滚动轴承故障诊断与分析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

滚动轴承故障诊断与分析Examination and analysis of serious break fault down in rolling bearing

学院:机械与汽车工程学院

专业:机械设计制造及其自动化

班级:2010020101

姓名:

学号:

指导老师:王林鸿

摘要:滚动轴承是旋转机械中应用最广的机器零件,也是最易损坏的元件之一,

旋转机械的许多故障都与滚动轴承有关,轴承的工作好坏对机器的工作状态有很大的影响,其缺陷会产生设备的振动或噪声,甚至造成设备损坏。因此, 对滚动轴承故障的诊断分析, 在生产实际中尤为重要。

关键词:滚动轴承故障诊断振动

Abstract: Rolling bearing is the most widely used in rotating machinery of the machine parts, is also one of the most easily damaged components. Many of the rotating machinery fault associated with rolling bearings, bearing the work of good or bad has great influence to the working state of the machine, its defect can produce equipment of vibration or noise, and even cause equipment damage. Therefore, the diagnosis of rolling bearing fault analysis, is especially important in the practical production.

Key words: rolling bearing fault diagnosis vibration

引言:滚动轴承是机器的易损件之一,据不完全统计,旋转机械的故障约有30%

是因滚动轴承引起的,由此可见滚动轴承故障诊断工作的重要性。如何准确判断出它的末期故障是非常重要的,可减少不必要的停机修理,延长设备的使用寿命,避免事故停机。滚动轴承在运转过程中可能会由于各种原因引起损坏,如装配不当、润滑不良、水分和异物侵入、腐蚀和过载等。即使在安装、润滑和使用维护都正常的情况下,经过一段时间运转,轴承也会出现疲劳剥落和磨损。总之,滚动轴承的故障原因是十分复杂的,因而对作为运转机械最重要件之一的轴承,进行状态检测和故障诊断具有重要的实际意义,这也是机械故障诊断领域的重点。

一滚动轴承故障诊断分析方法

1滚动轴承故障诊断传统的分析方法

1.1振动信号分析诊断

振动信号分析方法包括简易诊断法、冲击脉冲法(SPM法)、共振解调法(IFD 法)。振动诊断是检测诊断的重要工具之一。

(1)常用的简易诊断法有:振幅值诊断法,反应的是某时刻振幅的最大值,适用于表面点蚀损伤之类的具有瞬时冲击的故障诊断;波峰因素诊断法,表示的

是峰值和均方根值之比,适用于点蚀情况下的诊断;概率密度诊断法,通过概率密度曲线进行故障判断,一般作为故障的定性分析;峭度系数诊断法具有与波峰类似的变化趋势,它的优点在于与轴承的转速、尺寸和载荷无关,但缺乏早期报警能力,在故障严重时会失去诊断能力,适用于点蚀故障诊断。

(2)冲击脉冲法(SPM)是在滚动轴承运转中,当滚动体接触到内外道面的缺陷区时会产生低频冲击作用,所产生的冲击脉冲信号会激起SPM传感器的共振,共振波形一般为20kHz一60kHz,包含了低频冲击和随机干扰的幅值调制波,经过窄带滤波器和脉冲形成电路后,得到包含有高频和低频的脉冲序列。但这种固定中心频率和带宽的方法也有其局限性,因为滚动轴承局部损伤故障所激起的结构共振频率并不是固定不变的。在实际使用中,当背景噪声很强或有其他冲击源时,SPM诊断效果很差,失去了实际意义。

(3)共振解调技术,亦称为包络检波技术。它是对低频(通常是数千Hz以内)的冲击所激起的高频(数十倍于冲击频率的)共振波形进行包络检波和低通滤波,即解调,以获得一个对应于低频冲击的、而又放大并展宽了的共振解调波。共振解调法诊断滚动轴承故障的基本原理可以完整地概述为:当轴承某一元件表面出现局部损伤时,在受载运行过程中要撞击与其相互作用的其它的元件表面,产生冲击脉冲力,由于冲击脉冲力的频带很宽,必然包含轴承外圈、传感器甚至附加的谐振器(可以是机械式的,也可以是电的)等的固有频率而激起这个测试系统的高频固有振动。根据实际情况,可选择某一高频固有振动作为研究对象,通过中心频率等于轴承外圈或传感器等的谐振频率的带通滤波器对测取的轴承振动信号进行带通滤波。然后,通过包络检波器进行检波,除去高频衰减振动的频率成分,得到只包含故障特征信息的低频包络信号,对这一包络信号进行频谱分析,在频谱图上即可找出特征频率分量和对应的故障元件。

1.2 油液分析诊断

轴承故障的一个主要原因是润滑不当。对润滑油进行分析,可了解轴承的润滑与磨损状态,进而采取措施控制故障发展。常用的有理化指标分析、污染度测试、油液中金属含量分析、红外光谱分子结构分析、铁普分析。通常需要一种以上方法进行综合判断,以提高诊断的准确性。

2 滚动轴承故障诊断现代分析方法

2.1小波变换在轴承故障中的应用

在轴承故障诊断中,常常只对轴承的局部异常区域所引起的信号局部变化感兴趣,这些信号由于非常微弱、能量很小,往往容易被噪声淹没而难以辨别。当故障诊断应用傅立叶变换进行分析时,不能进行局部化分析。而具有良好时域和频域局部化特性的小波变换,能对信号的高频、短时成分准确地在时域和频域中进行分析,可将故障特征信号有效地分离出来,从而对故障做出分析与解析。采用连续小波变换和独立分量分析的方法对滚动轴承的信号进行消噪和分离,可以提高信号的信噪比和诊断率。对滚动轴承的早期故障诊断,可将小波滤波和循环平稳度分析方法相结合,采用最小熵方法对小波滤波器参数进行优化。

2.2 遗传算法在轴承故障中的应用

遗传算法(GA)是建立在自然选择和群体遗传学机理基础上的随机、迭代和进化,具有广泛适用性的搜索方法。它模拟了自然选择和遗传过程中发生的繁殖、交配和变异现象,根据适者生存、优胜劣汰的自然法则,利用遗传算子逐代产生,优选个体,最终搜索到较优的个体。

2.3 专家系统在轴承故障中的应用

相关文档
最新文档