体材料(二):第三代半导体材料 第一节氮化物半导体材料特性及应用 第二节氮化物半导体材料的外延生长 第三节碳化硅材料的特性及应用 第十章其他半导体材料

沈阳地区气溶胶光学性质研究

沈阳地区气溶胶光学性质研究 1.引言 大气气溶胶是指均匀分散于大气中的固体微粒和液体微粒所构成的稳定混合体系,其中的微粒统称为气溶胶粒子。此类粒子的空气动力学直径在100μm以下,主要包括沙尘气溶胶、碳气溶胶、硫酸盐气溶胶、硝酸盐气溶胶、铵盐气溶胶和海盐气溶胶6类气溶胶粒子。气溶胶在紫外、可见光、红外等波段对辐射的吸收和散射对全球天气过程和气候产生重要影响(Boucher etc. , 1995;Breon etc. , 2002;Satheesh etc. , 2005)。而气溶胶的增加会使空气质量恶化,进而影响人体健康。所以气溶胶对于气候变化和人体健康有着重要的意义。 AOD(Aerosol Optical Depth,气溶胶光学厚度),物理意义是沿辐射传输路径,单位截面上因气溶胶吸收和散射对太阳辐射产生的总削弱。它与垂直方向上大气柱总的气溶胶浓度有关,是表征大气浑浊度的重要物理量(Reddy and Venkataraman, 2000;Lata etc. ,2003;Kaskaoutis etc. , 2006)。 在地理上,沈阳市位于中国东北地区南部,辽宁省中部,以平原为主,山地、丘陵集中在东南部,而辽河、浑河、秀水河等途径境内,属于温带半湿润大陆性气候,平均海拔约50m。沈阳也是建国初期国家重点建设起来的以装备制造业为主的全国重工业基地之一,工业门类达到142个,到2013年为止规模以上工业企业4000多家,地区生产总值7000多亿元。在2015年4月3日沈阳市环保局发布了影响环境空气质量主要污染源有:工业污染、燃煤锅炉和生活炉灶、交通运输、城市扬尘。 目前,对于沈阳地区AOD的研究相对较少,而AOD的变化特征对研究大气环境有着重要意义。因此,笔者基于沈阳2004年8月至2011年10月光学厚度资料,结合地面常规气象观测资料,分析沈阳市AOD变化特征以及气象因子对其影响,希望能对沈阳市大气环境治理提供参考。 2.数据资料 中国科学院大气物理研究所联合国内外单位于2004年7月建立了中国地区太阳分光观测网CSHNET为定量评估中国区域气溶胶的气候和环境效应提供基础观测数据。观测网包括19个中国生态系统研究网络(CERN)定位站、4个典型城市站、香河站和拉萨站两个长期标定站。观测网统一采用新一代便携式LED太阳分光光度计,选取每天10:00~14:00进行观测,0.5h观测一次,每次3组数据,每天至少观测15组数据(天空总云量超过8时不可进行观测)。本文所使用地面光学厚度观测资料来自其中沈阳站。 沈阳站地处松辽平原南部,站点的地理位置为北纬41.52°,123.63°,海拔31m,位于辽中南城市群所在地,是我国重工业基地及乡镇企业迅速发展的地区之一,我国重要的商品粮基地。高投入农业和工业污染给本区农业持续发展带来一系列待解决的生态环境问题。从地理位置上讲,沈阳神态站正好处于由东到西水分因子驱动和由南到北热量因子驱动的横穿我国境内的两条样带上,具有很好的区域代表性和网络研究的重要性。沈阳气候类型属于暖温带半湿润大陆性季风气候,年平均气温7.0~8.0℃,无霜期147~164天,年降水量650~700mm(辛金元,2006)。 Angstrom【1964】给出了气溶胶光学厚度与波长间的关系为 τaerosol(λ)=βλ-α τaerosol(λ)为波长为λ的AOD反映大气气溶胶光学厚度 β为Angstrom混浊系数,与测站上空垂直气柱内的气溶胶质粒总数有关,以代表大气

稀土就是化学元素周期表中镧系元素

稀土就是化学元素周期表中镧系元素——镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu),以及与镧系的15个元素密切相关的两个元素——钪(Sc)和钇(Y)共17种元素,称为稀土元素(Rare Earth)。简称稀土(RE或R)。 稀土的分类】 1)轻稀土(又称铈组):镧、铈、镨、钕、钷、钐、铕、钆。 2)重稀土(又称钇组):铽、镝、钬、铒、铥、镱、镥、钪、钇。 铈组与钇组之别,是因为矿物经分离得到的稀土混合物中,常以铈或钇比例多的而得名。 稀土金属(rare earth metals)又称稀土元素,是元素周期表ⅢB族中钪、钇、镧系17种元素的总称,常用R或RE表示。它们的名称和化学符号是钪(Sc)、钇(Y)、镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu)。它们的原子序数是21(Sc)、39(Y)、57(La)到71(Lu)。 【名称由来】 17种稀土元素名称的由来及用途 镧(La) "镧"这个元素是1839年被命名的,当时有个叫"莫桑德"的瑞典人发现铈土中含有其它元素,他借用希腊语中"隐藏"一词把这种元素取名为"镧"。镧的应用非常广泛,如应用于压电材料、电热材料、热电材料、磁阻材料、发光材料(兰粉)、贮氢材料、光学玻璃、激光材料、各种合金材料等。她也应用到制备许多有机化工产品的催化剂中,光转换农用薄膜也用到镧,在国外,科学家把镧对作物的作用赋与"超级钙"的美称。 铈(Ce) "铈"这个元素是由德国人克劳普罗斯,瑞典人乌斯伯齐力、希生格尔于1803年发现并命名的,以纪念1801年发现的小行星--谷神星。 铈的广泛应用: (1)铈作为玻璃添加剂,能吸收紫外线与红外线,现已被大量应用于汽车玻璃。不仅 能防紫外线,还可降低车内温度,从而节约空调用电。从1997年起,日本汽车玻 璃全加入氧化铈,1996年用于汽车玻璃的氧化铈至少有2000吨,美国约1000多吨. (2)目前正将铈应用到汽车尾气净化催化剂中,可有效防止大量汽车废气排到空气中 美国在这方面的消费量占稀土总消费量的三分之一强。 (3)硫化铈可以取代铅、镉等对环境和人类有害的金属应用到颜料中,可对塑料着色 ,也可用于涂料、油墨和纸张等行业。目前领先的是法国罗纳普朗克公司。 (4)Ce:LiSAF激光系统是美国研制出来的固体激光器,通过监测色氨酸浓度可用 于探查生物武器,还可用于医学。铈应用领域非常广泛,几乎所有的稀土应用领 域中都含有铈。如抛光粉、储氢材料、热电材料、铈钨电极、陶瓷电容器、压电 陶瓷、铈碳化硅磨料、燃料电池原料、汽油催化剂、某些永磁材料、各种合金钢 及有色金属等。 镨(Pr) 大约160年前,瑞典人莫桑德从镧中发现了一种新的元素,但它不是单一元素,莫桑德发现这种元素的性质与镧非常相似,便将其定名为"镨钕"。"镨钕"希腊语为"双生子"之意。大约又过了40多年,也就是发明汽灯纱罩的1885年,奥地利人韦尔斯巴赫成功地从"镨钕"中分离出了两个元素,一个取名为"钕",另一个则命名为"镨"。这种"双生子"被分隔开了,镨元素也有了自己施展才华的广阔天地。镨是用量较大的稀土元素,其用于玻璃、陶瓷和磁性材料中。 镨的广泛应用: (1)镨被广泛应用于建筑陶瓷和日用陶瓷中,其与陶瓷釉混合制成色釉,也可单独作 釉下颜料,制成的颜料呈淡黄色,色调纯正、淡雅。 (2)用于制造永磁体。选用廉价的镨钕金属代替纯钕金属制造永磁材料,其抗氧性能 和机械性能明显提高,可加工成各种形状的磁体。广泛应用于各类电子器件和马 达上。 (3)用于石油催化裂化。以镨钕富集物的形式加入Y型沸石分子筛中制备石油裂化催 化剂,可提高催化剂的活性、选择性和稳定性。我国70年代开始投入工业使用, 用量不断增大。 (4)镨还可用于磨料抛光。另外,镨在光纤领域的用途也越来越广。

Tio2的光催化性能研究

TiO2的光催化性能研究 摘要:主要介绍二氧化钛的光催化原理,基本途径,以及光催化剂的结构特性和影响因素,还讲述了关于二氧化钛的光催化应用。 关键字:二氧化钛光催化光催化剂 二氧化钛,化学式为TiO2,俗称钛白粉,多用于光触媒、化妆品,能靠紫外线消毒及杀菌,现正广泛开发,将来有机会成为新工业。二氧化钛可由金红石用酸分解提取,或由四氯化钛分解得到。二氧化钛性质稳定,大量用作油漆中的白色颜料,它具有良好的遮盖能力,和铅白相似,但不像铅白会变黑;它又具有锌白一样的持久性。二氧化钛还用作搪瓷的消光剂,可以产生一种很光亮的、硬而耐酸的搪瓷釉罩面。 1 TiO2的基本性质 1.1结晶特征及物理常数 物性:金红石型锐钛型 结晶系:四方晶系四方晶系 相对密度:3.9~4.2 3.8~4.1 折射率: 2.76 2.55 莫氏硬度:6-7 5.5-6 电容率:114 31 熔点:1858 高温时转变为金红石型 晶格常数:A轴0.458,c轴0.795 A轴0.378,c轴0.949 线膨胀系数:25℃/℃ a轴:7.19X10-6 2.88?10-6 c轴:9.94X10-6 6.44?10-6 热导率: 1.809?10-3 吸油度:16~48 18~30 着色强度:1650~1900 1200~1300 颗粒大小:0.2~0.3 0.3 功函数:5.58eV

2TiO2的光催化作用 2.1光催化作用原理 二氧化钛是一种N型半导体材料,锐钛矿相TiO2的禁带宽度Eg =3.2eV,由半导体的光吸收阈值λg与禁带宽度E g的关系式: λg (nm)=1240/Eg(eV) 可知:当波长为387nm的入射光照射到TiO2上时,价带中的电子就会发生跃迁,形成电子-空穴对,光生电子具有较强的还原性,光生空穴具有较强的氧化性。在半导体悬浮水溶液中,半导体材料的费米能级会倾斜而在界面上形成一个空间电荷层即肖特基势垒,在这一势垒电场作用下,光生电子与空穴分离并迁移到粒子表面的不同位置,还原和氧化吸附在表面上的物质。除了上述变化途径外,光激发产生的电子、空穴也可能在半导体内部或表面复合,如果没有适当的电子、空穴俘获剂,储备的能量在几个毫秒内就会通过复合而消耗掉,而如果选用适当的俘获剂或表面空位来俘获电子或空穴,复合就会受到抑制,随后的氧化还原反应就会发生。在水溶液中,光生电子的俘获剂主要是吸附在半导体表面上的氧,氧俘获电子形成O2-;OH-、水分子及有机物本身均可充当光生空穴俘获剂,空穴则将吸附在TiO2表面的OH-和H2O氧化成具有高度活性的?OH自由基,活泼的?OH 自由基可以将许多难以降解的有机物氧化为CO2和H2O。其反应机理如下: TiO2 + hv → h+ + e- h+ + e- →热量 H2O → H+ + OH- h+ + OH- → HO? h+ + H2O + O2- → HO?+ H+ + O2- h+ + H2O → HO?+ H+ e- + O2→ O2- O2- + H+ → HO2? 2HO2?→ O2 + H2O2 H2O2 + O2- → HO?+ OH- + O2 H2O2 + hv → 2HO? 从上述光催化作用原理分析可知道,光催化过程实际上同时包含氧化反应和还原反应两个过程,分别反映出光生空穴和光生电子的反应性能,同时二者又相互影响,相互制约。

tio2光催化技术

纳米TiO2光催化剂安全环保性能研究 作者:北京化工大学 徐瑞芬教授 纳米科技的发展为人类治理环境开辟了 一条行之有效的途径,我们可以合理利用自然光资源,通过纳米TiO2半导体的光催化效应,在材料内部由吸收光激发电子,产生电子-空穴对,即光生载流子,迅速迁移到材料表面,激活材料表面吸附氧和水分,产生活性氢氧自由基(oOH )和超氧阴离子自由基(O2·-),从而转化为一种具有安全化学能的活性物质,起到矿化降解环境污染物和抑菌杀菌的作用。 纳米TiO2光催化应用技术工艺简单、成本低廉,利用自然光即可催化分解细菌和污染物,具有高催化活性、良好的化学稳定性和热稳定性、无二次污染、无刺激性、安全无毒等特点,且能长期有益于生态自然环境,是最具有开发前景的绿色环保催化剂之一。 本研究在用亚稳态氯化法合成纳米二氧化钛的技术基础上,根据光催化功能高效性的需要,进行掺杂和表面处理,制成特有的在室内自然光和黑暗区微光也能显著发挥光催化作用的纳米二氧化钛,将其作为功能粉体材料,复合到塑料、皮革、纤维、涂料等材料中,研制成无污染、无毒害的纳米TiO2光催化绿色复合材料,充分发挥抗菌、降解有机污染物、除臭、自净化的功能,这类环保型功能材料实施方便、应用性强,能实用到生活空间的多种场合,发挥其多功能效应,成为我们生活环境中起长期净化作用的环保材料。 2 纳米TiO2光催化剂对环境的净化功能研究 2.1室内环境的净化 随着建筑材料中各种添加物的使用,室内装饰材料和各种家用化学物质的使用,室内空气污染的程度越来越严重。调查表明,室内空气污染物浓度高于室外,甚至高于工业区。据有关部门测试,现代居室内空气中挥发性有机化合物高达300多种,其中对人体容易造成伤害、甚至致癌的就有20多种,极大地威胁着人类的健康生活。随着人们健康和环保意识的增强,人们对具有光催化净化室内外空气、抗菌杀毒等功能性绿色环保材料的需求日益迫切,纳米TiO2光催化剂的出现为环境净化材料的发展开辟了一片新天地,也为人们对健康环境需求的解决提供了有效的途径。

半导体纳米材料的光学性能及研究进展

?综合评述? 半导体纳米材料的光学性能及研究进展Ξ 关柏鸥 张桂兰 汤国庆 (南开大学现代光学研究所,天津300071) 韩关云 (天津大学电子工程系,300072) 摘要 本文综述了近年来半导体纳米材料光学性能方面的研究进展情况,着重介绍了半导体纳米材料的光吸收、光致发光和三阶非线性光学特性。 关键词 半导体纳米材料;光学性能 The Optica l Properties and Progress of Nanosize Sem iconductor M a ter i a ls Guan B ai ou Zhang Gu ilan T ang Guoqing H an Guanyun (Institute of M odern Op tics,N ankaiU niversity,T ianjin300071) Abstract T he study of nano size sem iconducto r particles has advanced a new step in the understanding of m atter.T h is paper summ arizes the p rogress of recent study on op tical p roperties of nano size sem icon2 ducto r m aterials,especially emphasizes on the op tical2abso rp ti on,pho to lum inescence,nonlinear op tical p roperties of nano size sem iconducto r m aterials. Key words nano size sem iconducto r m aterials;op tical p roperties 1 引言 随着大规模集成的微电子和光电子技术的发展,功能元器件越来越微细,人们有必要考察物质的维度下降会带来什么新的现象,这些新的现象能提供哪些新的应用。八十年代起,低维材料已成为倍受人们重视的研究领域。 低维材料一般分为以下三种:(1)二维材料,包括薄膜、量子阱和超晶格等,在某一维度上的尺寸为纳米量级;(2)一维材料,或称量子线,线的粗细为纳米量级;(3)零维材料,或称量子点,是尺寸为纳米量级的超细微粒,又称纳米微粒。随着维数的减小,半导体材料的电子能态发生变化,其光、电、声、磁等方面性能与常规体材料相比有着显著不同。低维材料开辟了材料科学研究的新领域。本文仅就半导体纳米微粒和由纳米微粒构成的纳米固体的光学性能及其研究进展情况做概括介绍。2 半导体纳米微粒中电子的能量状态 当半导体材料从体块减小到一定临界尺寸以后,其载流子(电子、空穴)的运动将受限,导致动能的增加,原来连续的能带结构变成准分立的类分子能级,并且由于动能的增加使得能隙增大,光吸收带边向短波方向移动(即吸收蓝移),尺寸越小,移动越大。 关于半导体纳米微粒中电子能态的理论工作最早是由AL.L.Efro s和A.L.Efro s开展的[1]。他们采用有效质量近似方法(E M A),根据微粒尺寸R与体材料激子玻尔半径a B之比分为弱受限(Rμa B,a B=a e+ a h,a e,a h分别为电子和空穴的玻尔半径)、中等受限(a h

二氧化钛光催化原理

TiO2光催化氧化机理 TiO2属于一种n型半导体材料,它的禁带宽度为3.2ev(锐钛矿),当它受到波长小于或等于387.5nm的光(紫外光)照射时,价带的电子就会获得光子的能量而越前至导带,形成光生电子(e-);而价带中则相应地形成光生空穴(h+),如图1-1所示。 如果把分散在溶液中的每一颗TiO2粒子近似看成是小型短路的光电化学电池,则光电效应应产生的光生电子和空穴在电场的作用下分别迁移到TiO2表面不同的位置。TiO2表面的光生电子e-易被水中溶解氧等氧化性物质所捕获,而空穴h+则可氧化吸附于TiO2表面的有机物或先把吸附在TiO2表面的OH-和H2O分子氧化成·OH自由基,·OH 自由基的氧化能力是水体中存在的氧化剂中最强的,能氧化水中绝大部分的有机物及无机污染 物,将其矿化为无机小分子、CO 2和H 2 O等无害物质。 反应过程如下: 反应过程如下: TiO2+ hv → h+ +e- (3) h+ +e-→热能(4) h+ + OH- →·OH (5) h+ + H2O →·OH + H+(6) e- +O2→ O2- (7)O2 + H+ → HO2·(8) 2 H2O·→ O2 + H2O2(9) H2O2+ O2 →·OH + H+ + O2(10) ·OH + dye →···→ CO2 + H2O (11) H+ + dye→···→ CO2 + H2O (12) 由机理反应可知,TiO2光催化降解有机物,实质上是一种自由基反应。 Ti02光催化氧化的影响因素 1、试剂的制备方法 常用Ti02光催化剂制备方法有溶胶一凝胶法、沉淀法、水解法等。不同方法制得的Ti02粉末的粒径不同,其光催化效果也不同。同时在制备过程中有无复合,有无掺杂等对光降解也有影响。Ti02的制备方法在许多文献上都有详细的报道,这里就不再赘述。

气溶胶的光学特性参数

气溶胶的光学特性参数 (1)气溶胶光学厚度 气溶胶光学厚度,英文名称为AOD(Aerosol Optical Depth)或AOT(Aerosol Optical Thickness),表示的是单位截面的垂直气柱上的透过率,有时候又叫大气混浊度,它是一个无量纲的正值。数值范围在0-1之间,0代表完全不透明大气,1代表完全透明的大气,气溶胶光学厚度越大,大气透过率越低。值的大小主要由气溶胶质粒的数密度、尺度分布、气溶胶类型等物理、光学属性来决定。 气溶胶光学厚度的反演: 公式:L=L0+F*T*P/[1-S*P] L:传感器收到的辐射;L0:大气路径辐射;F:下行辐射 P:地表反射率;T:大气透过率;S:大气半球反射率 F*T*P/[1-S*P]:地表反射辐射 对于大气路径辐射项L0,它只是大气气溶胶光学厚度和几何参数的函数,假如地表反射辐射比较小或为零,就可以通过大气路径辐射项来反演获得气溶胶光学厚度,对于地表反射辐射(F*T*P/[1-S*P])来说,仅是气溶胶光学厚度的函数,如果消去路径辐射信息,便可以通过它来反演气溶胶光学厚度。 (2)散射相函数 散射相函数反映的是电磁波入射能量经粒子散射后在方向上的分布,或者称相函数是粒子(散射体)将某个方向的入射波散射到其他方向的概率。定义相函数P(θ)为在θ角方向的散射辐射能量与各向同性散射时该方向的散射辐射能量之比。目前,常用的相函数有Mie散射相函数、HG相函数、双HG相函数和改进的HG*相函数等,这些函数各有优缺点。 Mie散射相函数: P Mie(θ)= [S1(θ)2 +S2(θ) 2]/ 2πα2 Qsca α=2πR/λ:球形气溶胶粒子的尺寸参数; S1(θ)、S2(θ):散射振幅矩阵元; Qsca:气溶胶粒子的散射效率因子; S1(θ)、S2(θ)和Qsca可由Mie展开系数求解,Mie散射相函数适合于球形粒子求解。 (3)单次散射反照率 单次散射反照率(single scattering albedo,SSA),在随机介质中传播的光将会被介质中的粒子散射和吸收而衰减,我们称之为消光,其中因散射而导致入射光消光在总消光中所占的比例,可以用粒子的平均单次散射反照率来表示,其定义为: 0(x,m)= Cs(x,m)/C(x,m) C、Cs:粒子的消光截面和散射截面,消光截面是粒子或粒子群在电磁波传播路径上对电磁波衰减能力的度量; x=2πr/λ:为粒子的尺度因子,r、λ分别为粒子的半径和入射光的波长; m:复折射率,为复数m=n–ki,式中实数部分n为介质的折射率,虚数部分的k为介质的吸收系数; 如果用Ca表示粒子的吸收截面,则应满足C=Cs+Ca;如果粒子对入射光完全无吸收,即Ca=0,于是C=Cs,反照率为1,达到它的最大值。粒子有吸收时,反照率介于0到1之间。

纳米二氧化钛结构与光催化性能关系

纳米二氧化钛结构与光催化性能关系 XXX XXX 摘要纳米级二氧化钛由于具有无毒、化学稳定性好、比表面积大、成本低等优异性能深受科研工作者的关注。其所具有的光催化性能使其在降解大气及水体中污染物领域具有广阔前景。本文从纳米二氧化钛结构出发,阐述纳米二氧化钛光催化机理,并简要说明不同元素掺杂纳米二氧化钛后对其光催化性能的影响。 关键词纳米二氧化钛; 光催化; 结构; 掺杂 自1972年FuJiShima和HonclaIIJ发现TiO2单晶电极在紫外光照射下可分解水及Bard将光电化学理论扩展到半导体微粒光催化后,TiO2作为一种半导体光催化剂吸引诸多学者的研究。由于TiO2具有良好的化学稳定性、抗磨损性、较大的比表面积、无毒、成本低以及可以直接利用自然光等优点,利用TiO2光催化氧化法处理水中有机污染物等方面有广阔的应用前景。然而TiO2半导体光催化剂在实际应用中存在一些缺陷如:带隙较宽(E =3.2eV),只有在λ小于387.5 nm的紫外光激发下价带电子才能跃迁到导带上形成光生电子和空穴分离,而紫外光在自然光中仅占3%~5%,因此对自然光的利用率不高。另外半导体载流子的复合率很高,导致光量子效率很低,提高TiO2纳米粒子的光催化效率是利用TiO2光催化剂的关键。为了改善TiO2的光催化性能,研究工作者关于TiO2的制备方法、掺杂、催化剂载体、热处理等方面做了许多研究,其中掺杂因其容易实现、效果明显、应用范围广泛,而成为研究热点。[1] 1、纳米二氧化钛结构及其光催化机理 1.1 二氧化钛晶型 纳米二氧化钛具有锐钛矿,板钛矿及金红石型结构,其中以锐钛矿型光催化性能最好。其晶胞结构如下(其中红色为O,白色为Ti): 锐钛矿型: 板钛矿型:

第十章中级无机化学课后习题答案

第10章习题 1 简要回答问题 (1) 什么叫稀土元素? 什么叫镧系元素? 答:参见本书10.1节《概述》。 (2) 镧系收缩的原因是什么? 简述镧系收缩造成的影响。 答:关于镧系收缩的原因参见本书10.1.2节《原子半径和离子半径》。 由于镧系收缩的影响,使第二、三过渡系的Zr和Hf、Nb与Ta、Mo与W三对元素的半径相近,化学性质相似,分离困难。 (3) 为什么Eu、Yb原子半径比相邻元素大? 而Ce又小? 答:① Eu、Yb元素参与形成金属键的电子数为2,Ce为3.1,其余为3.0; ② Eu、Yb具碱土性; ③ Eu、Yb的f7、f14的半充满和全充满的结构能量低、稳定、屏蔽大,核对外面的6s电子吸引较弱。 (4) 为什么镧系元素的电子结构在固态和气态不同? 解:参见本书10.1.1节《镧系元素的价电子层结构》。 (5) 镧系离子的电子光谱同d区过渡金属离子相比有何不同? 为什么? 解:除La3+、Lu3+离子的4f电子层是全空(4f0)和全满(4f14)之外,其余Ln3+离子4f轨道上的电子数由1到14,这些电子可以在7条4f简并轨道上任意排布,这样就会产生各种光谱项和能级。4f 电子在不同能级间跃迁可以吸收或发射从紫外经可见直至红外区的各种波长的电磁辐射。通常具有未充满的4f电子壳层的原子或离子,可以观察到的光谱线大约有30 000条,而具有未充满d电子壳层的过渡金属元素的谱线约有7 000条。 在理论上,f→f跃迁产生的谱线强度不大。但是某些f→f跃迁的吸收带的强度,随镧系离子周围环境的变化而明显增大(这种跃迁称为超灵敏跃迁)。这可能是由于配体的碱性、溶剂的极性、配合物的对称性以及配位数等多种因素的影响,亦即离子周围环境的变化,再加上镧系离子本身的性质等诸因素的综合作用所引起的。镧系离子的吸收谱带范围较广且镧系离子光谱谱带狭窄,表明电子跃迁时并不显示激发分子振动,狭窄的谱带意味着电子受激发时分子势能面几乎没有变化,这与f 电子与配体只存在弱相互作用相一致。镧系离子光谱还有一个特征是化合物的吸收光谱和自由离子的吸收光谱基本一样,都是线光谱,这是由于4f轨道外面的5s2、5p6电子层的屏蔽作用,使4f轨道受化合物中其他元素或基团的势场(晶体场或配体场)影响较小的缘故,而d区过渡元素化合物的光谱,由于受势场影响,吸收光谱由气态自由离子的线状光谱变为化合物和溶液中的带状光谱。 (6) 镧系离子的磁性变化有什么规律性? 答:参见本书10.2.3节《镧系元素的磁学性质》。 2 试总结本章所介绍的镧系元素在性质上变化的规律性,并讨论其原因。 答:参见本书10.3节《镧系元素性质递变的规律性》中的单向变化、Gd断效应、峰谷效应(双峰效应)、奇偶变化、周期性变化、三分组效应、四分组效应、双-双效应和斜W效应。 3 结合实际情况讨论镧系元素的应用。 解:主要用于炼钢的除氧剂和除硫剂,改善钢铁的结构和可塑性。也用来制造完全无色或带有各种色彩的高级玻璃,例如在玻璃中加入Ce(Ⅳ)化合物不仅可以使其脱色,而且可防止紫外线和红外线的透过;加入氧化镧的玻璃,由于折射率增加的同时色散率减少,因而具有优良的光学性能,可以用来改进摄影机镜头的质量,扩大视场角,提高鉴别本领。 用镧系元素制得的Nd-Fe-B和Sm-Co磁性材料,磁性极强。 镧系元素有着特异的电子结构和线状发光性质,可产生高效率的激光,如掺有钕的玻璃就是一种很好的激光材料。 162

半导体的光学性质

半导体的光学性质 如果用适当波长的光照射半导体,那么电子在吸收了光子后将由价带跃迁到导带,而在 价带上留下一个空穴,这种现象称为光吸收。半导体材料吸收光子能量转换成电能是光电器件的工作基础。光垂直入射到半导体表面时,进入到半导体内的光强遵照吸收定律: I。1 式中,I x表示距离表面x远处的光强;I 0为入射光强;r为材料表面的反射率;为材料吸收系数,与材料、入射光波长等因素有关。 1本征吸收 半导体吸收光子的能量使价带中的电子激发到导带,在价带中留下空穴,产生等量的电 子与空穴,这种吸收过程叫本征吸收。 要发生本征光吸收必须满足能量守恒定律,也就是被吸收光子的能量要大于禁带宽度 E g,即h E g,从而有: 0 E g ;. h 0 he E g 1.24 m eV E g 其中h是普朗克常量,v是光的频率.c是光速,V):材料的频率阈值,Z0 :材料的波长阈值,下表列出了常见半导体材料的波长阀值。 几种重要半导体材料的波长阈值

电子被光激发到导带而在价带中留下一个空穴,这种状态是不稳定的,由此产生的电子、 空穴称为非平衡载流子。隔了一定时间后,电子将会从导带跃迁回价带,同时发射出一个光子,光子的能量也由上式决定,这种现象称为光发射。光发射现象有许多的应用,如半导体发光管、半导体激光器都是利用光发射原理制成的,只不过其中非平衡载流子不是由光激发 产生,而是由电注入产生的。发光管、激光器发射光的波长主要由所用材料的禁带宽度决定,如半导体红色发光管是由GaP晶体制成,而光纤通讯用的长波长( 1.5呵)激光器则是由 Ga x ln i-x As 或Ga x ln i-x As y P i-y 合金制成的。 2非本征吸收 非本征吸收包括杂质吸收、自由载流子吸收、激子吸收和晶格吸收等。 2.1杂质吸收 杂质能级上的电子(或空穴)吸收光子能量从杂质能级跃迁到导带(空穴跃迁到价带) 这种吸收称为杂质吸收。杂质吸收的波长阈值多在红外区或远红外区。 2.2自由载流子吸收 导带内的电子或价带内的空穴也能吸收光子能量,使它在本能带内由低能级迁移到高能 级,这种吸收称为自由载流子吸收,表现为红外吸收。 2.3 激子吸收 价带中的电子吸收小于禁带宽度的光子能量也能离开价带,但因能量不够还不能跃迁到导带成为自由电子。这时,电子实际还与空穴保持着库仑力的相互作用,形成一个电中性系统,称为激子。能产生激子的光吸收称为激子吸收。这种吸收的光谱多密集与本征吸收波长阈值的红外一侧。

第 章稀土元素 习题答案

第九章稀土元素 【习题答案】 9.1 什么叫内过渡元素?什么叫镧系元素?什么叫稀土元素? 解:内过渡元素:指镧系和锕系元素,位于f区,也称为内过渡元素。 镧系元素:从57号元素镧到第71号元素镥,共15种元素,用Ln表示。 稀土元素:是15个镧系元素加上钪(Sc)和钇(Y),共计17个元素。 9.2 从稀土元素的发现史,你能得到何种启示? 解:请阅读“9.1.1 稀土元素的发现”一节的内容,体会科学研究的精神。 9.3 稀土元素在地壳中的丰度如何?主要的稀土矿物有哪些?世界和我国的稀土矿藏分布 情况如何? 解:稀土元素在地壳中的丰度如下表所示: 元素名称Sc Y La Ce Pr Nd Pm Sm 丰度/g·t-1 5 28.1 18.3 64.1 5.53 23.9 4.5×10-20 6.47 元素名称Eu Gd Tb Dy Ho Er Tm Yb Lu 丰度/g·t-1 1.06 6.36 0.91 4.47 1.15 2.47 0.20 2.66 0.75 主要的稀土矿物有独居石、氟碳铈矿、磷酸钇矿等。 我国稀土资源极其丰富,其特点可概括为:储量大、品种全、有价值的元素含量高、分 布广。已在18个省市发现蕴藏各类稀土矿,储量占世界已探明稀土矿藏的55%左右。南方 以重稀土为主,内蒙古以轻稀土为主。在内蒙古包头市北边白云鄂博,称为“世界稀土之都”, 储量占全国储量70%以上。国外稀土资源集中在美国、印度、巴西、澳大利亚和俄罗斯等国。 9.4 如何从稀土矿物中提取稀土元素? 解:从稀土矿物中提取稀土元素主要包括三个阶段: (1)精矿的分解:利用化学试剂与精矿作用使稀土元素富集在溶液或沉淀中,与伴生元 素分离开来。方法可分为干法和湿法。 (2)化合物的分离与纯化:从混合稀土氧化物或混合稀土盐中分离出单一的稀土元素。 方法有分级结晶法、分级沉淀法、选择性氧化还原法、离子交换法、溶剂萃取法等。 (3)稀土金属的制备:通常采用熔融盐电解和热还原法。

相关文档
最新文档