高分子基碳纳米管复合材料
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高分子基纳米管复合材料
院系:化学与材料科学学院
专业班级:高分子材料与工程
姓名:
学号:
指导教师:
目录
内容摘要 (1)
前言 (1)
1 纳米材料的特性 (1)
1.1 表面效应 (2)
1.2 量子效应 (2)
1.3 小尺寸效应 (2)
2 纳米材料在高分子复合材料中的应用 (3)
2.1高分子纳米复合材料的制备方法 (3)
2.1.1插层复合 (3)
2.1.2共混法 (3)
2.1.3 原位聚合法 (3)
2.1.4溶胶--凝胶法 (4)
2.1.5自主装技术 (4)
2.2聚合物基纳米复合材料的性能及应用 (5)
2.2.1力学性能 (5)
2.2.2电学性能 (6)
2.2.3其他性能 (6)
2.3、碳纳米管的发现及结构特点 (6)
2.4、碳纳米管的在高分子复合材料领域的应用 (7)
结束语 (8)
参考文献 (8)
有关碳纳米管复合材料的研究
摘要:自从上个世纪末纳米技术的出现,纳米材料的独特性能引起人们的广泛关注。把纳米材料与高分子材料复合,制备高性能和功能化的复合材料成为高分子材料领域的热点之一。作为纳米材料领域之一的碳纳米管(CNTs)具有独特的物理性能,是一种具有纳米直径的管状碳纤维,它具有超强的韧性和强度以及优异的导电性能。通过不同的复合方法可制备出增强、导电和电磁屏蔽的优异性能的材料,具有广泛的应用前景。
本论文通过不同的方法制备了不同高分子基碳纳米管复合材料,研究了CNTs在基体中分散状况和复合材料的力学、热学和导电性能,并探讨了CNTs对复合材料的结构和性能的影响。
关键词:纳米材料碳纳米管复合材料
前言:由于高分子材料来源丰富、制造方便、加工容易、节省能源和投资、效益显著、品种繁多、用途广泛,因而在材料领域占有的比重越来越大。但是随着科学技术的发展以及人们生活水平的提高,对高分子材料不断提出各种各样的新要求,使高分子材料科学的发展呈现出高性能化、功能化、复合化、精细化和智能化的趋势。而纳米技术的出现则为材料科学的发展带来革命性的变化,为高性能、功能化的材料开创了新的领域。因而世界上许多国家把纳米材料的开发放在了特别重要的位置,并形成一股纳米复合材料的热潮[1]。
纳米材料是指平均粒径在纳米级(1-100nm)范围内的固体材料的总称。而作为其中重要的一个部分则是聚合物/无机纳米粒子复合材料,一般是指以有机高分子聚合物为连续相与纳米粒子进行复合而得到的复合材料。这种材料能够充分的结合高分子材料以及纳米粒子所具有的特性,大大的扩展了高分子材料的应用领域,而成为纳米材料里的研究热门。
1、纳米材料的特性
1992年国际纳米材料会议对纳米材料定义如下:一相任一维的尺寸达到
100nm以下的材料为纳米材料[2]。由此可知,纳米材料的几何形状既可以是粒径小于100nm的零维纳米粉末,也可以是径向尺寸小于100nm的一维纳米纤维或二维纳米膜、三维纳米块体等。纳米材料的材质可以是金属或非金属;相结构可以是单相或多相;原子排列可以是晶态或非晶态。当物质进入纳米级后,其在催化、光、电、热力学等方面都出现特异化,这种现象被称为“纳米效应”。具体表现在
以下几个方面:
(1)表面效应
固体颗粒的比表面积与其粒径的关系可由下式表示:
Sw=k/ρD (1-1)
式中Sw—粒子的比表面积;k—形状因子(球形和立方体粒子的K为6);ρ—粒子的理论密度;D—粒子的平均直径。
由上式可知,粒子的比表面积随着其粒径的减小而增大,从而导致处于表面的原子个数越来越多。当粒子粒径分别为10、4、2和1nm时,表面原子所占比例分20%,40%,80%和99%。此时表面效应所带来的作用不可忽略,它会使键态严重失配,出现许多活性中心,表面台阶和粗糙度增加,出现非化学平衡、非整数配位的化学键,从而导致纳米体系的化学性质与化学平衡的体系有很大差异。因此纳米粒子具有极高的活性,很容易与其它原子相结合而出现一些非常规现象,如金属的纳米粒子在空气中会燃烧,无机纳米粒子暴露在空气中会吸附气体,并与气体发生反应等。在催化领域,纳米粒子作为载体,能使活性组分高度分散,可以大大降低催化剂的成本,而在超级双电层电容器中,用碳纳米管制备的电极具有很高的比表面积,能显著的提高双电层的电容量。
(2)量子效应
量子效应是指当粒子尺寸减小到某一临界值时,金属费米能级附近的电子能级由准连续状态变为离散态的现象。纳米半导体微粒存在不连续的被占据的最高分子轨道能级,也存在未被占据的最低的分子轨道能级,所以纳米微粒的催化、电磁、光学、热学和超导等微观特性同宏观块体材料显著不同。如当金属被细分到小于光波波长时,就失去原有的光泽而呈黑色,尺寸越小,颜色越黑[4]。因此,金属超细微颗粒对光的反射率很低。利用此特性可以作为高效率的光热、光电等变换材料,可以高效地将太阳能转变为热能和电能。此外,还可用于红外敏感元件、红外隐身技术等。
(3)小尺寸效应
在0.1nm-100nm的纳米尺寸范围内,物性系统会因其结构和组成的尺寸达到纳米级而呈现出异常的物理、化学和生物特性,这种特性叫做纳米材料的小尺寸效应。例如:平均粒径为40nm的铜粒子的熔点由原来的1083℃降至750℃;块
状黄金的熔点为1063℃,当黄金的颗粒尺寸减小到3nm时,则其熔点降至原来的一半。
2、纳米材料在高分子复合材料中的应用
纳米复合材料(nanocomposites)的概念是本世纪80年代中期才提出来的,一般来说,纳米复合材料是指显微结构中至少有一相的一维尺寸少于100nm的复合材料。近十年来,纳米复合材料的发展非常迅速,受到了材料界和产业界的普遍关注,形成了纳米复合材料研究的热潮[5]。目前国内外许多科学工作者都在通过高技术手段,采用纳米技术及先进的制造工艺,将纳米技术用于复合材料的制造中,以提高复合材料的性能,并取得了许多可喜的研究成果。
2.1 高分子纳米复合材料的制备方法
(1)插层复合
插层复合法的原理以层状硅酸盐粘土-蒙脱土(MMT)插层PA6为例,插层复合法主要有两种:一是插层聚合法,即先将聚合物单体分散,与经插层剂处理的层状硅酸盐混合,然后原位聚合,利用聚合时放出的热量,使其剥离成厚约1nm、长宽均约100nm的层状硅酸盐基本单元,均匀分散在聚合物基体中,实现高分子与硅酸盐在纳米尺度上的复合,但该法只合适制备粘土型复合材料而不能广泛使用。二是聚合物插层,即将聚合物熔体或溶液与硅酸盐混合,利用力学或热力学作用使层状硅酸盐剥离成纳米尺度的片层并均匀分散在聚合物基体中形成纳米复合材料。其中聚合物熔融插层是聚合物在高于其软化温度下加热,在静止或剪切力作用下直接插层进入硅酸盐片层间,无需溶剂,易于工业化生产,有很大的应用前景。
(2)共混法
共混法是通过溶液共混、乳液共混与溶液共混、熔融共混和机械共混等4种方式制得纳米复合材料,此法是制备纳米复合材料最简单的方法,适合各种形态的纳米粒子。共混法将纳米粒子与材料的合成分步进行,可控制粒子状态、尺寸。其难点是粒子的分散问题,由于纳米粒子比表面积大和比表面能极大,因此,极易发生团聚,难以保证纳米粒子在聚合物基体中的均匀分散,失去纳米粒子的特殊性质,控制粒子微区相尺寸及尺寸分布,共混前对纳米粒子的表面处理是其成败的关键。