焊接智能化机器人

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

焊接智能化机器人

第一台Unimate型机器人是在 1959 年被制造出来的,自那以后,越来越多的工业机器人出现在世界各地的各行各业中,而其中一半左右的工业机器人为焊接机器人。自始至今,焊接机器人的发展经历了三个阶段:第一阶段的焊接机器人是以示教再现方式运行的;第二阶段为可以通过传感器接收信息的离线编程焊接机器人;第三阶段为智能机器人,它是多传感器的且能够自行编程以适应

环境。

自从1959年第一台工业机器人UNIMATE在美国诞生以来到现在,工业机器人经历了三个阶段,即示教再现阶段、离线编程阶段和自主编程阶段。据不完全统计,全世界在役的工业机器人中大约有将近一半以上用于各种形式的焊接加工领域。因此,从某种意义上来说,工业机器人的发展历史就是焊接机器人的发展历史。目前,国内外大量应用的焊接机器人系统从整体上看基本都属于第一代或准二代的。随着计算机控制技术的不断进步,使焊接机器人由单一的单机示教再现型向多传感、智能化的柔性加工单元(系统)方向发展,实现由第二代向第三代的过渡将成为焊接机器人追求的目标,实现焊接产品的自动化、柔性化与智能化已成为发展的必然趋势。

焊接机器人具有焊接质量稳定、改善工人劳动条件、提高劳动生产率等特点,自从第一台工业机器人问世以来,焊接机器人就显示出了极强的生命力。经过近50年的飞速发展,在工业发达国家,焊接机器人已经广泛应用于汽车工业、航天、船舶、机械加工行业、电子电气行业、食品工业及其他相关制造业等诸多领域中,并作为先进制造业中不可替代的重要装备和手段,成为衡量一个国家制造水平和科技水平的重要标志之一。目前,比较著名的焊接机器人公司有日本的Motoman、FANUC、Yaskwa,德国的KUKA,瑞典的ABB,美国的Adept Technology,意大利的COMAU,这些公司已成为其所在地区的支柱性企业。

尽管焊接机器人在生产中得到广泛应用,使焊接质量得到了极大改善,有效提高了企业的劳动生产效率,但在应用中仍然存在很多方面的问题值得我们去进一步研究和改善,其中最主要的有以下三大方面。

(1) 焊接机器人位置偏移后重新示教的问题

这个工作现在需要占用大量的生产时间,如果能够利用先进的计算机动态仿真技术对其进行离线示教和仿真,将是焊接机器人应用的一次革命性的改善。(2) 焊接机器人的校轴过程占用过多时间的问题

机器人在轴的校正过程中耗费比较长的时间,对于流水化的自动生产线来说,其停机所造成的经济损失非常巨大。如果能够应用高智能化的检测手段,使机器人在其轴的基本参数丢失或变化后,能够自动快速恢复到发生故障前的状态,将给自动化生产线带来巨大的生产效益,目前的TCP自动校零技术仍然有待进一步的提高。

(3) 焊接机器人焊接过程的焊缝实时跟踪问题

目前焊接机器人进行弧焊时,对焊缝进行动态跟踪反馈仍然还没有很好地应用于生产。利用智能技术,动态跟踪焊缝状态,实时反馈,这是保证弧焊质量的可靠性和稳定性发展的一个趋势。

焊接质量控制一直是焊接研究的热点和难点,也是焊接界工作者致力研究的重要课题。在实际焊接中,常常存在变形、变散热、变间隙、变错边等因数,影响焊缝成形的质量。为了克服焊接过程中这些不确定性因素对精密焊接件质量的影响,迫切需要采用信息反馈、智能控制等技术提高现行焊接机器人的适应性或智能化水平,使之能实现初始焊位识别与自主导引、实时焊缝纠偏与跟踪、焊接熔池动态特征信息获取、工艺参数自适应调节和焊缝成形的实时控制,即实现机器人焊接过程的智能化控制。特别是在追求高质量、高效率的今天,焊接机器人自动化、智能化已成为焊接发展的必然趋势,对焊缝质量实时智能控制的要求也显得更为迫切。从目前国内外研究现状来看,焊接机器人智能化技术研究主要集中在焊接传感技术、焊缝识别与导引技术、焊缝跟踪技术、焊缝成形质量控制方法、多机器人协调控制技术与遥控焊接技术等6个主要方面。

(1)焊接机器人传感技术

传感器在焊接机器人中具有重要作用,除了有传统的位置、速度、加速度、力传感器外,还有激光、视觉、电弧传感器。利用传感技术在焊缝自动跟踪和自动化生产线上物体的自动定位以及精密装配作业等场合,大大提高了机器人的作业性能和对环境的适应性。为进一步提高机器人的智能和适应性,多种传感器的使用是其问题解决的关键。其研究热点在于有效可行的多传感器融合算法,特别

是在非线性、非平稳和非正态分布的情形下的多传感器融合算法。多传感器信息融合技术目前尚处于研究阶段,国内外的相关研究还不是很成熟。

(2)焊缝识别与导引技术

实施机器人焊接的首要技术之一是如何寻找并导引机器人焊枪接近焊接的初始点,焊缝的识别与导引是焊接机器人智能化的重要组成部分。在现有的研究成果中,主要是通过基于视觉的方法对焊缝进行识别与导引。Welding and cutting杂志曾论述过一种基于移动机器人的获取焊缝接头位置并对焊接机器人进行导引的方法,该方法能够通过传感系统自动地获取焊接的接头位置并计算出焊缝的轨迹信息,并通过计算出的焊缝信息调整焊枪的姿态。陈希章提出了一种空间焊缝的路径规划方法,通过双目视觉传感技术对空间焊缝的三维坐标进行了恢复。

(3)焊缝跟踪技术

在实际焊接中,精确的焊缝跟踪是保证焊接质量的关键技术,是实现焊接过程自动化的重要研究方向。随着近代模糊数学和神经网络的出现并成功地应用于焊缝跟踪系统,焊缝跟踪技术已经进入到了智能跟踪的时代。

Journal of Materials Processing Technology提出了一种基于模糊逻辑推理的焊缝跟踪系统。通过安装在机器人上的CCD装置获取焊接过程的图像,根据图像处理技术得到焊缝的边缘,采用模糊逻辑推理的控制方法对焊接的过程进行纠偏。此方法实现了对直线焊缝、曲线焊缝和折线焊缝的焊缝跟踪,取得了较好的跟踪效果。

刘亚(音)提出一种基于遗传算法的焊接机器人路径规划方法,针对多自由度的机器人,采用遗传算法对机器人的路径和各个关节位姿进行最优规划,取得了稳定可靠的焊接结果。

也有文献提出一种基于被动视觉的焊缝实时跟踪系统。通过摄像机获取焊接过程中的焊缝图像,通过图像处理算法提取出焊缝的上下两条边缘,根据焊缝中心线和熔池中心的位置偏差调整焊接机器人的行走轨迹。

(4) 焊缝成形质量控制方法

由于焊接过程是一个多参数相互耦合的时变的非线性系统,很难采用传统的控制方法对焊接过程进行控制。近些年随着模糊控制理论和神经网络控制技术及

相关文档
最新文档