硼酸酯合成
三_三甲基硅烷_硼酸酯的制备及在锂离子电池电解液中应用的研究进展_张利萍
![三_三甲基硅烷_硼酸酯的制备及在锂离子电池电解液中应用的研究进展_张利萍](https://img.taocdn.com/s3/m/426429d65022aaea998f0fdb.png)
由结构式来看,硼元素最简单的引入方法是 使用硼酸为原料,大多数合成方案也是如此; 而 不以硼酸为原料的合成方法报道较少 ,且合成效 果不好。如 M. G. Voronkov 等人采用三氧化二硼 与六甲基二硅氧烷反应来制备三 ( 三甲基硅烷 )
1213 。 收稿日期: 2012作者简介: 张利萍 ( 1962 —) ,女,高级工程师,主要从事 有机硅材料与电解液的研究开发。 E - mail: tczlp62@ 126. com。 * 基金项 目: 广 东 省 战 略 性 新 兴 产 业 核 心 技 术 攻 关 项 目 ( 2011A010802004 ) 。
与六甲基二硅胺结构相似的六甲基二硅硫烷 也能与硼酸反应制备三 ( 三甲基硅烷 ) 硼酸酯 ( 见式 5 ) , 在 110℃ 下 反 应 的 产 率 为 81% [12]。 但该反应生成的硫化氢是一种无色有臭鸡蛋气味 的剧毒气体,从安全生产的角度考虑,该合成路 线的工业化应用受到了限制。
回流 SiSSi + H3 BO3 → OSi SiOBOSi + H2 S
硼酸酯,反应需要在压力容器内进行,350℃ 下 [6 ] 反应 27 h, 产率仅 13. 3% 。 也有人将硼酸铵 与六甲基二硅胺在溶剂中反应制备三 ( 三甲基 [7 ] 硅烷) ,产率仅 40% 。 大多数以硼酸为原料合成三 ( 三甲基硅烷 ) 硼酸酯方案 ( 见式 2 ) 改变的仅仅是三甲基硅基 的来源及使用的添加剂种类。通用电气公司将硼 酸与三甲基烷氧基硅烷 ( 过量 2 ~ 5 倍 ) 在对甲 苯磺酸催化和回流温度下反应,然后经蒸馏得到 [1 ] 三 ( 三甲基硅烷) 硼酸酯 , 反应产率未报道, 但由三甲基烷氧基硅烷的用量来看 ,反应较难进 行,产率必定不高。
硼酸酯合成方法
![硼酸酯合成方法](https://img.taocdn.com/s3/m/b1a335e3970590c69ec3d5bbfd0a79563c1ed4bc.png)
硼酸酯合成方法硼酸酯可是个很有意思的东西呀!你知道它在很多领域都有着重要的作用呢。
那怎么合成硼酸酯呢?听我慢慢道来哈。
先来说说直接酯化法,这就好比搭积木,把硼酸和醇直接放在一起,通过一些反应条件,让它们慢慢结合起来,形成硼酸酯。
就像盖房子,一砖一瓦地搭建起来,是不是很形象呀!这种方法简单直接,但也需要注意反应的条件哦,温度啦、催化剂啦,都得拿捏得恰到好处,不然可就搭不出漂亮的“房子”啦。
还有酯交换法呢,就好像是交换玩具一样。
把一种酯和硼酸进行交换反应,从而得到我们想要的硼酸酯。
这个过程就有点像小朋友之间交换自己喜欢的玩具,各取所需嘛。
这种方法能让我们得到一些用直接酯化法不容易得到的硼酸酯哦。
然后呢,就是硼酸三烷基酯法啦。
这个就像是走一条特别的路,通过硼酸三烷基酯这个“中间人”来合成最终的硼酸酯。
它就像个桥梁,连接起了不同的反应物,帮助我们达成目标。
再有就是卤代硼烷醇解法啦,这就像是解开一个复杂的谜题。
卤代硼烷和醇发生反应,经过一系列的变化,最终得到硼酸酯。
就像我们在解谜的过程中,一点点找到线索,最后豁然开朗。
在合成硼酸酯的过程中,可不是随随便便就能成功的哟!就像做饭一样,调料放多了或者放少了,味道可能就不对啦。
我们得精心地控制各种条件,才能得到我们想要的结果呀。
你想想看,如果反应温度太高了,那不就像火太大把菜烧糊了一样嘛;要是催化剂用得不合适,就好比炒菜忘了放盐,那味道能好吗?所以呀,合成硼酸酯真的是个技术活呢!每种方法都有它的特点和适用情况,我们得根据实际需要来选择合适的方法。
这就好比我们出门穿衣服,得根据天气和场合来选择合适的衣服呀,总不能大冬天穿个短袖就出去了吧!总之呢,合成硼酸酯可不是一件简单的事儿,但只要我们用心去研究,掌握好各种方法和技巧,就一定能合成出高质量的硼酸酯。
这可真是一门有趣又有挑战性的学问呀!大家可得好好琢磨琢磨哦!。
硼酸酯化学式
![硼酸酯化学式](https://img.taocdn.com/s3/m/5baa5ce1a0c7aa00b52acfc789eb172dec639952.png)
硼酸酯化学式一、什么是硼酸酯硼酸酯,是一类有机硼化合物,化学式通常为B(OH)3R,其中R为有机基团,如甲基、乙基等。
硼酸酯的分子结构中含有B-O键,其化学性质与硼酸类似,但硼酸酯的热稳定性和溶解性要优于硼酸。
二、硼酸酯的合成方法硼酸酯的合成方法主要有两种:1.醇解法将硼酸和醇按一定比例加入反应器中,在适当的温度和pH值下进行反应,得到相应的硼酸酯。
常用的醇有甲醇、乙醇、异丙醇等。
2.脱水缩合法将硼酸和有机酸(如甲酸、乙酸等)按一定比例混合,加热至一定温度下,通过脱水缩合反应,得到相应的硼酸酯。
此方法的副产物少,但反应条件相对较苛刻。
三、硼酸酯的应用领域硼酸酯作为一种重要的有机硼化合物,在许多领域都具有广泛的应用,例如:1.药物合成硼酸酯可被用作供体分子合成和药物分子合成的原料。
在过去几十年中,硼酸酯已成为药物化学领域中的重要研究对象。
2.有机合成硼酸酯可用作有机合成中的试剂和催化剂,例如硼酸酯的醇解反应可用于醇类或酚类化合物的酯化反应;硼酸酯的脱水缩合反应可用于酸类或酮类的合成。
3.聚合物化学硼酸酯可作为聚合物合成中的开始剂,通过与相应的单体分子缩合反应,得到相应的硼酸酯单体,从而进一步合成出具有独特结构和性质的高分子材料。
4.光学材料硼酸酯在光学材料领域有着广泛的应用。
例如,硼酸酯的甲基乙烯基硼酸酯可作为荧光探针分析物质,在荧光分析领域中具有广泛的应用。
四、硼酸酯的安全注意事项硼酸酯与一些金属离子(例如铜、铁等)和氧化剂反应时,可能产生不稳定的燃料混合物,容易引起燃烧或爆炸;硼酸酯的溶液会对皮肤和黏膜有刺激作用,应避免接触,若不慎接触应立即用流动水冲洗。
在使用和储存硼酸酯时,请注意遵循安全操作规程。
芳基硼酸酯的合成方法
![芳基硼酸酯的合成方法](https://img.taocdn.com/s3/m/568c0ac3b8d528ea81c758f5f61fb7360a4c2b5e.png)
芳基硼酸酯的合成方法
一、直接法
直接法是最早用于制备芳基硼酸酯的方法,其原理是利用芳烃与硼酸在一定条件下进行直接反应生成芳基硼酸酯。
该方法操作简单,但反应条件较为剧烈,需要较高的温度和压力,且选择性较差。
二、氧化硼法
氧化硼法是另一种制备芳基硼酸酯的方法,其原理是利用氧化硼与芳烃反应生成芳基硼酸,然后再与醇反应生成芳基硼酸酯。
该方法操作相对简单,反应条件较为温和,但需要使用较为昂贵的氧化硼,且产物中常常含有一定量的杂质,需要进行分离提纯。
三、格氏试剂法
格氏试剂法是一种常用的制备芳基硼酸酯的方法,其原理是利用格氏试剂(如溴代烃或碘代烃)与芳烃发生反应生成芳基镁,然后再与硼酸三酯(如
B(OR)3)反应生成芳基硼酸酯。
该方法具有较高的选择性,产物较为纯净,但需要使用较为昂贵的格氏试剂,且反应过程中需要进行分离提纯,操作相对复杂。
综上所述,芳基硼酸酯的合成方法有多种,其中直接法、氧化硼法和格氏试剂法是最常用的三种方法。
不同的方法具有不同的优缺点,需要根据具体的合成要求和条件选择适合的方法。
硼酸酯的核磁氢谱-概述说明以及解释
![硼酸酯的核磁氢谱-概述说明以及解释](https://img.taocdn.com/s3/m/d2e9896c4a35eefdc8d376eeaeaad1f3469311d0.png)
硼酸酯的核磁氢谱-概述说明以及解释1.引言1.1 概述硼酸酯是一类化合物,由硼酸与醇类反应合成而成。
它具有丰富的结构多样性和广泛的应用领域。
硼酸酯在有机合成中扮演着重要的角色,其独特的化学性质使其在药物、材料科学和化学生物学等领域发挥着重要作用。
本文将重点研究硼酸酯的核磁氢谱。
核磁氢谱是一种常见的分析技术,能够提供有关化合物结构和化学环境的信息。
通过核磁氢谱,可以确定硼酸酯中氢原子的化学位移,并深入了解其分子结构与性质。
这对于进一步研究硼酸酯的合成方法和应用领域具有重要的指导意义。
本文将首先介绍硼酸酯的定义与性质,包括其化学结构、物理性质以及与其他化合物的反应性。
其次,将详细介绍硼酸酯的合成方法,包括传统的合成路径和近年来的新方法。
然后,将探讨硼酸酯在各个领域的应用情况,包括药物合成、有机合成催化剂和材料科学等。
在结论部分,本文将对硼酸酯的前景与挑战进行概括,探讨其在未来的发展趋势。
同时,对本文所述内容进行总结,以期为相关领域的研究提供参考,并为读者对硼酸酯的了解提供全面而深入的知识。
通过本文的研究,我们可以深入了解硼酸酯的核磁氢谱,为进一步研究其合成方法与应用领域提供理论依据。
1.2文章结构文章结构部分的内容可以包括以下内容:在本文中,将按照以下结构进行讨论:2. 正文部分:2.1 硼酸酯的定义与性质:首先,将介绍硼酸酯的定义及其基本性质。
硼酸酯是一种含有硼酸酯基的有机化合物,具有较高的化学活性和广泛的应用领域。
我们将对硼酸酯的分子结构进行解析,并探讨其在化学反应中的作用机理和特性。
2.2 硼酸酯的合成方法:在本节中,将详细介绍硼酸酯的合成方法。
我们将讨论传统的化学合成方法以及近年来发展的新型合成策略。
这些合成方法包括硼酸酯的直接合成、配体辅助合成等。
我们将重点关注各种方法的优缺点,分析其适用性和反应条件,以帮助读者理解和掌握硼酸酯的合成方法。
2.3 硼酸酯的应用领域:在这一章节中,将探索硼酸酯在不同领域的应用。
有机硼酸酯交叉偶联合成膦化物
![有机硼酸酯交叉偶联合成膦化物](https://img.taocdn.com/s3/m/54fca84ca7c30c22590102020740be1e640ecc7d.png)
有机硼酸酯交叉偶联合成膦化物随着有机化学领域的不断发展,有机硼化合物作为有机合成的重要中间体和功能分子,在药物合成、材料科学、化学生物学等领域发挥着重要作用。
有机硼酸酯是一类重要的有机硼化合物,具有较高的化学稳定性和反应活性,因而在有机合成中得到广泛应用。
而膦化合物作为一类重要的有机磷化合物,具有广泛的应用前景,如用作催化剂、光电材料、生物医药化学品等。
有机硼酸酯与膦化物之间的交叉偶联反应是一种有效合成膦化合物的方法,对于有机合成化学家来说具有重要的意义。
本文将系统地介绍有机硼酸酯与膦化物之间的交叉偶联反应,包括反应机理、控制反应条件、反应应用等方面的内容,以期为有机化学领域的研究者提供一些参考。
一、有机硼酸酯交叉偶联合成膦化物的基本原理有机硼酸酯与膦化物之间的交叉偶联反应是指通过硼-膦键的形成将有机硼酸酯与膦化合物有效地耦合在一起的化学反应。
这一反应的基本原理是在碱性条件下,有机硼酸酯与膦化物发生亲核取代反应,生成硼-膦键连接的产物。
通常情况下,这一反应需要在惰性气氛下进行以避免氧气的干扰。
有机硼酸酯可以通过金属催化的亲核取代反应合成,也可以通过直接偶联反应或转化反应合成。
膦化合物作为亲核试剂,其活性取决于其脱保护基后的亲核性。
因此,有机硼酸酯与膦化合物的交叉偶联反应是一种受到底物组成、反应条件和试剂选择等因素影响的复杂反应。
二、有机硼酸酯交叉偶联合成膦化物的反应机理有机硼酸酯与膦化物之间的交叉偶联反应通常是在碱性条件下进行的。
在碱性条件下,有机硼酸酯先与碱反应生成硼酸酯盐,然后硼酸酯盐与膦化物发生亲核取代反应,生成硼-膦键连接的产物。
该反应通常需要在惰性气氛下进行,以避免氧气的干扰。
有机硼酸酯与膦化物之间的交叉偶联反应通常是通过热力学稳定的金属催化作用来实现的。
金属催化剂通常选择Pd、Ni、Cu等过渡金属催化剂,它们能够有效地催化有机硼酸酯与膦化合物之间的交叉偶联反应。
三、有机硼酸酯交叉偶联合成膦化物的条件优化有机硼酸酯与膦化物之间的交叉偶联反应需要在合适的反应条件下进行才能得到较好的反应效果。
聚乙二醇硼酸酯的合成
![聚乙二醇硼酸酯的合成](https://img.taocdn.com/s3/m/f2c0448784868762caaed5cc.png)
学 生 毕 业 论 文课题名称聚乙二醇硼酸酯的合成姓 名李腊 学 号1008102-20 院 系化学与环境工程学院 专 业化学工程与工艺 指导教师周攀登讲师2014年6月02日※※※※※※※※※※※ ※※※※ ※※※※※※※※※ 2014届学生毕业设计(论文)材料 (四)湖南城市学院本科毕业设计(论文)诚信声明本人郑重声明:所呈交的本科毕业设计(论文),是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议,除文中已经注明引用的内容外,本设计(论文)不含任何其他个人或集体已经发表或撰写过的作品成果。
对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明。
本人完全意识到本声明的法律结果由本人承担。
本科毕业设计(论文)作者签名:二○一四年六月二日目录1. 绪论 (4)1.1 有机硼酸酯的介绍 (4)1.2 有机硼酸酯的合成方法 (5)1.3铝电解电容器 (6)1.3.1节能灯专用中高压铝电解电容器[4] (6)1.3.2高压铝电解电容器的工作电解液 (7)1.3.3高压铝电解电容器工作电解液的研究进展 (8)1.3.4工作电解液耐高压添加剂的研究进展 (8)1.4有机含硼化合物在导电介质中的应用研究进展 (9)1.5 研究目的、主要工作及意义 (11)1.5.1 研究目的 (11)1.5.2 主要工作 (11)1.5.3 研究意义 (11)2. 聚乙二醇硼酸酯的合成 (13)2.1 引言 (13)2.2 实验部分 (13)2.2.1 实验原料与器材 (13)2.2.2合成原料的选择与合成条件筛选 (14)2.2.3 聚合反应装置 (15)2.2.4 操作方法 (15)3. 结果与讨论 (16)3.1 聚乙二醇硼酸酯的合成工艺 (16)3.1.1 正交实验结果 (16)3.2 产物红外光谱分析 (21)4 结论 (21)参考文献 (21)聚乙二醇硼酸酯的合成李腊(湖南城市学院化学工程与工艺专业2014届学生)摘要:本文采用正交实验和单因素实验方法探讨了硼酸聚酯的最优合成工艺;以最优的工艺条件合成了聚乙二醇硼酸酯。
碘变成硼酸酯的合成方法
![碘变成硼酸酯的合成方法](https://img.taocdn.com/s3/m/8d997749a7c30c22590102020740be1e650ecc9e.png)
碘变成硼酸酯的合成方法1. 引言1.1 背景介绍通常情况下,碘变成硼酸酯的合成方法包括有机硼试剂和碘试剂之间的反应,常见的反应有铜催化的交叉偶联反应、硼试剂与碘试剂直接反应等。
这些方法在有机合成中发挥着重要作用,不仅可以高效地合成硼酸酯化合物,还可以为其他重要有机合成反应提供重要的中间体和起始原料。
研究碘变成硼酸酯的合成方法具有重要的科学意义和实际应用价值。
目前,关于碘变成硼酸酯的合成方法的研究已经取得了一系列进展,但仍存在一些问题和挑战。
为了更好地探索碘变成硼酸酯的合成方法,有必要对现有的合成方法进行总结和优化,同时也需要不断地寻求新的反应途径和方法,以提高合成效率和产物质量。
【需要继续扩充到2000字】。
1.2 研究意义碘变成硼酸酯的合成方法在化学领域具有重要的意义。
硼酸酯是一类重要的有机化合物,具有广泛的应用价值。
通过合成碘变成硼酸酯,可以为开发新型有机光电材料、药物分子等提供有力支持。
该合成方法具有较高的效率和选择性,能够在较温和的条件下完成反应,减少了能源消耗和废物排放,有利于绿色化学的发展。
通过了解碘变成硼酸酯的合成机理,可以进一步深入探究有机合成的反应规律,为有机合成化学的理论研究提供新的思路。
研究碘变成硼酸酯的合成方法不仅可以扩展化学合成的应用领域,还有助于推动绿色合成化学的发展,具有重要的理论和实践意义。
1.3 现有研究在过去的几十年里,关于碘变成硼酸酯的合成方法已经引起了许多研究者的广泛关注。
早期的研究表明,碘在酸性条件下可以与硼酸发生反应,生成硼酸酯。
这种方法存在一些问题,比如反应条件较为苛刻,反应产率不高等。
随着化学合成领域的发展,研究者们提出了许多新的方法来实现碘向硼酸酯的转化。
其中一种方法是利用有机金属催化剂,如钯、铑等金属催化剂来促进碘和硼酸的反应。
这种方法在反应条件上有了较大的改进,可以在较温和的条件下进行反应,并且提高了产率。
一些研究者还利用氢氧化钠等碱性条件下的反应来合成硼酸酯,这种方法具有反应条件温和、易操作等优点。
有机硼酸酯的应用及制备
![有机硼酸酯的应用及制备](https://img.taocdn.com/s3/m/730cbfc2e43a580216fc700abb68a98271feac04.png)
有机硼酸酯的应用及制备有机硼酸酯是一类含有硼原子和羧酸酯基团的有机化合物,其在工业和科学研究中具有重要的应用价值。
下面将对有机硼酸酯的应用及制备进行详细介绍。
一、有机硼酸酯的应用1. 有机合成中的催化剂:有机硼酸酯常用作有机合成反应中的催化剂,如氢化反应、加成反应、氟化反应等。
通过调节有机硼酸酯的结构和反应条件,可以有效地控制反应的选择性和收率。
2. 金属有机化学:有机硼酸酯可以作为金属有机化学领域中的配体,形成稳定的金属配合物。
这些金属配合物在催化剂设计、聚合反应以及材料科学领域中具有重要的应用。
3. 荧光探针:由于有机硼酸酯具有独特的荧光性能和化学稳定性,常被用作荧光探针。
这些探针可用于检测环境中的金属离子、有机分子、生化物质等,具有很高的灵敏度和选择性。
4. 治疗药物:有机硼酸酯还被广泛应用于医学领域,用于制备抗癌药物、抗炎药物等。
例如,硼酸酯基团可以与某些抗癌药物结合,提高药物的稳定性和药效。
5. 电池材料:有机硼酸酯在电池材料中具有重要的应用潜力。
研究人员通过改变有机硼酸酯的结构,设计出具有高能量密度、长循环寿命和高电导率的电池材料。
6. 有机光电器件:有机硼酸酯也广泛应用于有机光电器件领域,如有机发光二极管(OLED)、有机太阳能电池等。
有机硼酸酯具有良好的荧光性能和电化学性质,可以用于提高光电器件的效率和稳定性。
二、有机硼酸酯的制备有机硼酸酯的制备方法有多种,常见的方法包括以下几种:1. 缩合反应:将含有羟基或胺基的化合物与硼酸酯进行缩合反应,从而制备有机硼酸酯。
通常使用酸性条件下,在适当的温度和时间下反应。
缩合反应的反应机制相对简单,而且保持了反应物的结构,得到结构单纯的有机硼酸酯。
2. 核糖硼酸酯的制备:核糖硼酸酯是有机硼酸酯的一种重要类别。
通常使用稠环化合物酮糖作为原料,通过硼酸酯与酮糖发生酯交换反应制备。
这种方法制备的核糖硼酸酯在药物合成和生物分析中有重要应用。
3. 醚化反应:将含有羧酸的化合物与醇类发生醚化反应,生成相应的有机硼酸酯。
硼酸酯的合成及水解稳定性
![硼酸酯的合成及水解稳定性](https://img.taocdn.com/s3/m/3e74cdf0aef8941ea76e057e.png)
降 低 ;而 在 大 环状 结 构 硼 酸 酯 中 ,干沸 点则 随着 侧
链 中碳 氧个 数 比的增 加 而升高 。
1.2.3 氮杂 环硼 酸酯
氮杂环 硼酸 酯具 有 较高 的沸点 ,适 宜 的运 动粘
度 ,良好 的润滑 性 和极佳 的抗 腐 蚀性 。氮杂 环 硼酸
酯 的结 构可 表示 为 l8]:
12
ቤተ መጻሕፍቲ ባይዱ
合 成 润 滑 材 料 SYNTHETIC LUBRICANTS
DOI:10.3969/j.issn.1672-4364.2012.02.005
2012年 39卷第 1期
硼 酸 酯 的合成 及 水 解 稳定 性
孟 艳 ,王荣 福 ,陈美 名
(1.中国 石 油 化 工股 份有 限公 司润 滑 油 重 庆 分公 司 ,重 庆 400039;2.中 国石 油 四川 石 化 有 限 责任 公 司 ,成 都 611930)
20世 纪 70年代 ,随着 汽 车运 输业 和 高 速公 路 的蓬 勃 发展 ,汽 车 的高 速 化 、重 载 化 和大 型 化对 汽 车制 动 液性 能要 求越来 越 高 。研 制高 沸点 、低 腐蚀 性 和 有 适 宜低 温 粘 度 的制 动 液 成 为各 国关 注 的热 点 。硼 酸酯具 有 沸点 高 ,尤 其是 湿平 衡 回流沸 点高 , 腐 蚀性 低 和润 滑性 良好 的优 点 .使 硼 酸酯 型制 动 液 的性能 大 为提 高 ,得 到快 速 的发展 。硼酸 酯 的分 子 结 构可 以根 据性 能需 求进 行设 计 ,如 硼酸 酯 的水解 稳 定性 等可 以通过改 变其 结构 而得 到改 善 。
链 状 硼酸酯 分子 链越 长 越稳 定 ,平 衡 回流沸点 也大 幅度 提高 ,在 高温条 件下 抗气 阻 性较 强 。刘 峰 等 l5 用 硼 酸分 别 与三 乙二 醇 单 甲醚 、四乙二 醇 单 甲 醚 和 三 乙二 醇单 丁 醚 反应 合 成 的链 状 硼 酸 酯 具有 高 的平衡 回流 沸点 。 当侧链 的 聚合度 一定 时 ,链状 硼酸 酯 中碳 ,氧个 数 比越 大 (醚 中正构烷烃链 越长 ), 其对 应 的沸点 越高 。链状 硼 酸酯干 平衡 回流 沸点 最 高可 以达 到 279 cc。 1.2.2 环 状 硼 酸 酯
硼酸酯在有机合成中的应用
![硼酸酯在有机合成中的应用](https://img.taocdn.com/s3/m/aa3a363753ea551810a6f524ccbff121dd36c50c.png)
硼酸酯在有机合成中的应用硼酸酯是一类在有机合成中广泛应用的化合物。
它们具有多种重要的化学性质和反应活性,因此在有机合成中发挥着重要的作用。
硼酸酯在羰基化合物的还原中起到了重要的催化作用。
硼酸酯可以与羰基化合物发生硼酸酯-醇酯互变反应,生成相应的醇和酯。
这种反应在有机合成中非常常见,可以用来合成醇和酯类化合物。
此外,硼酸酯还可以催化还原羰基化合物为醇,该反应通常选择硼酸酯的醇酯作为催化剂,通过与羰基化合物发生硼酸酯-醇酯互变反应来实现。
硼酸酯在烯烃的不对称氢化反应中具有重要的应用。
不对称氢化反应是一种重要的有机合成方法,可以合成手性化合物。
硼酸酯可以作为催化剂,在不对称氢化反应中起到手性诱导剂的作用,使得反应产物具有手性。
这种手性诱导剂的设计和合成对于获得高产率和高对映选择性的手性产物至关重要。
硼酸酯还在合成有机小分子传感器中得到了广泛应用。
有机小分子传感器是一种能够检测和识别特定有机分子的化学传感器。
硼酸酯可以通过与目标分子发生特异性的配位作用来实现对目标分子的检测。
这种配位作用可以导致硼酸酯的荧光性质发生变化,从而实现对目标分子的高灵敏度和高选择性的检测。
硼酸酯还可以用于合成激发态有机化合物。
激发态有机化合物在光化学和光电器件中具有重要的应用价值。
硼酸酯可以作为激发态有机化合物的前体,通过光激发和反应转化来合成激发态有机化合物。
这为光化学和光电器件的研究提供了一种有效的方法。
总结起来,硼酸酯在有机合成中具有广泛的应用。
它们可以用作还原剂、催化剂、手性诱导剂、传感器和光化学试剂等,发挥着重要的作用。
通过对硼酸酯的研究和应用,我们可以开发出更多的有机合成方法和功能有机分子,为有机化学和材料科学的发展做出贡献。
碘变成硼酸酯的合成方法
![碘变成硼酸酯的合成方法](https://img.taocdn.com/s3/m/3ec08f6e59fb770bf78a6529647d27284b733789.png)
碘变成硼酸酯的合成方法全文共四篇示例,供读者参考第一篇示例:碘变成硼酸酯是一种重要的有机合成反应,该反应可以在合成有机化合物和药物中起到关键作用。
本文将探讨碘变成硼酸酯的合成方法及其应用。
碘变成硼酸酯的合成方法主要有以下几种常用的方法:一是通过氢化硼还原碘来得到硼酸酯。
在这种方法中,碘被还原成为硼酸酯,产物得率较高,反应条件温和。
二是通过硼氢化钠还原碘来得到硼酸酯。
这种方法适用于对碘的选择性还原,能够得到高纯度的硼酸酯。
三是通过硼烷还原碘来得到硼酸酯。
这种方法通常需要高温高压条件,反应比较激烈,但能够得到高产率的硼酸酯。
碘变成硼酸酯的合成方法可以应用于许多领域。
在有机合成中,硼酸酯可以作为重要的中间体,参与到各种有机反应中,如硼亲核反应、Suzuki偶联反应等,从而合成出各种复杂的有机化合物。
硼酸酯还可以用作材料科学中的重要材料,如有机光电材料、有机半导体材料等。
在医药领域,硼酸酯可以作为药物设计的重要结构单元,具有抗癌、抗病毒等活性。
在实际合成过程中,碘变成硼酸酯的合成方法需要根据具体的反应条件和需求选择合适的合成路线。
在反应条件的选择上,需要考虑反应的温度、压力、溶剂等因素;在还原剂的选择上,需要考虑其对目标产物的选择性和产率。
还需要考虑产物的纯度和收率,以保障合成过程的质量和效率。
碘变成硼酸酯的合成方法是一种重要的有机合成反应,可以应用于许多领域。
通过选择合适的合成路线和优化反应条件,可以高效地合成出硼酸酯,为有机合成和药物设计提供重要的工具和材料。
【本篇文字2000字已完结,谢谢阅读!】第二篇示例:碘是一种常见的元素,常用于有机合成和化学反应中。
在化学实验室中,将碘转化为硼酸酯是一种常见的合成方法,通常用于制备药物、染料和其他化学化合物。
硼酸酯是一种含有硼和羟基基团的化合物,具有多种应用方面。
制备硼酸酯的方法中,碘转化为硼酸酯的合成方法是一种常用的方法之一。
下面将介绍碘转化为硼酸酯的合成方法。
三(三甲基硅基)硼酸酯的合成方法
![三(三甲基硅基)硼酸酯的合成方法](https://img.taocdn.com/s3/m/8628918b370cba1aa8114431b90d6c85ec3a88e9.png)
三(三甲基硅基)硼酸酯的合成方法一、三(三甲基硅基)硼酸酯的简介。
1.1 这三(三甲基硅基)硼酸酯啊,可是个挺有趣的化合物呢。
它在化学领域里有着自己独特的地位,就像一颗独特的星星在化学的星空中闪耀。
1.2 从分子结构上来说,它有着特定的组成部分,这些部分组合在一起就形成了它独特的性质,就好比不同的零件组成了一台独特功能的机器。
二、合成三(三甲基硅基)硼酸酯的原料准备。
2.1 首先呢,咱们得准备好三甲基氯硅烷,这就像是做菜要先准备好主要的食材一样。
这个原料在整个合成过程中那可是相当关键的,缺了它可不行,就像打仗没有武器一样。
2.2 硼酸也是必不可少的原料。
这硼酸就如同是辅助的调料,虽然量可能没有三甲基氯硅烷那么多,但它的作用可一点也不小,就像俗语说的“秤砣虽小压千斤”。
2.3 还有啊,要准备合适的溶剂。
溶剂就像是化学反应的舞台,让各种反应物在里面尽情地“表演”,合适的溶剂能让反应顺利进行,要是选错了溶剂,那反应就可能像没头的苍蝇一样乱撞,无法达到预期的效果。
三、合成的具体步骤。
3.1 把硼酸和溶剂先混合起来,这个过程得小心谨慎,就像对待宝贝一样。
要确保硼酸充分地溶解在溶剂里,就像把糖充分溶解在水里一样,均匀混合是关键。
3.2 接着慢慢地加入三甲基氯硅烷。
这个加入的过程可不能着急,得像涓涓细流一样缓慢地注入。
因为这个反应可能比较剧烈,如果一下子加进去太多,那就像捅了马蜂窝一样,反应可能会失控。
在加入的过程中,要不断地搅拌,让它们充分地接触反应,就像搅拌鸡蛋液一样,要搅得均匀透彻。
3.3 反应过程中,温度的控制也非常重要。
这就像我们人要保持合适的体温一样。
如果温度太高,反应可能会像脱缰的野马一样难以控制,产生一些不需要的副产物;如果温度太低呢,反应又会像乌龟爬一样慢得让人着急。
所以得把温度控制在一个合适的范围内,让反应稳步地进行。
四、合成后的处理。
4.1 反应结束后,咱们得对得到的产物进行提纯。
这就像从一堆沙子里挑出金子一样。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Synthesis and Characterization of Monodisperse OligofluorenesJungho Jo,+[b]Chunyan Chi,+[a]Sigurd Hˆger,[c]Gerhard Wegner,*[a]and Do Y.Yoon*[b]Introduction9,9-Disubstituted polyfluorenes find extensive scientific and technological application as efficient organic blue-light-emit-ting diode materials.[1,2]Polyfluorenes showextremely high photoluminescence quantum yields,high thermal and oxida-tive stability,and good solubility in common organic sol-vents for easy processing by spin-or dip-coating methods.[3]They also exhibit interesting thermotropic liquid-crystal characteristics,[4]and consequently,upon annealing in the nematic melts,the polymer chains were shown to be easily aligned on a rubbed polyimide surface.[5]Such an alignment of the polymer results in the polarization of the emitted light and improves the charge carrier mobility,a prerequisite for the fabrication of an organic thin-film transistor.[6]Thus,the ability of the polyfluorenes to align excellently paves the way to make thin films with highly anisotropic electrooptical and electrical properties.[7]Polyfluorenes are readily prepared by Ni 0-mediated cou-pling of the corresponding dibromo monomers.Polymers obtained by this method have weight-averaged molecular weights (M w )of the order of several hundred thousand with polydispersities of around three (according to GPC analysis against polystyrene standards).The long chain lengths and the polydispersity in chain lengths lead to complex structur-al characteristics of the thin films and make it very difficult to establish a proper structure±property relationship.More-over,the normal synthetic procedure leads to incorporation of a small amount of chemical defects,which may be re-sponsible for undesirable green-band emission characteris-tics.[8]Therefore,for better understanding of the structure±prop-erty relationships of polyfluorenes,it would be very helpful to study the properties of a series of pure oligomers with well-defined length and no chemical defects.The absorption spectra of a series of oligomers will allow the estimation of the effective conjugation length of the polymer.[9]In addi-tion,a detailed study of the photoluminescence spectra of pure oligomers may help to solve questions concerning the origin of the green-emission band observed in the photolu-minescence and electroluminescence spectra of polyfluorene films.[10]Moreover,well-defined,defect-free oligofluorenes may also be welcome as active materials in organic light-emitting diodes and organic thin-film transistors.Monodispersed dialkyl fluorene oligomers were first re-ported by Klaerner and Miller.[11]They showed that the Ni 0-mediated oligomerization of 2,7-dibromo-9,9-bis(n -hexyl)-fluorene in the presence of 2-bromofluorene as an end-cap-ping agent gives a mixture of oligomers and low-molecular-weight polymers that could be fractionated by HPLC.From the spectroscopic properties of the samples,the effective[a]C.Chi,+Prof.Dr.G.WegnerMax Planck Institute for Polymer Research Ackermannweg 10,55128Mainz (Germany)Fax:(+49)6131-379-100E-mail:wegner@mpip-mainz.mpg.de [b]J.Jo,+Prof.Dr.D.Y.YoonSchool of Chemistry,Seoul National University San 56±1,Sillim-dong,Seoul,151±747(Korea)Fax:(+82)2-877-6814E-mail:dyyoon@snu.ac.kr [c]Prof.Dr.S.HˆgerPolymer-Institut,Universit‰t KarlsruheHertzstrasse 16,76187Karlsruhe (Germany)[+]These authors contributed equally to this work as part of their Ph.D.theses.Abstract:An efficient synthesis of 9,9-bis(2-ethylhexyl)fluorene oligomers up to the heptamer is reported,with repet-itive Suzuki and Yamamoto coupling reactions employed in the synthesis.The key steps for preparation of the es-sential intermediates include Pd-cata-lyzed transformation of aryl bromides to aryl boronic esters (Miyaura reac-tion)and the application of the much higher reactivity of aryl boronic esters over aryl bromides in the Pd-catalyzed cross-coupling reaction with aryl diazo-nium salts.Variation of the UV/Vis ab-sorption and photoluminescence char-acteristics with chain length is report-ed.Moreover,glass transition and liquid-crystal characteristics of the oligomers are described and compared with those of the polymer.Keywords:fluorene ¥glasses ¥liq-uid crystals ¥oligomerization ¥pho-toluminescenceFULL PAPERconjugation length was estimated to be approximately 12fluorene units.Lee and Tsutsui prepared a series of oli-gofluorenes up to the tetramer by a repetitive2n divergent approach from2,7-dibromo-9,9-bis(n-hexyl)fluorene,with coupling with bis(n-hexyl)fluorene-2-borate and subsequent bromination of the coupling product.[12]Anemian et al.syn-thesized monodisperse dihexylfluorene oligomers up to the hexamer by a combination of Suzuki and Yamamoto cou-pling reactions.[13]Oligomers with n repeating units contain-ing only one bromine atom at positions2or7on the end fluorenes were prepared by coupling the corresponding monoboronate(nÀ1)with2-bromo-7-iodo-9,9-bis(n-hexyl)-fluorene at the iodo site,which is significantly more reactive than the bromo site.The resulting monobromo oligomers were then coupled by a Yamamoto reaction.Most recently, a detailed description of the synthesis,optical properties, and solid-state properties of defined oligofluorenes,up to the hexadecamer,containing chiral substituents at position9 was presented by Geng et al.[14]Here again,the iodo/bromo selectivity in the Suzuki coupling reaction and the use of tri-methylsilyl groups as dormant iodides were used as key fac-tors in the oligomer synthesis.The enormous success of the Suzuki reaction[15]in the preparation of these oligomers arises from the high yield of the coupling reaction together with the easy availability of the boronic acids and the boronates.[16]They are prepared in good to excellent yields by halogen±metal exchange and subsequent trapping of the aryl lithium compound with trial-kylborates.Recently,the scope of this reaction has been dra-matically expanded by the discovery that aryl boronates are also available directly from the aryl halides by a Pd0-cata-lyzed reaction with the pinacol ester of diboron(the Miyaura reaction).[17]This transformation avoids the use of strongly basic organometallic reagents and thus allows the preparation of a wide variety of functionalized aryl boronic esters.Here,we present the synthesis of oligofluorenes from the dimer up to the heptamer by Suzuki and Yamamoto reac-tions,[18]with the Miyaura reaction employed for the first time for the preparation of the aryl boronates.Also,we have taken advantage of a large difference in the reactivity between aryl diazonium salts and aryl bromides in the Suzuki coupling reaction[19]in the preparation of the key in-termediates.The oligomers have been characterized with re-gards to their optical(absorption and photoluminescence) properties and their phase behavior,including glass transi-tion and liquid-crystal characteristics.Finally,the properties of the oligomers are compared with those of the polymer in order to gain newinsights into the polymer properties.Results and DiscussionSynthesis of oligofluorenes:The synthetic route towards the oligofluorenes is shown in Scheme1.First,2,7-dibromofluor-ene and2-bromofluorene were alkylated with2-ethylhexyl bromide to give the di-and monobromides of fluorene,1 and3,respectively.Both of these compounds,as well as the corresponding boronic acids,have already been reported in the literature.[11±14]However,in our synthesis,we trans-formed the aryl bromides into the corresponding aryl boron-ic esters with the Miyaura reaction.In these reactions the corresponding boronic esters,2and4,are formed in high yields(>90%)and can easily be purified by column pounds4and2were then coupled with3 to give the fluorenyl dimer5and trimer6,respectively. Scheme1.Synthesis of the oligofluorenes:a)2-Ethylhexyl bromide,50% aqueous NaOH/DMSO,room temperature;b)bis(pinacolato)diboron, AcOK/DMF,[Pd(dppf)Cl2],608C;c)[Pd(PPh3)4],toluene/aqueous Na2CO3,reflux;d)BF3¥OEt2,butylnitrite/dichloromethane,À108C;e)Pd(OAc)2/EtOH,reflux;f)Br2,dichloromethane,reflux;g)[Ni(cod)2], COD,Bipy,toluene/DMF,808C.DMSO=dimethylsulfoxide,DMF= N,N-dimethylformamide,dppf=1,1’-bis(diphenylphosphanyl)ferrocene, COD=cycloocta-1,5-diene,Bipy=2,2’-bipyridine.FULL PAPER G.Wegner,D.Y.Yoon et al.To synthesize the longer fluorene oligomers,the unsym-metrical monobrominated intermediates,such as9and11, are essential.However,these intermediates cannot be ob-tained directly by bromination of5or6with bromine,since statistical product mixtures are obtained which are very dif-ficult to separate on a large scale.One possibility to obtain the monobrominated intermediates is to use compounds with one potential reaction site in a protected form(for ex-ample,trimethylsilyl groups instead of bromo or iodo func-tionalities[20])as described by Geng et al.[14]Another way is to use fluorene derivatives with two reaction sites of signifi-cantly different reactivity.In the latter case,the use of bro-moiodofluorene derivatives is quite obvious since the reac-tivity of aryl iodides towards the Suzuki coupling is substan-tially higher than the reactivity of aryl bromides;this con-cept has already been used by Anemian et al.[13]A good alternative approach is to use the large reactivity difference between aryl diazonium salts and aryl bromides in the cross-coupling reaction with aryl boronates.Since the reaction with aryl diazonium salts does not need a base such as Na2CO3,which is essential in the Suzuki coupling reac-tion with aryl bromides,the coupling reaction takes place only at the site of the diazonium salt.Hence,we employed this reaction in our synthetic procedure as follows.2-Amino-7-bromofluorene was alkylated with2-ethylhex-yl bromide to give7in82%yield;7was subsequently trans-formed into the corresponding diazonium salt8(81%). Cross-coupling reaction of4and8with Pd(OAc)2gave9in 70%yield within an hour.This result shows that the reactiv-ity difference between aryl diazonium salts and aryl halides is larger than that between aryl iodides and aryl bromides.9 was transformed into the corresponding boronic ester10in 56%yield with the Miyaura reaction.Subsequently,the cross-coupling reaction of10and8gave11in48%yield. Another method we have used to obtain the monobro-mides is to treat the monoboronate with an excess of the di-bromofluorene.Indeed,the coupling of4with an excess of 1was successfully performed by using only1.5equivalents of1to give the monobrominated dimer9in50%yield(not shown in Scheme1).Similarly,the monobrominated trimer 11was obtained in45%yield by the reaction of4with1.5-fold excess of the dibrominated product12,which was pre-pared from5in90%yield.[21]Both methods led to identical compounds,thereby demonstrating the validity of our syn-thetic methodology.Yamamoto homocoupling re-actions of9and11gave the flu-orenyl tetramer13and hexam-er15,respectively,both in%50%yield.The fluorenylpentamer14was obtained witha cross-coupling reaction of9and2in47%yield.The highreactivity of the diazonium saltswas also used to prepare the di-bromofluorenyl trimer16,which was obtained in54%yield by coupling of2and8.Although16can,in principle,also be prepared by the bromination of6,a detailed mass spectral analysis of the crude reaction products showed that varying amounts of tribromide contaminate the dibromide. Since even small amounts of an impurity affect the liquid-crystalline behavior of the oligomers,we avoided the bromi-nation of the fluorenyl trimer and higher oligomers in our oligomer synthesis.The fluorenyl heptamer17was obtained in38%yield by cross-coupling reaction of10and16. Optical properties of oligofluorenes:Electronic absorption spectra of monodisperse oligo(9,9-bis(2-ethylhexyl)fluorene-2,7-diyl)compounds5,6,13,14,15,and17in diluted chloroform solution with the same fluorene unit concentra-tion(1.0î10À5m)are shown in Figure1and the data are col-lected in Table1.The oligofluorenes exhibit unstructured absorption bands, as is also seen for polyfluorenes.[3]The absorption maximum is red-shifted with increasing number(n)of fluorene units. The molar extinction coefficients(e)of the oligofluorenes showa good approximation of a linear increase w ith n from dimer to heptamer,as seen in Table1.The increment is 30.3î103L molÀ1cmÀ1for each repeat unit.The plot of the wave number of the maximum absorption versus1/nfollows Figure1.UV/Vis absorption of oligofluorenes(dimer to heptamer)in chloroform solution at room temperature at a fixed concentration of flu-orene repeat units of1.0î10À5mole LÀ1.Table1.Summary of UV/Vis absorption(n max(abs))and photoluminescence(n max(PL))spectra for the fluoreneoligomers and polymer,from chloroform solutions and solid films.[a]Sample Solution Filmn max(abs)e max n max(PL)n max(abs)n max(PL)[cmÀ1][L molÀ1cmÀ1][cmÀ1][cmÀ1][cmÀ1]dimer530580491702740025970304002710025770trimer628740813302538024100286502513023870tetramer13279301115002475023470275502439023200pentamer14274001417002445023150270302398022940hexamer15271701730002433023040268802381022780heptamer17268802003002427023040268102370022730polymer26110±2410022940259102359022570[a]Since the resolution of the low-energy peak was too low at the temperature at which the data were record-ed,only the n max values of the two high-energy components are given.Synthesis and Characterization of Monodisperse Oligofluorenes2681±2688a linear fit,as shown in Figure 2.The polymer has a maxi-mum absorption at 26110cm À1(383nm);[3]hence,we can estimate an effective conjugation length of 14repeat unitsfrom the plot in Figure 2,a figure that can be compared with the reported value of 12for poly(9,9-bis(n -hexyl)fluor-ene-2,7-diyl).[11]The UV/Vis absorption spectra of thin films of the oligofluorenes on quartz substrates are practically identical to the solution data except for slight red-shifts in the absorption maxima,as listed in Table 1.Figure 3a shows the photoluminescence (PL)spectra of the oligomers from dimer 5to heptamer 17in chloroform with the same concentration of fluorene units (1.0î10À6m ),excited at the corresponding energy of maximum absorp-tion.Similar to polyfluorenes,three well-resolved fluores-cence bands are observed.They may be assigned to the 0±0,0±1,and 0±2intrachain singlet transitions.[22]The spectral position and the intensity of the PL maximum changes with the number of fluorene units,n .This is explained by the in-crease of effective conjugation from dimer 5up to heptamer 17.Notably,the relative intensity of the three emission bands also changes with n .The relative intensity of the 0±0transition increases with n ,while that of the 0±2transition decreases.This may be related to an increase of the intra-chain coupling interaction with the molecule×s length.Normalized solid-state PL spectra of oligofluorenes 5,6,13,14,15,and 17from thin films on a quartz plate excited at the absorption maxima are shown in Figure 3b and the key data are listed in Table 1.Relative to the PL spectra measured in solution,red shifts in the emission maxima are observed and the relative intensities of the 0±2intrachain singlet transition increase in all cases.Most importantly,the green-band emission usually seen for the polymer [3]is absent for all of the oligomers (Figure 3b).Even upon high-temperature annealing (1808C)in air,this green emission is still negligible for the oligomers.This result casts doubt on the widely discussed hypothesis that the green emission seen with varable intensity in polymer samples (Figure 3b)origi-nates from excimer formation by interchain interaction.It is difficult to see why such interchain interactions should be suppressed in the case of oligomers if this explanation was true.Phase transition characteristics of oligofluorenes :The DSC traces shown in Figure 4clearly exhibit the glass transition temperatures for all of the oligomers in the low-temperature range,followed by an endothermic transition for the tetram-er 13,pentamer 14,hexamer 15,and heptamer 17as the temperature is increased.The latter transition is identified as the liquid-crystalline to isotropic transition from the po-larized optical microscopy study.The Schlieren texture and the very small enthalpy value of the transition,as shown in Table 2,indicate that the liquid-crystal structure is probably of nematic character,but a further study on this topic is in progress.The isotropization temperature T iso of this liquid-crystal-line to isotropic transition extrapolates to a hypothetical T iso (Polymer)for n !¥of 4758C if plotted in the coordi-nates T iso =T iso (n !¥)(1ÀKX E )where X E is the molefrac-Figure 2.Plot of n ˜max versus reciprocal degree of polymerization n.Figure 3.a)Fluorescence spectra of oligofluorenes (dimer to heptamer)in chloroform solution at room temperature at a fixed concentration of fluorene repeat units of 1î10À6mole L À1.b)Photoluminescence spectra of thin films of the oligofluorenes (dimer to heptamer).The spectrum for the polymer,also shown in this figure,was obtained for a sample an-nealed at 1808C for 1h in air.FULL PAPERG.Wegner,D.Y.Yoon et al.tion of end groups and K is an empirical constant.This tem-perature is well above the decomposition range of the high polymer.In this regard,it is important to note that the poly-mer exhibits a well-known ™melting∫transition around 1608C.Above 1608C the polymer exists in a nematic liquid-crystal phase;belowthat temperature another solid phase is formed,the true nature of which is not yet understood.It may be of higher order smectic type but of such a rigidity of the packing that a transition to a glassy state is suppressed.Whether this substantial difference in the phase structure and nature of transitions has consequences for the electro-optical properties of these materials needs to be studied fur-ther.The glass transition temperatures,listed in Table 2,tend to level off as the chain length increases and exhibit n À1de-pendence of the type:T g =64.0À174.7n À1.Therefore,the extrapolated T g for the polymer is estimat-ed to be approximately 648C.The occurrence of this glass transition is difficult,if not impossible,to see in the DSC thermogram for the polymer (see Figure 4).This may be due to the above-mentioned differences of the liquid-crystal phases in the polymer and in the oligomers.ConclusionOligofluorenes up to the heptamer can be synthesized on the hundred-milligram scale by a stepwise route involving Suzuki and Yamamoto coupling reactions.The synthesis of the boronates for the Suzuki coupling is based on the Pd-catalyzed transformation of aryl bromides into boronates,a process that avoids strongly basic aryl lithium intermediates.Therefore,this methodology has potential for the synthesis of oligofluorenes containing a variety of functional groups.The synthesis of mono-or dibrominated fluorenyl oligomers,which are essential for expanding of the chain length,is based on the much higher reactivity of aryl boronates over aryl bromides in the Pd-catalyzed cross-coupling reaction with aryl diazonium salts.The pure oligomers as solid films do not showthe unde-sired green-band emission characteristics of the polymer.Moreover,they are found to align more readily to form monodomains on various surfaces,as will be published else-where.The oligomers from tetramer to heptamer show a liquid-crystal phase with clearly defined isotropization tem-peratures;this allows extrapolation to the expected isotropi-zation temperature of the polymer at around 4758C,well above the thermal decomposition temperature.Most impor-tantly,the oligofluorenes do not showthe same high-order phase that the polymer exhibits belowthe melting tempera-ture of approximately 1608C.However,unlike the polymer,the oligomers do showa glass transition temperature w hichexhibits n À1dependence and allows extrapolation to a hypo-thetical glass transition of the polymer at around 648C.As this glass transition refers to a freezing of a liquid-crystal phase not seen for the polymer,it is not too surprising that this phenomenon cannot be detected for the polymer.Experimental SectionGeneral remarks :Reactions requiring an inert gas atmosphere were con-ducted under argon and the glassware was oven-dried (1408C).Tetrahy-drofuran (THF)was distilled from potassium prior to mercially available chemicals were used as received.1H NMR and 13C NMR spec-tra were recorded on Bruker DPX 250or AC 300spectrometers (250and 300MHz for 1H,62.5and 75.48MHz for 13C).Chemical shifts are given in ppm,referenced to residual proton resonances of the solvents.Thin-layer chromatography was performed on aluminium plates precoated with Merck 5735silica gel 60F 254.Column chromatography was per-formed with Merck silica gel 60(230Æ400mesh).Field desorption spec-tra were recorded on a VG ZAB 2-SE FPD machine.Differential scan-ning calorimetry was measured on a Mettler DSC 30with a heating or cooling rate of 10K min À1.Polarization microscopy was performed on a Zeiss Axiophot apparatus with a nitrogen-flushed Linkam THM 600hot stage.UV/Vis spectra were recorded at room temperature with a Perkin±Elmer Lambda 9UV/Vis/NIR spectrophotometer.Photoluminescence spectra were obtained on a Spex Fluorolog II (212)apparatus.Optical properties of solid thin films were normally obtained for samples spin-coated on a quartz substrate from dilute chloroform solutions and dried under vacuum.Elemental analysis were performed by the University of Mainz.Melting points were measured with a Reichert hot-stage appara-tus and are uncorrected.2,7-Dibromo-9,9-bis(2-ethylhexyl)fluorene (1):2-Ethylhexylbromide (38.73g,185.18mmol,35.74mL)was added to a mixture of 2,7-dibromo-fluorene (25.0g,77.16mmol)and triethylbenzylammonium chloride (0.878g, 3.86mmol,5mol %)in DMSO (125mL)and 50%aqueousFigure 4.DSC traces for the oligofluorenes (dimer to heptamer;second heating at 108C min À1).The DSC trace for the polymer is also shown for comparison.Table 2.Summary of glass transition temperature (T g ),isotropization temperature (T iso ),and the enthalpy of isoptropization value (D H iso )for the oligofluorenes.Sample T g [K]T iso [K]D H iso [J g À1]dimer 5252±±trimer 6274±±tetramer 132953370.50pentamer 143013990.47hexamer 153074630.71heptamer 173155190.74Synthesis and Characterization of Monodisperse Oligofluorenes 2681±2688NaOH(31mL).The reaction mixture was stirred at room temperature for5h.An excess of diethyl ether was added,the organic layer was washed with water,diluted HCl,and brine,then dried over MgSO4.The solvent was removed under vacuum and the residue was purified by column chromatography over silica gel with n-hexane as the eluent(R f= 0.78)and solidified from EtOH atÀ308C to give1as a white solid (36.21g,85.6%):M.p.45±548C;1H NMR(250MHz,CD2Cl2):d=7.57±7.43(m,6H),1.94(d,J=5.35Hz,4H),0.89±0.68(m,22H),0.55±0.41(m, 8H)ppm;13C NMR(62.5MHz,CDCl3):d=152.3,139.1,130.1,127.4, 121.0,55.3,44.3,34.6,33.6,28.0,27.1,22.7,14.0,10.3ppm;MS(FD): m/z:548.2[M+].2-Bromo-9,9-bis(2-ethylhexyl)fluorene(3):Compound3was prepared ac-cording to the method used for1by using2-ethylhexylbromide(43.3g, 224.5mmol,39.9mL),2-bromofluorene(25.0g,102.0mmol),triethylben-zylammonium chloride(1.16g,5.10mmol,5mol%),DMSO(165mL), and50%aqueous NaOH(41mL).Purification by column chromatogra-phy over silica gel with n-hexane as the eluent(R f=0.72)gave3as a col-orless liquid(43.14g,90.1%):1H NMR(250MHz,CD2Cl2):d=7.70±7.26 (m,7H),1.97(m,4H),0.90±0.43(m,30H)ppm;13C NMR(62.5MHz, CDCl3):d=152.8,150.0,140.3,129.8,127.3,126.9,124.0,120.9,120.4, 119.6,55.1,44.4,34.6,33.6,28.0,27.0,22.7,14.0,10.4ppm;MS(FD): m/z:470.2[M+].2,7-Bis(4,4,5,5-tetramethyl[1.3.2]dioxaborolan-2-yl)-9,9-bis(2-ethylhexyl)-fluorene(2):Under an argon atmosphere,1(2.43g,4.43mmol),bis(pina-colato)diboron(4.05g,15.94mmol),KOAc(2.60g,26.57mmol),and Pd(dppf)Cl2(0.226g,0.266mmol)were dissolved in DMF(40mL)and heated to608C overnight.After the reaction mixture was cooled to room temperature,water and diethyl ether were added.The aqueous phase was extracted with diethyl ether and the combined organic layers were dried over MgSO4.The solvent was removed under vacuum and the resi-due was purified by column chromatography over silica gel with petrole-um ether/dichloromethane(3:1)as the eluent(R f=0.34)and solidified from EtOH atÀ308C to give2as a white solid(2.60g,91.5%):M.p.85.5±87.68C;1H NMR(250MHz,CD2Cl2):d=7.84±7.69(m,6H),2.00 (d,J=5.3Hz,4H), 1.36(s,24H),0.86±0.50(m,22H),0.48±0.45(m, 8H)ppm;13C NMR(62.5MHz,CDCl3):d=150.1,143.9,133.5,130.4, 119.2,83.5,54.7,44.0,34.6,33.5,27.8,27.2,24.8,22.7,14.1,10.3ppm;MS (FD):m/z:643.0[M+].2-(4,4,5,5-Tetramethyl[1.3.2]dioxaborolan-2-yl)-9,9-bis(2-ethylhexyl)fluor-ene(4):Compound4was prepared according to the method used for2 by using3(14.07g,30.0mmol),bis(pinacolato)diboron(12.19g, 48.0mmol),KOAc(8.82g,90.0mmol),and[Pd(dppf)Cl2](1.23g, 1.5mmol)in DMF(300mL).Column chromatography over silica gel with petroleum ether/dichloromethane(4:1)as the eluent(R f=0.59)af-forded4as an oily product(14.78g,95.5%):1H NMR(250MHz, CD2Cl2):d=7.82±7.64(m,4H),7.36±7.21(m,3H),2.0±1.86(m,4H), 1.34(s,24H),0.86±0.65(m,22H),0.50±0.43(m,8H)ppm;13C NMR (62.5MHz,CDCl3):d=151.0,149.5,144.2,141.1,133.6,130.3,126.6, 124.1,120.0,118.8,83.5,54.8,44.5,44.1,34.6,33.5,28.2,27.8,27.3,26.8, 24.8,22.7,14.1,10.5,10.1ppm;MS(FD):m/z:516.7[M+].9,9,9’,9’-Tetrakis(2-ethylhexyl)-2,2’-bifluorene(5):A mixture of4(5.17g, 10.0mmol)and3(4.69g,10.0mmol)in toluene(50mL)and2m aqueous Na2CO3solution(25mL,50mmol)was degassed by pump and freeze cycles(3î)and[Pd(PPh3)4](0.577g,0.5mmol)was added under argon. The solution was heated to reflux with vigorous stirring for20h.After the reaction mixture was cooled to room temperature,diethyl ether and water were added.The organic layer was separated and washed with di-luted HCl and brine,then dried over MgSO4.The solvent was removed under vacuum and the residue was purified by column chromatograpy over silica gel with petroleum ether as the eluent(R f=0.47)to give5 (7.08g,90.8%):1H NMR(250MHz,CD2Cl2):d=7.73±7.80(m,4H), 7.57±7.64(m,4H),7.25±7.44(m,6H),2.04±2.14(m,8H),0.49±0.88(m, 60H)ppm;13C NMR(62.5MHz,CDCl3):d=150.9,150.6,141.1,140.4, 126.8,126.3,126.0,124.1,122.9,119.6,54.9,44.5,34.6,33.8,28.2,26.9, 22.7,14.0,10.3ppm;MS(FD):m/z:779.4[M+];elemental analysis: calcd for C58H82(779.2):C89.39,H10.61;found:C89.29,H10.79.9,9,9’,9’,9’’,9’’-Hexakis(2-ethylhexyl)-2,2’-7’,2’’-terfluorene(6):Compound 6was prepared according to the method used for5by using2(2.0g, 3.12mmol),3(4.40g,9.36mmol),and[Pd(PPh3)4](0.36g,0.31mmol)in toluene(30mL)and2m Na2CO3aqueous solution(15.6mL,31.2mmol)for27h.After cooling to room temperature,the mixture was diluted with ethyl acetate and the organic layer was washed with diluted HCl and brine,then dried over MgSO4.The solvent was removed under vacuum and the residue was purified by column chromatography over silica gel with petroleum ether as the eluent(R f=0.22)to give6as a col-orless viscous gum(2.32g,63.8%):1H NMR(250MHz,CD2Cl2):d= 7.83±7.73(m,6H),7.61±7.66(m,8H),7.44±7.25(m,6H),2.13±2.05(m, 12H),0.90±0.49(m,90H)ppm;13C NMR(62.5MHz,CDCl3):d=151.2, 150.9,150.6,141.1,140.4,140.1,126.8,126.3,126.0,124.1,122.9,119.7, 119.6,54.9,44.6,34.6,33.8,28.2,27.1,22.8,14.0,10.3ppm;MS(FD):m/ z:1168.2[M+];elemental analysis:calcd for C87H122(1167.9):C89.47,H 10.53;found:C89.26,H10.42.2-Amino-7-bromo-9,9-bis(2-ethylhexyl)fluorene(7):Compound7was prepared according to the method used for1by using2-ethylhexylbro-mide(7.78g,40.3mmol,7.2mL),2-amino-7-bromofluorene(5.0g, 19.2mmol),triethylbenzylammonium chloride(220mg,1mmol,5 mol%),DMSO(50mL),and50%aqueous NaOH(3.8mL).The reac-tion mixture was stirred for2h.Purification by column chromatography over silica gel with n-hexane/dichloromethane(6.5:3.5)as the eluent (R f=0.47,0.44,and0.38;the title product separated into three spots,due to the diaseteroisomers)gave7as a slightly yellowoily product(7.65g, 82%):1H NMR(300MHz,CD2Cl2):d=7.46±7.37(m,4H),6.70±6.63(m, 2H),3.81(br s,2H),1.84±1.90(m,4H),0.92±0.73(m,22H),0.57±0.52 (m,8H)ppm;13C NMR(75MHz,CDCl3):d=152.5±152.4(three peaks, 2îC),146.9±146.8(three peaks),141.4,131.5±131.4(three peaks),129.8, 127.4±127.3(three peaks),120.9,119.9,118.7±118.5(three peaks),114.2, 110.9±110.8(three peaks),55.2,44.9±44.8(four peaks),35.0,33.9±33.7 (four peaks),28.5±28.3(four peaks),23.2,14.3,10.6±10.4(four peaks)ppm;MS(FD):m/z:484.0[M+].2-Bromo-9,9-bis(2-ethylhexyl)fluorenyl-7-diazonium tetrafluoroborate (8):A solution of7(3.48g,7.18mmol)in CH2Cl2(10mL)was slowly added to BF3¥OEt2(11.46mmol,1.42mL)with stirring under an argon athmosphere atÀ108C.After10min,a solution of butyl nitrite(1.18mL, 10.01mmol)in CH2Cl2(4mL)was slowly added and the mixture stirred for additional30min at08C.n-Pentane(200mL)was added and the mix-ture was stored atÀ208C overnight.The precipitate was filtered off, washed with cold diethyl ether and dried in air to give8as a pale yellow solid(3.39g,81%):1H NMR(300MHz,[D6]acetone):d=9.08(m,1H), 8.87(m,1H),8.53(m,1H),8.16(m,1H),8.06(s,1H),7.77(m,1H), 2.30±2.20(m,4H),0.88±0.45(m,1H)ppm;13C NMR(75MHz,acetone-d6):d=156.6,154.2±153.9(three peaks),153.8,137.9±137.8(three peaks), 134.6,132.6±132.5(three peaks),129.5±129.4(three peaks),129.0±128.8 (three peaks),126.7,125.8,123.7±123.6(three peaks),111.9±111.6(three peaks),57.6±57.5(three peaks),44.5±44.3(four peaks),35.9±35.8(two peaks),34.7±33.9(three peaks),28.9±28.5(three peaks),28.0,23.4±23.3 (two peaks),14.3±14.2(two peaks),10.7±10.3(three peaks)ppm;decom-position temperature:988C.7-Bromo-9,9,9’,9’-tetrakis(2-ethylhexyl)-2,2’-bifluorene(9):A mixture of 4(0.90g, 1.74mmol),8(1.12g, 1.92mmol),and Pd(OAc)2(40mg, 0.178mmol)in ethanol(30mL)was heated to608C for1h(no addition-al base was added).After cooling to room temperature,the mixture was diluted with diethyl ether and the organic layer was washed with brine and dried over MgSO4.The solvent was removed under vacuum and the residue was purified by column chromatography over silica gel with pe-troleum ether as the eluent(R f=0.49)to give9as an oily product(1.04g,70%):1H NMR(250MHz,CD2Cl2):d=7.80±7.26(m,13H),2.14±2.04(m,8H),0.88±0.52(m,60H)ppm;13C NMR(62.5MHz, CDCl3):d=153.0,151.0,150.6,141.0,140.5,140.1,139.2,129.9,127.4, 126.8,126.4,126.0,124.1,122.9,120.9,120.3,119.6,54.9,44.5,34.6,33.8, 28.2,27.1,22.7,14.0,10.3ppm;MS(FD):m/z:857.6[M+].2-[9,9,9’,9’-Tetrakis(2-ethylhexyl)-7,2’-bifluoren-2-yl]-4,4,5,5-tetrame-thyl[1.3.2]dioxaborolan(10):Compound10was prepared according to the method used for2by using9(970mg,1.1mmol),bis(pinacolato)di-boron(450mg,1.8mmol),KOAc(326mg,3.3mmol),and[Pd(dppf)Cl2] (45mg,0.055mmol)in DMF(10mL).Column chromatography over silica gel with n-hexane/CH2Cl2(9:1)as the eluent(R f=0.12)gave10as an oily product(570mg,55.7%):1H NMR(300MHz,CD2Cl2):d=7.86±7.73(m,6H),7.65±7.60(m,4H),7.41(m,1H),7.36±7.27(m,2H),2.09±2.04(m,8H),1.35(s,12H),0.88±0.49(m,90H)ppm;13C NMR(75MHz, CD2Cl2):d=152.8,151.6,151.3,150.5±150.3,144.6,141.7,141.1±140.6, 134.1,131.1±130.9,127.4,127.0,126.6±126.5,124.8,123.6±123.4,120.8,FULL PAPER G.Wegner,D.Y.Yoon et al.。