高中数学必修二第一章第二章习题.docx
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间几何体(习题)
一、选择题
1.如下图所示,观察四个几何体,其中判断正确的是()
A.①是棱台B.②是圆台
C.③是棱锥D.④不是棱柱
2.若一个三角形,采用斜二测画法作出其直观图,则其直观图的面积是原三角形面积的 ()
1
A. 2倍B.2倍
2 C.倍
4
2 D.倍
2
3.某几何体的正视图和侧视图均如图1 所示,则该几何体的俯视图不可能是()
4.正方体的体积是 64,则其表面积是 ()
A.64B.16
C.96D.无法确定
1
5.圆锥的高扩大到原来的 2 倍,底面半径缩短到原来的2,则圆锥的体积 ()
A .缩小到原来的一半B.扩大到原来的 2 倍
1
C.不变D.缩小到原来的6
6.三个球的半径之比为1:2:3 ,那么最大球的表面积是其余两个球的表面积之和的()
A.1 倍B.2倍
9 C.5倍
7 D.4倍
7.有一个几何体的三视图及其尺寸如下图( 单位:cm),则该几何体的表面积为()
22
A.12πcm B.15πcm
22
C.24πcm D.36πcm
8.圆台的一个底面周长是另一个底面周长的 3 倍,母线长为 3,圆台的侧面积为 84π,则圆台较小底面的半径为 ()
A.7B.6
C.5D.3
9.某几何体的俯视图是如图所示的矩形,正视图是一个底边长为 8、高为 5 的等腰三角形,侧视图 ( 或称左视图 ) 是一个底边长为 6、高为 5 的等腰三角形.则
该几何体的体积为 ()
A .24
B .80
C .64
D .240
二、填空题
1.圆台的底半径为 1 和 2,母线长为 3,则此圆台的体积为 _______________ 2.一个几何体的三视图如图所示,则这个几何体的体积为 ________________ 三、解答题
1.画出如图所示几何体的三视图.
2
2.圆柱的高是 8cm ,表面积是 130πcm ,求它的底面圆半径和体积.
空间几何体(习题 2)
一、选择题
1. 如果一个几何体的正视图和侧视图都是长方形,则这个几何体可能是(
) A 长方体或圆柱 B 正方体或圆柱 C 长方体或圆台 D 正方体或四棱锥
2. 下列说法正确的是( )
A 水平放置的正方形的直观图可能是梯形
B 两条相交直线的直观图可能是平行直线
C 平行四边形的直观图仍然是平行四边形
D 互相垂直的两条直线的直观图仍然互相垂直
3. 若一个三角形,采用斜二测画法作出其直观图, 其直观图面积是原三角形面积
的( )
A 1
倍
B
2 倍 C 2
倍D
2 倍
2
4
4. 如右图所示的一个几何体, ,在图中是该几何体的俯视图的是(
)
5. 一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是
( )
A
B
A
1
2 B
1 4
C
2
D
4
2
1 4
C 1
D
2
6. 已知圆锥的母线长为 8,底面圆周长为 6 ,则它的体积是 ( )
A 9 55
B 9 55
C 3 55
D
3 55
7. 若圆台的上下底面半径分别是 1 和 3,它的侧面积是两底面面积的 2 倍,则圆台的母线长
是()
A 2
B 2.5
C 5
D 10
8. 若圆锥的侧面展开图是圆心角为 1200,半径为 l 的扇形,则这个圆锥的表面积与侧面积的
比是( )
A 3:2
B 2 :1
C 4:3
D 5 :3
9. 设正方体的表面积为
24,一个球内切于该正方体,则这个球的体积为(
)
A 6 B
32
C
8
D
4
3 3 3
10.已知长方体一个顶点上三条棱分别是3、4、5,且它的顶点都在同一个球面上,则这个
球的表面积是()
A202B25 2
C 50D200
二、填空题
1.半径为 15cm,圆心角为 2160的扇形围成圆锥的侧面,则圆锥的高是———————
2.棱长为 a ,各面均为等边三角形的四面体(正四面体)的
表面积为—————————————体积为—————————————
3.下列有关棱柱的说法中正确的有——————————————
①棱柱的所有的面都是平的
②棱柱的所有棱长都相等
③棱柱的所有的侧面都是长方形或正方形
④棱柱的侧面的个数与底面的边数相等
⑤棱柱的上、下底面形状、大小相等
4. 已知棱台两底面面积分别为80cm2和 245 cm2,截得这个棱台的棱锥高度为35cm ,则
棱台的体积是———————————
三、解答题
1.用斜二测画法画出下列两个三角形的直观图
2.一个三棱柱的三视图如图所示,试求此三棱柱的表面积和体积。
3.一空间几何体的三视图如图所示 , 则该几一空间几何体的三视图如图所示 , 求该几何体的
体积为何体的体积
2
22
点、直线、平面之间的位置关系(习题 2)
一、判断下列公理定理是否真确,对的打√ ,错的打× 并且把正确的订正在下方横线上。
1.空间中过三个点,有且只有一个平面()
俯视图)
2.空间中如果两个角的两边分别对应平行,那么这两个角相等(
2
)
3.如果两个平行平面同时和第三个平面相交,那它们的交线平行(
4.一条直线与一个平面平行,则过这条直线的任一平面的交线与该直线平行()
5.一条直线与平面α内的一条直线平行,则该直线与此平面平行()
22
正(主) 视图侧( 左)视图
)
6.一个平面内的两条直线都与另一个平面平行,则这两个平面平行(
7.一条直线与一个平面内的两条直线都垂直,则该直线与此平面垂直()
8.一个平面过另一个平面的垂线,则这两个平面垂直()
9.垂直于同一个平面的两条直线垂直()
10.两个平面垂直,则一个平面内垂直于交线的直线与另一个平面平行()
二、选择填空。
1. 若直线 a 不平行于平面,则下列结论成立的是()
A.内所有的直线都与 a 异面;
B.内不存在与 a 平行的直线;
C.内所有的直线都与 a 相交;
D.直线 a 与平面有公共点 .
2. 给出下列命题:
( 1)直线 a 与平面不平行,则 a 与平面内的所有直线都不平行;
( 2)直线 a 与平面不垂直,则 a 与平面内的所有直线都不垂直;