油气地球化学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章沉积有机质

1.说明生物的发育与沉积环境的关系?能解释原因吗?

1)海洋环境分为滨海、浅海、海湾和深海。滨海水体动荡,含氧量高,由于水体能量过高,陆源,水生生物、高等植物、细菌、浮游动物均发育较少。浅海环境由于阳光充足,温度适宜,江河、波浪、潮汐带来陆岸大量营养,故水生生物、浮游动植物、细菌均发育良好,陆源生物、高等植物发育良好。海湾水生生物、细菌,浮游动植物十分发育。深海区由于远离大陆缺乏营养来源,温跃层、盐跃层的存在又使深层含营养物的水不易升到表层,生物极少产量最低。

3)湖泊分为滨湖、深湖、浅湖、半深湖相。滨湖水体能量高,各种生物均不发育,浅湖区由于河流的注入,同时带来营养物质的陆源生物、水生生物、浮游动物发育中等,深湖、半深湖区由于比海洋浅的多,阳光充足,河流注入带来大量的营养物质,各种生物均十分发育。2.以湖泊为例说明影响生物类型及沉积有机质发育的因素。

湖泊是大陆上地形相对低洼和流水汇集的地区,也是沉积物和有机质堆积的重要场所。

就有机质的供给来说,湖泊沉积环境出了本身产出的水生生物外,同时还由于琥珀的规模比海盆小,受陆原有机质影响较大,从而造成有机质来源的二元性。此外,湖泊被大陆所包围,入湖的河流可以从四面八方带来有机质,造成陆源有机质来源的多方向性,使得其沉积物中的有机质具有二元多向性。陆源有机质影响的大小,一方面与陆源有机质的发育程度(取决于气候条件)有关,同时还与湖盆的大小有关。但总体上讲,越往湖盆中心,陆源有机质影响越小(重力流影响除外)。

就有机质的保存条件来说,尽管不同的湖盆有明显的差异,但总体上讲,从湖泊边缘到中心,随着水体逐渐加深,湖盆从滨湖,浅湖逐步过渡到深湖半深湖相,水体的搅动程度逐渐减弱,沉积物逐渐变细,环境的还原性逐渐增强,有机质的保存条件逐渐变好。

总体上看,从湖盆边缘到中心,有机质的丰度逐渐升高,陆源有机质的贡献逐渐减少,有机质类型逐渐变好,且复杂,一般在大型湖泊的深湖相,由于远离陆源有机质的影响,基本上以产烃能力强的水生生物贡献为主,有机质类型好。

第五章干酪根与油气的生成

1.干酪根是如何形成的

在微生物(酶)的作用下,源于生物体的生物聚合物,即蛋白质、碳水化合物、木质素和类脂等,首先部分被降解成单体化合物,如氨基酸、单糖、脂肪酸、酚等,这些单体化合物或者被微生物利用、消耗,或者被溶解带走,剩余的则在微生物的进一步作用下,与尚未完全分解的生物聚合体通过活泼官能团反应缩聚成为相对分子质量较大、溶解性较差的多聚体有机质(腐殖质),随后,在微生物的进一步作用下,有机质的聚合程度不断升高,多聚体表面的亲水官能团逐渐减少,从而导致有机质的水解性和在酸碱溶液中溶解性逐步降低(不溶作用),而演化成为聚合度、稳定性更高的地质聚合物——干酪根。一些类脂或烃类也可不被分解直接形成腐殖质,再经不溶作用形成干酪根,也可直接形成干酪根。

4、图9-1,生烃模式图有何意义

答:左侧的图中表示不同深度有机物经历的地质作用阶段以及从生成物角度划分的各个带,中间的图中显示的是可溶有机质的数量变化,不同深度地层中各物质的累积含量,右侧的图中表示可溶有机质的化学成分变化。

浅层中有机物主要经过成岩作用形成生物成因气带,大部分可溶有机质为地球化学化石,小部分为气。中层中有机物经过深成作用上层为油带,下层为湿气带,残余部分地球化学化石,随深度增加油的含量先增加后减少、含气量逐渐增加。深层中有机物继续经过变质作用形成干气带。可溶有机质继续向气转化,大部分为干气,油含量很少。

即:随时间增加,可溶有机质由刚开始时主要为直接继承而来的可溶有机物(即图中地球化学化石)主要产物为油,而油又向气转化,直至全部转化为气。

刚开始时:地球化学化石中含有的正构烷烃中的碳原子数主要集中在25左右且有明显的奇偶优势。直链烷烃含量较多,环烷烃中碳环环数集中在4左右。芳香烃中碳原子数集中在13-20、25-30两段。

有机物刚向油转化时:由于大量石油的生成,造成稀释作用。地球化学化石中含有的正构烷烃主峰C数前移且奇偶优势小。直链烃含量增加,环烷烃的含量减少,主峰位置不变。芳烃中碳原子数分布在25-33,集中在30左右。油中含有的正构烷烃中碳原子数分布在15-28,集中在17左右。大多为直链烃,环烷烃的环数不超过2。芳烃中碳原子数分布在13-27,集中在17左右。

当地层中大部分为油时:由于热成熟效应,大部分地球化学化石消失,仅为小部分芳烃,其碳原子数分布在26-33。油中正构烷烃主峰含量增加,C数继续前移,分布范围增大。直链烃含量增加,环烷烃中环数扩展到6,但含量不多。芳烃含量增加,主峰C数前移。即:地层中正构烷烃随深度增加,主峰C数前移,奇偶优势减小;随深度增加,直链烃含量增加,环烷烃含量减少,环数前移;芳烃随深度增加,主峰C数前移。

二、说明什么是Ro值,有何地质意义?

镜质组反射率(即Ro值):是沉积有机质中显微组分的一种,来源于高等植物的木质素和纤维素,由缩合的多环芳烃化合物组成,有光泽,随着地质条件下时间的增加和温度的增加,其反射率增加;相对其他显微组分,反射率增加幅度大,因而是良好的成熟度标志,而且不会出现退化现象。镜质体反射率代表了有机质所经历的最高成熟度。

地质意义:地质上常常依据镜质组反射率作为有机成熟作用的指标来划分有机质的演化阶段。

7-9章

1、石油的化学组成与哪些因素有关

答:地质因素:①生油母质类型(影响大)②成熟度③远移(影响小)

④次生改造(对埋藏浅的原油影响大)

采样因素:⑤采出条件⑥样品类型

①生油母质类型由沉积环境决定,分为海相和陆相有机质。海相有机质主要由浮游

植物类提供,其次是各种浮游动物。它们富含蛋白质、类脂化合物及部分碳水化

合物。陆源有机质主要来源于湖泊水生生物和高等植物的有机质,其中含有的类

脂化合物是陆源有机质生油的组分。

②有机质热演化过程具有明显的阶段性,不同成熟阶段形成的石油具有不同的化学

组成:在埋藏较浅处可形成重质石油;在生油窗范围内,干酪根裂解形成大量的

正常石油;随埋深增加,轻质烃类逐渐增多,达到某一深度界线后,就只有气态

烃类。

③石油远移过程对石油化学组成影响小。

④次生改造对埋藏浅的原油影响大。

⑤地下高温高压的采出条件对石油的化学组成有一定影响。

⑥样品类型:用油砂反映石油的化学组成,因此也有一定影响。

⑦有机质在形成早期,可以直接聚集形成油气,有机质在形成晚期,可以直接和间

接形成聚集的油气。在埋藏较浅阶段,微生物对其进行改造,微生物降解从低分

子量的烷烃到中等分子量的烷烃再到环烷烃,最后到生物标记化合物。氧化作用

使原油性质变差,非烃增加。水洗作用和生物降解条件一样,几乎同时发生,地

下水对原油清洗,使原油里的某些成分溶解在水里面。脱沥青作用使原油里大分

相关文档
最新文档