分数导数粘弹性土层模型中桩基竖向振动特性研究_图文(精)

合集下载

具有分数导数型本构关系的粘弹性结构的静动力学行为分析

具有分数导数型本构关系的粘弹性结构的静动力学行为分析

具有分数导数型本构关系的粘弹性结构的静动力学行为分析利用分数微分型本构关系,对粘弹性结构的静、动力学行为进行理论分析和数值模拟。

主要的工作如下: (1) 提出了一种只需要存储部分历史数据的分数积分的数值计算方法,并给出了误差估计。

利用该方法可对包含分数积分和微分的积分一微分方程进行较长时间的数值模拟,克服了存储全部历史数据的困难,并能对计算误差进行控制。

给出了两个算例,数值结果与精确值进行了比较,发现这个新方法具有较高的精度。

(2) 建立了描述具有分数导数型本构关系粘弹性柱动力学行为的数学模型,它是具有弱奇异性的非线性积分一偏微分方程,然后利用Galerkin方法将控制方程化归为弱奇异性的非线性积分一常微分方程。

利用平均化方法的思想分析了粘弹性柱的动力学行为,给出了粘弹性柱运动稳定状态存在的条件,利用本文提出的一种存储部分历史数据的分数积分的计算方法,对不同参数的粘弹性柱的动力响应进行了长时间的数值模拟,计算结果与解析方法的结论比较吻合。

也说明该算法是可靠的。

(3) 利用粘弹性材料的三维分数导数型本构关系,建立了粘弹性Timoshenko梁的静、动力学行为研究的数学模型。

分析了梁在阶跃载荷作用下的准静态力学行为,得出了问题的解析解;考察了材料参数对梁的挠度的影响,说明分数导数参数对梁的力学行为影响是明显的。

基于模态函数讨论了Timoshenko梁在横2001年上海大学博士学位论文向简谐激励作用下的动力响应,考察了剪切效应和转动惯性对梁振动响应的影响.其剪切效应与梁的细长比有关,当细长比比较大时,在静、动态情况下剪切效应都十分明显.利用作者提出的分数积分的计算方法,对梁的动力响应进行了模拟,计算结果与解析方法的结论比较吻合. (4)建立了具有分数导数型本构关系的粘弹性TimOshenk()梁在有限变形情况下的控制方程,通过Galerklnl阶截断和2阶截断得到了简支Timoshenko梁的运动的简化模型,它们分别是关于挠度和转角的非线性积分一微分方程组.然后利用分数积分的计算方法对这类非线性积分一微分方程组进行求解考察了载荷参数和材料参数对Timoshenko梁动力响应的影响.随着载荷参数的增加,Galerkinl阶截断和2阶截断系统均由周期1运动发生分叉,变为多周期或拟周期或混沌运动相间出现的复杂状态;随着材料参数的增加,材料的阻尼不断增加,这时系统由多周期或拟周期或混沌运动变为周期l运动,因此,材料参数的增加有利于结构的稳定性.综合使用非线性动力学中的各种经典数值方法,揭示了非线性粘弹性Timoshenko梁丰富的动力学行为.用数值方法比较了l阶和2阶截断系统的动力学行为,发现它们定性相同,但定量性质略有偏差,例如,2阶截断的分叉临界载荷略高于l阶截断的结果,说明1阶Galerkin截断系统可能是一个偏于安全的简化模型. (5)利用分数导数型Lead~an本构关系建立了小变形情况下Timoshenko梁的控制方程,然后用Galerkin方法简化了简支梁的数学模型,得到了关于挠度和转角的具有弱奇异性的积分一微分方程组.利用分数积分的计算方法对控制方程进行求解.考察了载荷参数和材料参数对梁动力响应的影响,随着载荷的增具有分数导数型本构关系的粘弹性结构的静动力学行为分析加,系统由周期1运动发生分叉,变为多周期或拟周期或混沌运动相间出现的复杂状态;随着分数导数参数的增加,材料的阻尼不断增加,系统由多周期或拟周期或混沌运动变为周期l 运动,有利于结构的稳定性.综合使用非线性动力学中的经典方法,揭示了非线性粘弹性Timoshenko梁丰富复杂的动力学行为.比较了1阶和2阶Galerkin截断简化系统的动力学行为,发现它们定性相同.。

饱和土中非完全黏结管桩纵向振动特性研究

饱和土中非完全黏结管桩纵向振动特性研究

饱和土中非完全黏结管桩纵向振动特性研究作者:官文杰吴文兵蒋国盛梁荣柱刘浩来源:《湖南大学学报·自然科学版》2021年第01期摘要:基于Biot动力固结方程和Kelvin模型,考虑了土体三维波动效应及土塞与管桩之间的小变形相对滑移,研究了饱和土中非完全黏结管桩的纵向振动特性. 首先,引入势函数,结合桩侧土及土塞的初始和边界条件,采用Laplace变换技术、Helmholtz分解法及分离变量法,分别求解出桩侧土和土塞的纵向振动解. 结合桩土系统的耦合条件,进一步求解出管桩顶部的复刚度、速度响应频域解析解及速度响应时域半解析解. 将本文解分别退化为实心桩解和无相对滑移解,并与已有研究进行对比,验证了本文解的合理性. 然后,采用参数分析法初步确定了Kelvin模型参数的合理取值区间. 最后,分别分析了管桩桩长和土塞的渗透系数、孔隙率、剪切模量以及黏性阻尼系数对饱和土中非完全黏结管桩纵向振动特性的影响规律. 研究结果表明,桩长越短,土塞与管桩之间的黏结程度对饱和土中非完全黏结管桩纵向振动特性的影响越明显;土塞的孔隙率和黏性阻尼系数对饱和土中非完全黏结管桩的纵向振动特性有明显影响,土塞的剪切模量和渗透系数对饱和土中非完全黏结管桩的纵向振动特性的影响较小,可以忽略不计.关键词:饱和土;端承管桩;Biot动力固结方程;Kelvin模型;相对滑移中图分类号:TU 473 文献标志码:A文章编号:1674—2974(2021)01—0046—13Abstract:Based on the Biot dynamic consolidation equation and the Kelvin model, the vertical vibration characteristics of the incompletely bonded pipe pile in saturated soil are investigated by considering the three dimensional effect of soil and the relative slip between the soil plug and pipe pile. Firstly, by introducing the potential functions and combining with the initial conditions and boundary conditions of the pile surrounding soil and soil plug, the vertical vibration solutions of the pile surrounding soil and soil plug are obtained by the Laplace transform method, Helmholtz decomposition method and separation variable method, respectively. Then, combining with the coupling conditions of pile-soil system, the complex stiffness, the frequency domain solution of the velocity and the semi-analytical solution of the velocity in the time domain of pipe pile top are obtained. Next, the degenerate solutions of this paper are compared with the corresponding existing solution to verify the rationality of the solution of this paper. Similarly, a parametric sensitivity analysis of the Kelvin model is conducted to preliminarily obtain the suitable values of the parameters of Kelvin model. Finally, the influence of the length of pipe pile, the permeability coefficient,porosity, shear modulus and viscous damping coefficient of soil plug on the vertical vibration characteristics of the incompletely bonded pipe pile in saturated soil are studied. The results show that, the shorter length of pipe pile leads to more obvious influence of the degree of bond between the soil plug and pipe pile on the vertical vibration characteristics of pipe pile in the saturated soil. The porosity and viscous damping coefficient of the soil plug have obvious influence on the vertical vibration characteristics of incompletely bonded pipe pile in saturated soil, and the influence of shear modulus and permeability coefficient of soil plug are too small to be neglected.Key words:saturated soil;end-bearing pipe pile;Biot dynamic consolidation equation;Kelvin model;relative slippage基桩动力特性一直是工程界的热点问题之一[1-2].随着我国海洋强国战略的推行,各类大直径管桩凭各自的特点和优点而被广泛应用于高桩码头、海洋平台、跨海桥梁、风电机组、输电塔等海洋工程中. 在大直径开口管桩沉桩过程中,管桩内部会形成土塞,与桩侧土相比,土塞由于受到管桩内壁的约束,使土塞与管桩内壁间的相互作用更加复杂. 国内学者针对大直径管桩的静动力特性展开了大量的研究,刘汉龙等[3-4]提出了振动沉模现浇混凝土管桩(Large Diameter Pipe Pile by using Cast-in-place Concrete,PCC)技术,并对其静动特性展开了一系列的理论及模型试验研究[5-6]. 基于刘汉龙等的研究,费康等[7-8]对PCC桩的单桩承载性能、荷载传递机理及其在低应变检测中的三维效应等问题进行了研究. Ding等[9-10]针对低应变检测法在PCC桩中的适用性和管桩的纵向振动特性等问题进行了研究. Zheng等[11-12]研究了不同土体本构模型下管桩的纵向及水平振动特性. 吴文兵等[13-17]考虑了土塞质量的影响及土塞与管桩之间位移的相位差,提出了附加质量模型来模拟土塞与管桩之间的动力相互作用,采用模型试验对该理论模型进行了验证,并系统研究了管桩的纵向及扭转振动特性,研究表明单相介质中管桩与土塞之间存在相对位移差的假设具有合理性.但上述研究均将土体视为单相介质,在海洋工程中,土体处于完全饱和,不能简单地假设为单相介质,而是由固相-液相组成的两相介质. 刘林超等[18]结合饱和多孔介质理论与平面应变模型,研究了成层饱和土中管桩的纵向振动特性;郑长杰等[19]基于Biot动力固结方程,研究了饱和土中管桩的水平振动特性;靳建明等[20]基于Biot动力固结方程,研究了饱和土中管桩的扭转振动特性;Zheng等[21]研究了土体的横观各向同性对饱和土中管桩的扭转振动特性影响规律. 以上关于饱和土体中管桩动力特性的研究均假设桩侧土和土塞与管桩之间完全接触,无相对滑移. 然而,当管桩沉桩时土塞呈完全闭塞状态,土塞与管桩黏结程度极强,此假设符合工程实际,但当管桩沉桩时土塞呈非完全闭塞状态,此假设实际上夸大了管桩与土塞之间的相互作用. 与桩侧土体相比,土塞的质量较小,当管桩沉桩时土塞呈非完全闭塞状态,在动力作用下,土塞与管桩的接触面之间更容易产生相对滑移,且与单相介质土相比,由于水的存在,也更易使土塞与管桩之间产生小变形相对滑移. 因此,在研究饱和土中管桩动力特性时,考虑土塞与管桩之间的相对滑移显得十分必要. 本文基于Biot动力固结方程,考虑土体三维波动效应,采用与频率无关的Kelvin模型模拟土塞与管桩之间的相对滑移,研究了饱和土中非完全黏结管桩的纵向振动特性.1 计算模型及基本假设饱和土中非完全黏结管桩的纵向振动特性研究模型简图如图1 所示. 管桩桩长为H,外、内半径分别为r1、r2,管桩顶部作用有任意激振荷载p(t);采用线性弹簧和线性阻尼器并联组成的Kelvin模型来模拟土塞与管桩之间的相对滑移,动刚度系数和动阻尼系数分别用kf和cf表示.桩土振动系统满足如下基本假设:1)桩侧土和土塞均为均质、各向同性的两相饱和介质,管桩底部为刚性支撑.2)桩土系统纵向耦合振动为小变形,管桩外壁与桩侧土完全接触;采用Kelvin模型来模拟土塞与管桩之间存在的小变形相对滑移.3)管桩为一维、弹性、圆环形均质杆件.2 桩土系统控制方程的建立2.1 土体振动方程及求解根据Biot提出的饱和土动力固结方程,轴对称条件下土体的纵向振动方程可表示为:4 Kelvin模型参数分析根据Randolph等[25]提出的桩侧土动态Winkler模型经验公式:kf = 2.75G/2πr,cf =G/Vs,结合土塞的基本参数可得:kf = 1.46 × 107 N·m-3,cf = 1.40 × 105 N·m-3·s. 基于附加质量模型,Wu等[14]通过模型桩试验,反演出管桩纵向振动时附加质量模型中的Voigt模型参数的取值:kf = 7.85 × 105 N·m-3,cf = 1.53 × 105 N·m-3·s. 土塞受到管桩内壁的约束,其边界条件与桩侧土边界条件不同,因此连接土塞与管桩的Kelvin模型参数值不能仅根据Randolph等[25]提出Winkler模型经验公式选取. 已有研究表明,桩土相互作用阻尼系数在饱和土中的取值小于单相介质中的取值[26],因此本文中Kelvin模型参数也不能仅参照Wu等[14]研究取值. 综上分析,Kelvin模型动刚度和动阻尼系数的上限值可初步设置为:kf = 1.46×107 N·m-3,cf = 1.53 × 105 N·m-3·s.首先,分析动刚度系数kf对饱和土中管桩纵向振动特性的影响. 动阻尼系数cf = 0,动刚度系数kf分别设置为1 × 102、1 × 104、1 × 106、1 × 107、1.46 × 107 N·m-3. 由图5可知,当kf ≤ 1.46 × 107 N·m-3时,随着动刚度系数的增大,管桩顶部动刚度、动阻尼、速度频域及时域曲线均基本一致. 以上现象表明,动刚度系数在該区间内变化时,kf对管桩纵向振动特性的影响可以忽略. 因此,后续分析中,动刚度系数参照Wu等[14]研究取值:kf = 7.85×105 N·m-3.Key words:saturated soil;end-bearing pipe pile;Biot dynamic consolidation equation;Kelvin model;relative slippage基桩动力特性一直是工程界的热点问题之一[1-2].随着我国海洋强国战略的推行,各类大直径管桩凭各自的特点和优点而被广泛应用于高桩码头、海洋平台、跨海桥梁、风电机组、输电塔等海洋工程中. 在大直径开口管桩沉桩过程中,管桩内部会形成土塞,与桩侧土相比,土塞由于受到管桩内壁的约束,使土塞与管桩内壁间的相互作用更加复杂. 国内学者针对大直径管桩的静动力特性展开了大量的研究,刘汉龙等[3-4]提出了振动沉模现浇混凝土管桩(Large Diameter Pipe Pile by using Cast-in-place Concrete,PCC)技术,并对其静动特性展开了一系列的理论及模型试验研究[5-6]. 基于刘汉龙等的研究,费康等[7-8]对PCC桩的单桩承载性能、荷载传递机理及其在低应变检测中的三维效应等问题进行了研究. Ding等[9-10]针对低应变检测法在PCC桩中的适用性和管桩的纵向振动特性等问题进行了研究. Zheng等[11-12]研究了不同土體本构模型下管桩的纵向及水平振动特性. 吴文兵等[13-17]考虑了土塞质量的影响及土塞与管桩之间位移的相位差,提出了附加质量模型来模拟土塞与管桩之间的动力相互作用,采用模型试验对该理论模型进行了验证,并系统研究了管桩的纵向及扭转振动特性,研究表明单相介质中管桩与土塞之间存在相对位移差的假设具有合理性.但上述研究均将土体视为单相介质,在海洋工程中,土体处于完全饱和,不能简单地假设为单相介质,而是由固相-液相组成的两相介质. 刘林超等[18]结合饱和多孔介质理论与平面应变模型,研究了成层饱和土中管桩的纵向振动特性;郑长杰等[19]基于Biot动力固结方程,研究了饱和土中管桩的水平振动特性;靳建明等[20]基于Biot动力固结方程,研究了饱和土中管桩的扭转振动特性;Zheng等[21]研究了土体的横观各向同性对饱和土中管桩的扭转振动特性影响规律. 以上关于饱和土体中管桩动力特性的研究均假设桩侧土和土塞与管桩之间完全接触,无相对滑移. 然而,当管桩沉桩时土塞呈完全闭塞状态,土塞与管桩黏结程度极强,此假设符合工程实际,但当管桩沉桩时土塞呈非完全闭塞状态,此假设实际上夸大了管桩与土塞之间的相互作用. 与桩侧土体相比,土塞的质量较小,当管桩沉桩时土塞呈非完全闭塞状态,在动力作用下,土塞与管桩的接触面之间更容易产生相对滑移,且与单相介质土相比,由于水的存在,也更易使土塞与管桩之间产生小变形相对滑移. 因此,在研究饱和土中管桩动力特性时,考虑土塞与管桩之间的相对滑移显得十分必要. 本文基于Biot动力固结方程,考虑土体三维波动效应,采用与频率无关的Kelvin模型模拟土塞与管桩之间的相对滑移,研究了饱和土中非完全黏结管桩的纵向振动特性.1 计算模型及基本假设饱和土中非完全黏结管桩的纵向振动特性研究模型简图如图1 所示. 管桩桩长为H,外、内半径分别为r1、r2,管桩顶部作用有任意激振荷载p(t);采用线性弹簧和线性阻尼器并联组成的Kelvin模型来模拟土塞与管桩之间的相对滑移,动刚度系数和动阻尼系数分别用kf和cf表示.桩土振动系统满足如下基本假设:1)桩侧土和土塞均为均质、各向同性的两相饱和介质,管桩底部为刚性支撑.2)桩土系统纵向耦合振动为小变形,管桩外壁与桩侧土完全接触;采用Kelvin模型来模拟土塞与管桩之间存在的小变形相对滑移.3)管桩为一维、弹性、圆环形均质杆件.2 桩土系统控制方程的建立2.1 土体振动方程及求解根据Biot提出的饱和土动力固结方程,轴对称条件下土体的纵向振动方程可表示为:4 Kelvin模型参数分析根据Randolph等[25]提出的桩侧土动态Winkler模型经验公式:kf = 2.75G/2πr,cf =G/Vs,结合土塞的基本参数可得:kf = 1.46 × 107 N·m-3,cf = 1.40 × 105 N·m-3·s. 基于附加质量模型,Wu等[14]通过模型桩试验,反演出管桩纵向振动时附加质量模型中的Voigt模型参数的取值:kf = 7.85 × 105 N·m-3,cf = 1.53 × 105 N·m-3·s. 土塞受到管桩内壁的约束,其边界条件与桩侧土边界条件不同,因此连接土塞与管桩的Kelvin模型参数值不能仅根据Randolph等[25]提出Winkler模型经验公式选取. 已有研究表明,桩土相互作用阻尼系数在饱和土中的取值小于单相介质中的取值[26],因此本文中Kelvin模型参数也不能仅参照Wu等[14]研究取值. 综上分析,Kelvin模型动刚度和动阻尼系数的上限值可初步设置为:kf = 1.46×107 N·m-3,cf = 1.53 × 105 N·m-3·s.首先,分析动刚度系数kf对饱和土中管桩纵向振动特性的影响. 动阻尼系数cf = 0,动刚度系数kf分别设置为1 × 102、1 × 104、1 × 106、1 × 107、1.46 × 107 N·m-3. 由图5可知,当kf ≤ 1.46 × 107 N·m-3时,随着动刚度系数的增大,管桩顶部动刚度、动阻尼、速度频域及时域曲线均基本一致. 以上现象表明,动刚度系数在该区间内变化时,kf对管桩纵向振动特性的影响可以忽略. 因此,后续分析中,动刚度系数参照Wu等[14]研究取值:kf = 7.85×105 N·m-3.Key words:saturated soil;end-bearing pipe pile;Biot dynamic consolidation equation;Kelvin model;relative slippage基桩动力特性一直是工程界的热点问题之一[1-2].随着我国海洋强国战略的推行,各类大直径管桩凭各自的特点和优点而被广泛应用于高桩码头、海洋平台、跨海桥梁、风电机组、输电塔等海洋工程中. 在大直径开口管桩沉桩过程中,管桩内部会形成土塞,与桩侧土相比,土塞由于受到管桩内壁的约束,使土塞与管桩内壁间的相互作用更加复杂. 国内学者针对大直径管桩的静动力特性展开了大量的研究,刘汉龙等[3-4]提出了振动沉模现浇混凝土管桩(Large Diameter Pipe Pile by using Cast-in-place Concrete,PCC)技术,并对其静动特性展开了一系列的理论及模型试验研究[5-6]. 基于刘汉龙等的研究,费康等[7-8]对PCC桩的单桩承载性能、荷载传递机理及其在低应变检测中的三维效应等问题进行了研究. Ding等[9-10]针对低应变检测法在PCC桩中的适用性和管桩的纵向振动特性等问题进行了研究. Zheng等[11-12]研究了不同土体本构模型下管桩的纵向及水平振动特性. 吴文兵等[13-17]考虑了土塞质量的影响及土塞与管桩之间位移的相位差,提出了附加质量模型来模拟土塞与管桩之间的动力相互作用,采用模型试验对该理论模型进行了验证,并系统研究了管桩的纵向及扭转振动特性,研究表明单相介质中管桩与土塞之间存在相对位移差的假设具有合理性.但上述研究均将土体视为单相介质,在海洋工程中,土体处于完全饱和,不能简单地假设为单相介质,而是由固相-液相组成的两相介质. 刘林超等[18]结合饱和多孔介质理论与平面应变模型,研究了成层饱和土中管桩的纵向振动特性;郑长杰等[19]基于Biot动力固结方程,研究了饱和土中管桩的水平振动特性;靳建明等[20]基于Biot动力固结方程,研究了饱和土中管桩的扭转振动特性;Zheng等[21]研究了土体的横观各向同性对饱和土中管桩的扭转振动特性影响规律. 以上关于饱和土体中管桩动力特性的研究均假设桩侧土和土塞与管桩之间完全接触,无相对滑移. 然而,当管桩沉桩时土塞呈完全闭塞状态,土塞与管桩黏结程度极强,此假设符合工程实际,但当管桩沉桩时土塞呈非完全闭塞状态,此假设实际上夸大了管桩与土塞之间的相互作用. 与桩侧土体相比,土塞的质量较小,当管桩沉桩时土塞呈非完全閉塞状态,在动力作用下,土塞与管桩的接触面之间更容易产生相对滑移,且与单相介质土相比,由于水的存在,也更易使土塞与管桩之间产生小变形相对滑移. 因此,在研究饱和土中管桩动力特性时,考虑土塞与管桩之间的相对滑移显得十分必要. 本文基于Biot动力固结方程,考虑土体三维波动效应,采用与频率无关的Kelvin模型模拟土塞与管桩之间的相对滑移,研究了饱和土中非完全黏结管桩的纵向振动特性.1 计算模型及基本假设饱和土中非完全黏结管桩的纵向振动特性研究模型简图如图1 所示. 管桩桩长为H,外、内半径分别为r1、r2,管桩顶部作用有任意激振荷载p(t);采用线性弹簧和线性阻尼器并联组成的Kelvin模型来模拟土塞与管桩之间的相对滑移,动刚度系数和动阻尼系数分别用kf和cf表示.桩土振动系统满足如下基本假设:1)桩侧土和土塞均为均质、各向同性的两相饱和介质,管桩底部为刚性支撑.2)桩土系统纵向耦合振动为小变形,管桩外壁与桩侧土完全接触;采用Kelvin模型来模拟土塞与管桩之间存在的小变形相对滑移.3)管桩为一维、弹性、圆环形均质杆件.2 桩土系统控制方程的建立2.1 土体振动方程及求解根据Biot提出的饱和土动力固结方程,轴对称条件下土体的纵向振动方程可表示为:4 Kelvin模型参数分析根据Randolph等[25]提出的桩侧土动态Winkler模型经验公式:kf = 2.75G/2πr,cf =G/Vs,结合土塞的基本参数可得:kf = 1.46 × 107 N·m-3,cf = 1.40 × 105 N·m-3·s. 基于附加质量模型,Wu等[14]通过模型桩试验,反演出管桩纵向振动时附加质量模型中的Voigt模型参数的取值:kf = 7.85 × 105 N·m-3,cf = 1.53 × 105 N·m-3·s. 土塞受到管桩内壁的约束,其边界条件与桩侧土边界条件不同,因此连接土塞与管桩的Kelvin模型参数值不能仅根据Randolph等[25]提出Winkler模型经验公式选取. 已有研究表明,桩土相互作用阻尼系数在饱和土中的取值小于单相介质中的取值[26],因此本文中Kelvin模型参数也不能仅参照Wu等[14]研究取值. 综上分析,Kelvin模型动刚度和动阻尼系数的上限值可初步设置为:kf = 1.46×107 N·m-3,cf = 1.53 × 105 N·m-3·s.首先,分析动刚度系数kf对饱和土中管桩纵向振动特性的影响. 动阻尼系数cf = 0,动刚度系数kf分别设置为1 × 102、1 × 104、1 × 106、1 × 107、1.46 × 107 N·m-3. 由图5可知,当kf ≤ 1.46 × 107 N·m-3时,随着动刚度系数的增大,管桩顶部动刚度、动阻尼、速度频域及时域曲线均基本一致. 以上现象表明,动刚度系数在该区间内变化时,kf对管桩纵向振动特性的影响可以忽略. 因此,后续分析中,动刚度系数参照Wu等[14]研究取值:kf = 7.85×105 N·m-3.Key words:saturated soil;end-bearing pipe pile;Biot dynamic consolidation equation;Kelvin model;relative slippage基桩动力特性一直是工程界的热点问题之一[1-2].随着我国海洋强国战略的推行,各类大直径管桩凭各自的特点和优点而被广泛应用于高桩码头、海洋平台、跨海桥梁、风电机组、输电塔等海洋工程中. 在大直径开口管桩沉桩过程中,管桩内部会形成土塞,与桩侧土相比,土塞由于受到管桩内壁的约束,使土塞与管桩内壁间的相互作用更加复杂. 国内学者针对大直径管桩的静动力特性展开了大量的研究,刘汉龙等[3-4]提出了振動沉模现浇混凝土管桩(Large Diameter Pipe Pile by using Cast-in-place Concrete,PCC)技术,并对其静动特性展开了一系列的理论及模型试验研究[5-6]. 基于刘汉龙等的研究,费康等[7-8]对PCC桩的单桩承载性能、荷载传递机理及其在低应变检测中的三维效应等问题进行了研究. Ding等[9-10]针对低应变检测法在PCC桩中的适用性和管桩的纵向振动特性等问题进行了研究. Zheng等[11-12]研究了不同土体本构模型下管桩的纵向及水平振动特性. 吴文兵等[13-17]考虑了土塞质量的影响及土塞与管桩之间位移的相位差,提出了附加质量模型来模拟土塞与管桩之间的动力相互作用,采用模型试验对该理论模型进行了验证,并系统研究了管桩的纵向及扭转振动特性,研究表明单相介质中管桩与土塞之间存在相对位移差的假设具有合理性.但上述研究均将土体视为单相介质,在海洋工程中,土体处于完全饱和,不能简单地假设为单相介质,而是由固相-液相组成的两相介质. 刘林超等[18]结合饱和多孔介质理论与平面应变模型,研究了成层饱和土中管桩的纵向振动特性;郑长杰等[19]基于Biot动力固结方程,研究了饱和土中管桩的水平振动特性;靳建明等[20]基于Biot动力固结方程,研究了饱和土中管桩的扭转振动特性;Zheng等[21]研究了土体的横观各向同性对饱和土中管桩的扭转振动特性影响规律. 以上关于饱和土体中管桩动力特性的研究均假设桩侧土和土塞与管桩之间完全接触,无相对滑移. 然而,当管桩沉桩时土塞呈完全闭塞状态,土塞与管桩黏结程度极强,此假设符合工程实际,但当管桩沉桩时土塞呈非完全闭塞状态,此假设实际上夸大了管桩与土塞之间的相互作用. 与桩侧土体相比,土塞的质量较小,当管桩沉桩时土塞呈非完全闭塞状态,在动力作用下,土塞与管桩的接触面之间更容易产生相对滑移,且与单相介质土相比,由于水的存在,也更易使土塞与管桩之间产生小变形相对滑移. 因此,在研究饱和土中管桩动力特性时,考虑土塞与管桩之间的相对滑移显得十分必要. 本文基于Biot动力固结方程,考虑土体三维波动效应,采用与频率无关的Kelvin模型模拟土塞与管桩之间的相对滑移,研究了饱和土中非完全黏结管桩的纵向振动特性.1 计算模型及基本假设饱和土中非完全黏结管桩的纵向振动特性研究模型简图如图1 所示. 管桩桩长为H,外、内半径分别为r1、r2,管桩顶部作用有任意激振荷载p(t);采用线性弹簧和线性阻尼器并联组成的Kelvin模型来模拟土塞与管桩之间的相对滑移,动刚度系数和动阻尼系数分别用kf和cf表示.桩土振动系统满足如下基本假设:1)桩侧土和土塞均为均质、各向同性的两相饱和介质,管桩底部为刚性支撑.2)桩土系统纵向耦合振动为小变形,管桩外壁与桩侧土完全接触;采用Kelvin模型来模拟土塞与管桩之间存在的小变形相对滑移.3)管桩为一维、弹性、圆环形均质杆件.2 桩土系统控制方程的建立2.1 土体振动方程及求解根据Biot提出的饱和土动力固结方程,轴对称条件下土体的纵向振动方程可表示为:4 Kelvin模型参数分析根据Randolph等[25]提出的桩侧土动态Winkler模型经验公式:kf = 2.75G/2πr,cf =G/Vs,结合土塞的基本参数可得:kf = 1.46 × 107 N·m-3,cf = 1.40 × 105 N·m-3·s. 基于附加质量模型,Wu等[14]通过模型桩试验,反演出管桩纵向振动时附加质量模型中的Voigt模型参数的取值:kf = 7.85 × 105 N·m-3,cf = 1.53 × 105 N·m-3·s. 土塞受到管桩内壁的约束,其边界条件与桩侧土边界条件不同,因此连接土塞与管桩的Kelvin模型参数值不能仅根据Randolph等[25]提出Winkler模型经验公式选取. 已有研究表明,桩土相互作用阻尼系数在饱和土中的取值小于单相介质中的取值[26],因此本文中Kelvin模型参数也不能仅参照Wu等[14]研究取值. 综上分析,Kelvin模型动刚度和动阻尼系数的上限值可初步设置为:kf = 1.46×107 N·m-3,cf = 1.53 × 105 N·m-3·s.首先,分析动刚度系数kf对饱和土中管桩纵向振动特性的影响. 动阻尼系数cf = 0,动刚度系数kf分别设置为1 × 102、1 × 104、1 × 106、1 × 107、1.46 × 107 N·m-3. 由图5可知,当kf ≤ 1.46 × 107 N·m-3时,随着动刚度系数的增大,管桩顶部动刚度、动阻尼、速度频域及时域曲线均基本一致. 以上现象表明,动刚度系数在该区间内变化时,kf对管桩纵向振动特性的影响可以忽略. 因此,后续分析中,动刚度系数参照Wu等[14]研究取值:kf = 7.85×105 N·m-3.Key words:saturated soil;end-bearing pipe pile;Biot dynamic consolidation equation;Kelvin model;relative slippage基桩动力特性一直是工程界的热点问题之一[1-2].随着我国海洋强国战略的推行,各类大直径管桩凭各自的特点和优点而被广泛应用于高桩码头、海洋平台、跨海桥梁、风电机组、输电塔等海洋工程中. 在大直径开口管桩沉桩过程中,管桩内部会形成土塞,与桩侧土相比,土塞由于受到管桩内壁的约束,使土塞与管桩内壁间的相互作用更加复杂. 国内学者针对大直径管桩的静动力特性展开了大量的研究,刘汉龙等[3-4]提出了振动沉模现浇混凝土管桩(Large Diameter Pipe Pile by using Cast-in-place Concrete,PCC)技术,并对其静动特性展开了一系列的理论及模型试验研究[5-6]. 基于刘汉龙等的研究,费康等[7-8]对PCC桩的单桩承载性能、荷载传递机理及其在低应变检测中的三维效应等问题进行了研究. Ding等[9-10]针对低应变检测法在PCC桩中的适用性和管桩的纵向振动特性等问题进行了研究. Zheng等[11-12]研究了不同土体本构模型下管桩的纵向及水平振动特性. 吴文兵等[13-17]考虑了土塞质量的影响及土塞与管桩之间位移的相位差,提出了附加质量模型来模拟土塞与管桩之间的动力相互作用,采用模型试验对该理论模型进行了验证,并系统研究了管桩的纵向及扭转振动特性,研究表明单相介质中管桩与土塞之间存在相对位移差的假设具有合理性.但上述研究均将土体视为单相介质,在海洋工程中,土体处于完全饱和,不能简单地假设为单相介质,而是由固相-液相组成的两相介质. 刘林超等[18]结合饱和多孔介质理论与平面。

分数导数描述的层状饱和土中考虑扰动效应的直桩垂直阻抗

分数导数描述的层状饱和土中考虑扰动效应的直桩垂直阻抗

摘 要:为了计算考虑施工扰动效应的单桩垂直阻抗,基于饱和多孔介质理论及分数导数理论对地基的复刚度传
递多圈层平面应变模型进行改进,计算了径向非均质的桩周饱和土对桩身的垂直动刚度 。其次基于Rayleigh-Love杆模
型建立了考虑桩段横向振动效应的轴向振动微分方程,并利用传递矩阵法求解得到了层状饱和土中考虑土体扰动效应的
桩顶垂直阻抗的半解析解。对考虑桩周土扰动效应下桩顶垂直阻抗的影响因素进行了参数化分析,研究表明:①桩顶垂 直阻抗的共振峰值会随着分数导数阶数的增大而减小,并且该效应会随着外荷载激振频率的增大而越发明显; ②对于如 砂砾、粗砂、细砂等渗透系数较大的饱和土应考虑土体中流体惯性效应对桩顶垂直阻抗的影响; ③与地基表层覆盖软土相 比,表层覆盖硬土能在外激振荷载较低时提高桩顶的动刚度系数,在高频时降低系统的共振效应。
关键词:桩土相互作用;饱和土;垂直阻抗;分数导数;扰动效应
中图分类号:TU470; O347
文献标志码:A
DOI : 10. 13465/j. .nki. 2020.04.024
Vertical impeSancc of a straight pile embeedee in distu^den layereS satrratee soil descrinee by fractional viscoelastic model
WANG Ju/,2 , GAO Yufeng2
(1. Colleae of Mechanical & Electrical Engineering, Hohal University, Changzhou 213022, China; 2. Key Laboratom of Ministry of Education for Geomechanics and Embankment Engineering, Hohal University, Nanjing 210098, China)

三种分形和分数阶导数阻尼振动模型的比较研究

三种分形和分数阶导数阻尼振动模型的比较研究

第5期
张晓棣等: 三种分形 和分数阶导数阻尼振动模型的比较研究
) 497 )
符合这一观点, 这些现象表现出记忆性、路径依赖等 特点, 并且其本构关系不满足各种标准的梯度
率[ 6, 7] . 这使得许多学 者[ 6 10] 利用分形导数、分数阶
导数及正定分数阶导数等非传统数学方法描述具有
时间依赖性的力学行为.
时间分数阶导数包含积分卷积算子, 积分项充 分体现了力学过程的历史依赖性, 是描述记忆性过 程的有力数学工具[ 6 10] , 同时分数阶导数可 以描述
粘弹性阻尼的分数次幂频率依赖. 近几十年来, 许多 学者[ 11 14] 从事分数阶导数阻尼振动模型的研究. 其 中 Bag ley、T orvik ( 1983) 及 Ro ssikhin、Shit ikova ( 1997) 首先利用分数阶导数模型描述粘弹性介质中 的振子阻尼, 得到分数阶导数阻尼振动 方程[ 14] . 除 分数阶导数外, 分形导数可 由尺度变换[ 15, 16] 得到, 用于描述分形尺度下的反常力学行为. 此外, 为了描 述声波在耗散介质中的依频率幂律的耗散特点, 文 献[ 1 7] 提出了正 定分数阶 导数, 并将其 引入声 波方 程. 不同于分数阶导数, 正定分数阶导数的傅立叶变 换具有正定性, 在频域更符合耗散的频率依赖特性. 本文首次将分形导数和正定分数阶导数引入阻尼振 动方程, 描述粘弹性介质中的阻尼振动过程. 同时, 通过分析分形、分数阶以及正定分数阶阻尼振动模 型的解析解和数值解, 本文首次对三种模型所描述 的力学过程进行了比较分析.
* 中国科学院 声场与声信息国家重点实验室 开放基金项目和国家自然科学基金项目( 10774038) 资助. 2008 09 16 收到第 1 稿, 2009 05 06 收到修改稿.

成层饱和土中桩纵向振动特性研究及应用

成层饱和土中桩纵向振动特性研究及应用

成层饱和土中桩纵向振动特性研究及应用
李强;王奎华
【期刊名称】《工程力学》
【年(卷),期】2007(24)10
【摘要】采用Winkler地基模拟土层间的相互作用,建立了三维轴对称条件下饱和成层土中弹性支承桩纵向振动的简化模型,通过势函数分解和分离变量方法得到饱和土层的振动形式解,进而利用桩土完全接触条件求解出任一桩段的耦合振动解,根据复阻抗传递原理得出桩顶频域响应解析解和时域响应半解析解,在此基础上,分析了分层模型的合理性以及土层参数对桩顶动力响应的影响,最后结合工程实例对比了分层模型和单层模型,结果表明,采用分层模型可以取得更好的拟合效果。

【总页数】6页(P144-149)
【关键词】岩土工程;桩振动;饱和土;弹性支承桩;动力响应;渗透性
【作者】李强;王奎华
【作者单位】浙江海洋学院土木工程系;浙江大学建工学院岩土所
【正文语种】中文
【中图分类】TU311.3;TU473.12
【相关文献】
1.成层土中桩的纵向振动理论研究及应用 [J], 王腾;王奎华;谢康和
2.饱和土中端承桩纵向振动特性研究 [J], 李强;王奎华;谢康和
3.成层非饱和土中桩的纵向振动特性分析 [J], 张智卿;王奎华;谢康和;周开茂
4.成层粘弹性土中桩土耦合纵向振动时域响应研究 [J], 胡昌斌;黄晓明
5.单相-饱和成层土中管桩纵向振动数值分析 [J], 王明珠
因版权原因,仅展示原文概要,查看原文内容请购买。

层状地基中刚柔性承台群桩基础竖向振动特性研究的开题报告

层状地基中刚柔性承台群桩基础竖向振动特性研究的开题报告

层状地基中刚柔性承台群桩基础竖向振动特性研究的开题报告一、研究背景与意义近年来,城市化进程不断加快,建筑物越来越高、越来越重,对地基承载能力和稳定性提出了更高的要求。

桩基础是一种广泛应用于高层建筑和大型深基坑工程中的基础形式,具有承载能力高、抗侧力能力强等特点,是大型建筑物的首选基础形式。

然而,桩基础也面临一些挑战,如土体的非均匀性以及建筑物在地震等自然灾害下产生竖向振动会对桩基础的稳定性和承载能力造成影响。

因此,研究桩基础竖向振动特性,对于完善桩基础设计、提高建筑物抗震能力和安全性,具有重要意义。

本文将研究层状地基中刚柔性承台群桩基础竖向振动特性,主要包括以下研究内容:(1)桥墩的振动特性首先,将对刚柔性承台群桩基础系统进行动力响应分析,研究群桩基础系统的振动特性。

研究不同刚度比的刚柔性承台群桩基础系统的共振频率、振幅等参数,为后续研究奠定基础。

(2)桥梁的振动特性然后,建立层状地基与刚柔性承台群桩基础系统的有限元数值模型,研究在不同铺设方式下背填土对桩基础系统的影响。

通过有限元分析,探讨背填土的软硬度对桥墩的振动特性的影响,并对桥梁的整体稳定性进行分析。

(3)振动控制最后,针对层状地基中刚柔性承台群桩基础系统的振动特性,提出相应的振动控制方法。

通过有限元数值模拟,分析不同控制方法对系统的振动特性的影响,优化桩基础设计,提高桥梁的稳定性和抗震能力。

二、研究方法与技术路线(1)研究方法采用数值分析方法,建立层状地基与刚柔性承台群桩基础系统的有限元模型,并对系统进行建模和分析。

在模拟过程中,需要考虑土体的非均匀性、桩与土的粘结力和桩身自身的自振特性。

(2)技术路线①拟定研究方案和技术路线;②建立层状地基与刚柔性承台群桩基础系统的三维有限元模型;③分析系统的静力特性和动力响应特性;④探讨背填土的软硬度对桥墩的振动特性的影响;⑤提出相应的振动控制方法,验证其有效性。

三、预期研究结果通过研究层状地基中刚柔性承台群桩基础系统的竖向振动特性,本文预期达到以下研究成果:(1)分析不同刚度比的刚柔性承台群桩基础系统的共振频率、振幅等参数,为后续研究奠定基础;(2)探究背填土的非均匀性对桥墩的振动特性的影响,为桥梁稳定性分析提供参考;(3)提出相应的振动控制方法,通过数值模拟验证其有效性。

粘弹性土层中竖向振动放大系数的研究

粘弹性土层中竖向振动放大系数的研究

α =1−
(13)
固体相运动方程为
&&i + ρ f w &&i σ ij,j = ρu
(4)
渗流连续方程为
式中: ks , k b , kf 分别为土颗粒、土骨架以及孔隙 流体的体积模量。对不可压缩土颗粒 α = 1 ,当土颗 (5) 粒和孔隙流体都不可压缩时, α = 1 ,且 1/M = 0。
&ij δ ij + 2 µ vε &ij − δ ijαpf (3) σ ij = λeε ijδ ij + 2 µ eε ij + λ vε
式(8)~(12)中: λc = λe + α 2 M ;u,w 分别为土骨 架和流体的位移矢量; α ,M 可分别表示为
2 ks M= kd − kb ks − 1 k d = k s 1 + n k f kb ks
(21)
将边界条件代入式(14), (15)中可解得两类压缩 波的位移(数学算式):
u = u1 + u 2 δ 2 cos[k 2 ( L − z )] iω t e u 2 = −U 0 δ 1 − δ 2 cos(k 2 L) cos[k1 ( L − z )] u1 = U 0 δ 1 − δ 2 cos(k1 L)
Abstract:Based on Biot′s theory and the concept of homogeneous porous fluid,the function of vertical vibration amplification is described as a function of degree of saturation,soil properties,layer thickness and loading frequency. Numerical examples are given to illustrate the influence of saturation,soil properties,layer thickness, coefficient of viscoelasticity,and frequency on the motion amplification. The achieved results indicate that the influence of saturation,coefficient of viscoelasticity and layer thickness on the vertical vibration amplification are different. Some valuable conclusions are drawn. Key words: soil mechanics; dynamics; vibration; quasi-saturation; viscoelasticity; vertical vibration amplification 95.0%。在实践工程中,虽然处在地下水位线以下

粘弹性阻尼材料的分数导数模型的对比分析

粘弹性阻尼材料的分数导数模型的对比分析

・# (N ∃ t) + F (N ∃ t) ) # ( 2- Α 在上式中, 该时刻以前的所有时间段应变的影响 F (N ∃ t) 定义为: - Α G 1 ( ∃ t) ) N - Α] ・Χ( 0) { [ (N - 1) 1- Α+ ( - N + 1- Α F (N ∃ t) = ) # ( 2- Α
n- 1 t N

n t N

n∃ t
( 7) ( 8) ( 9) ( 10) ( 11) ( 12) ( 13)
- 1 1 1 ・ ・ ( ( ∃ t) Α Α - 1) Α (N - n + 1) Α21 1 1 1 N - Α + 1 1 1 ・ + ・ ・ d n = ( ) Α・ (N - n ) ΑΑ - 1 (N - n + 1) Α21 Α - 1 N ∃t ) ・# ( 1- Α ) = # ( 2- Α ) 可得到: 将 ( 12) 式代入 ( 3) 式, 并利用 ( 1- Α
( 3)
对于总的时间段 t= N ∃ t, 有 ∃ t= 则 ( 3) 式中的 I 的表达式: 采用 L eibn itz 准则, 有:
d Χ( Σ) Ω ( t) d Σ= d t 1 ( t- Σ) Α 则 ( 4) 式可以变换为:
n t N
d I= dt

(n -
Χ( Σ) d = 1) ∃ t ( t- Σ) Αd Σ d t
[2 ]
D [ Χ( t) ]=
Α
1 d ・ ( 1- Α ) dt Г
Χ( Σ) < 1 d Σ 0< Α ∫( tΣ)
0
t
Α
( 2)
) : G am a 函数 式中: # ( 1- Α . 为建立粘弹性阻尼器的有限元分析模型, 对分数导数模型进行分析如下:

分数导数粘弹性模型的矩形板的振动分析

分数导数粘弹性模型的矩形板的振动分析
pa a ee s r m tr .
Ke r s: i r t n a d wa e; a t n l v n mo e; a lc a s o ; ic ea t l ts p r mee s n u n e y wo d v b ai n v f ci a o r o Ke i d l L p a et n f r v s o lsi p ae ; a a tr f e c r m c il
2 中国矿 业大学 力学与建筑学院,江苏 徐 州 2 10 ) . 20 6
摘 要: 利用分数阶 Kei粘弹 性模 型, vn 建立 矩形薄板的动力学方程 , 并利用拉普 拉斯变换及其逆变换给 出四边简 支粘 弹性 薄板 的解析解 , 并着重分析在常值荷载作用下, 分数阶 Kei粘弹性模 型的分数 阶参数 、 性参数和模量参数 vn 粘 对挠度 的影响。结果表明, 随着粘性参数和分数 阶参数 的增 大, 粘弹性板 的挠度变小 ; 随着模量参数增大 , 弹性板的 粘
ZHAN G Y - n ,7 GA O Fe g ape g 2 n ,
( . tt Ke aot oyfr e meh nc d e d rru d n ier g C ia nvri 1 Sae yL b r tr o c a i a pUn ego n gn ei , hn ies y a oG s n De E n U t
o t i e y u ig La l c r n f r a d i v re a lc a s o m . h n u n e f t e fa t n l o d r p r me e , b an d b sn p a e t so m n n e r L p a e tn f r T e i f e c s o h c i a r e a a t r a t r l r o v s o i a a tr n ic st p r me e s a d mo u u a a tr o h e e t n o h a t n l r e v n v s o l si d l wi y d l s p me e s n t e d f ci f t e f ci a- d r Ke i ic e a t mo e t r l o r o o c h c n t n a r ay e . e r s l h w h t h e e t n o e v s o l si p ae e r a e t e i ce s g o o sa t o d we e a l z d Th e u t s o t a e d f c i f h ic e a t l tsd c e s s wi t n r a i f l n s t l o t c h h n t e ic s y p a ee s h v s o i a m t r ,wh l h e e t n o e v s o l si lt s i c e s s t h n r a i g o h d l s t r i t e d f c i f t ic e a t p ae n r a e wi t e i c e s f t e mo u u e l o h c h n

基于超弹性、分数导数和摩擦模型的碳黑填充橡胶隔振器动态建模

基于超弹性、分数导数和摩擦模型的碳黑填充橡胶隔振器动态建模

基于超弹性、分数导数和摩擦模型的碳黑填充橡胶隔振器动态建模潘孝勇;上官文斌;柴国钟;徐驰【期刊名称】《振动与冲击》【年(卷),期】2007(026)010【摘要】碳黑填充橡胶隔振器(以下简称"橡胶隔振器")的动态特性与预载、激振频率和激振振幅相关.实验测试了一橡胶隔振器的动态特性,建立了基于超弹性、分数导数和摩擦模型的橡胶隔振器动态特性的非线性模型,其中超弹性模型用于描述橡胶隔振器的弹性,分数导数模型用于表征橡胶隔振器动态特性的激振频率相关性,摩擦模型用于表征橡胶隔振器动态特性与激振振幅相关的特性,文中论述了建模方法和参数辨识方法.有限元分析获得橡胶隔振器的静态力-位移曲线,利用测试得到的橡胶隔振器在大振幅、低频激励下的力-位移关系,拟合得到橡胶隔振器动态模型中摩擦模型的参数,利用测试得到的橡胶隔振器在小振幅、高频激励下的力-位移关系,拟合得到橡胶隔振器动态模型中分数导数模型的参数.利用建立的模型和拟合得到的参数计算分析了橡胶隔振器动态特性的振幅相关性、频率相关性和预载相关性,并与实验结果进行了对比分析.分析结果表明,建立的模型可以较好的描述橡胶隔振器的动态特性.【总页数】6页(P6-10,15)【作者】潘孝勇;上官文斌;柴国钟;徐驰【作者单位】浙江工业大学,机械制造及自动化省部共建教育部重点实验室,杭州,310014;宁波拓普声学振动技术有限公司,宁波,315800;华南理工大学,汽车工程学院,广州,510641;浙江工业大学,机械制造及自动化省部共建教育部重点实验室,杭州,310014;宁波拓普声学振动技术有限公司,宁波,315800【正文语种】中文【中图分类】TK417.127【相关文献】1.基于分数阶导数的黏弹性悬架减振模型及其数值方法 [J], 李占龙;孙大刚;宋勇;刘付喜;赵树萍2.基于分数导数模型的粘弹性桩振动分析 [J], 刘林超;闫启方3.基于扫频响应反推黏弹性材料分数阶导数模型 [J], 孙伟;王茁;朱明伟4.基于分数导数粘弹性模型的地基梁位移分析 [J], 闫启方;王述超;刘磊5.采用粘弹性分数导数模型的橡胶隔振器动态特性的建模及应用 [J], 吴杰;上官文斌因版权原因,仅展示原文概要,查看原文内容请购买。

分数导数型粘弹性地基基础相互作用理论研究

分数导数型粘弹性地基基础相互作用理论研究

Full length articleTheoretical investigation of interaction between a rectangular plate and fractional viscoelastic foundationChengcheng Zhang a,Honghu Zhu a,b,*,Bin Shi a,b,Linchao Liu ca School of Earth Sciences and Engineering,Nanjing University,Nanjing210023,Chinab Nanjing University(Suzhou)High-Tech Institute,Suzhou215123,Chinac School of Civil Engineering,Xinyang Normal University,Xinyang464000,Chinaa r t i c l e i n f oArticle history:Received7December2013 Received in revised form15April2014Accepted24April2014 Available online24June2014Keywords:Viscoelastic foundationPlate deflectionGround settlementFractional derivativeMerchant modelRheologyLaplace transform a b s t r a c tThe interaction between plates and foundations is a typical problem encountered in geotechnical en-gineering.The long-term plate performance is highly dependent on the rheological characteristics of ground pared with conventional linear rheology,the fractional calculus-based theory is a more powerful mathematical tool that can address this issue.This paper proposes a fractional Merchant model (FMM)to investigate the time-dependent behavior of a simply supported rectangular plate on visco-elastic foundation.The correspondence principle involving Laplace transforms was employed to derive the closed-form solutions of plate response under uniformly distributed load.The plate deflection, bending moment,and foundation reaction calculated using the FMM were compared with the results obtained from the analogous elastic model(EM)and the standard Merchant model(SMM).It is shown that the upper and lower bound solutions of the FMM can be determined using the EM.In addition,a parametric study was performed to examine the influences of the model parameters on the time-dependent behavior of the plate e foundation interaction problem.The results indicate that a small fractional differential order corresponds to a plate resting on a sandy soil foundation,while the fractional differential order value should be increased for a clayey soil foundation.The long-term performance of a foundation plate can be accurately simulated by varying the values of the fractional differential order and the viscosity coefficient.The observations from this study reveal that the proposed fractional model has the capability to capture the variation of plate deflection over many decades of time.Ó2014Institute of Rock and Soil Mechanics,Chinese Academy of Sciences.Production and hosting byElsevier B.V.All rights reserved.1.IntroductionThe interaction between a loaded plate and the soil foundation is a typical problem in foundation and pavement engineering.To solve the plate e foundation interaction problem,the well-known Winkler’s foundation model is widely adopted(e.g.Matsunaga, 2000;Buczkowski and Torbacki,2001;Huang and Thambiratnam, 2002;Zhong and Zhang,2006).However,significant time-dependent phenomena of plates under surface loading have been observed infield,which were mainly induced by the rheological properties of ground soil.In the past few decades,the behavior of a plate resting on the viscoelastic foundation has been theoretically examined by numerous studies(e.g.Nassar,1981;Zaman et al., 1991;Sun,2003).In the1950s and1960s,the Maxwell model, the Kelvin e Voigt model,and the Merchant model are three commonly used rheological models.These simple viscoelastic models have only two or three parameters and therefore the pre-diction accuracy is fairly poor.More model parameters were needed to make the predictions more accurate,but difficulties in determining the parameter values arose(Chen et al.,2006).Gemant(1936)for thefirst time introduced the fractional constitutive models of viscoelastic materials.In the constitutive equations of the proposed models,the integer-order differential operators were replaced by fractional-order ones.Over the past few decades,the fractional derivative viscoelastic models have shown their powerfulness in describing viscoelastic behavior of materials (Welch et al.,1999;Mainardi,2012).Up to now,there have been a very limited number of studies that used the fractional calculus-based models to solve geotechnical problems(e.g.Atanackovic and Stankovic,2004;Dikmen,2005),especially the plate-*Corresponding author.Tel.:þ862583597888.E-mail address:zhh@(H.Zhu).Peer review under responsibility of Institute of Rock and Soil Mechanics,Chinese Academy ofSciences.1674-7755Ó2014Institute of Rock and Soil Mechanics,Chinese Academy of Sciences.Production and hosting by Elsevier B.V.All rights reserved./10.1016/j.jrmge.2014.04.007Contents lists available at ScienceDirect Journal of Rock Mechanics and Geotechnical Engineering journal homepage:www.rockgeo Journal of Rock Mechanics and Geotechnical Engineering6(2014)373e379foundation interaction problem.The main reason for this problem is the complexity involved in numerical analysis of fractional models.In the studies of Yin et al.(2007,2013),a single fractional derivative element was proposed to describe the rheological properties of soils and rocks under different loading conditions. Zhu et al.(2011,2012)established a fractional model by replacing the dashpot in the standard Kelvin e Voigt model with the fractional element.This model was used to analyze the ground deformation and the plate performance.One apparent drawback of this model is that it cannot account for the instantaneous deflection for a loaded plate on the viscoelastic foundation.Therefore,a more advanced fractional model with a reasonable number of parameters is necessary.In this paper,a fractional Merchant model(FMM)is proposed to describe the time-dependent plate e foundation interaction prob-lem.The solutions of plate deflection,bending moment,and foundation reaction are presented and compared with the calcu-lated results of elastic and standard viscoelastic models.Through the analyses of a numerical example,the effectiveness of this four-parameter model is verified.A parametric study is then undertaken to examine the influences of the model parameters on the pre-dicted results.2.Fractional Merchant model(FMM)2.1.Basics of fractional calculusThe n th derivative of a function f(t)is expressed as D n f(t)¼d n f(t)/d t n.If n is replaced by a fraction,this expression becomes a fractional derivative.Fractional calculus is usually expressed in terms of Riemann e Liouville definition.The Riemann e Liouville fractional integration of function f(t)of order v(Miller and Ross,1993)is defined as0DÀv t fðtÞ¼1GðvÞZ tðtÀxÞvÀ1fðxÞd xðReðvÞ>0;t>0Þ(1)where the subscripts0and t at the left and right sides of D refer to the limits of the integration;G(v)is the Gamma function with argument v.Let[a]be the smallest integer that exceeds a,the Riemann e Liouville fractional derivative of order a(Miller and Ross, 1993)isD a t fðtÞ¼0D½a t½0DÀv t fðtÞ ðReðaÞ>0;t>0Þ(2)where v¼[a]Àa>0.In the following derivation,the fractional derivative of the Riemann e Liouville type of order a is denoted as D a RL.2.2.Generalization of the FMMIn the theoretical rheology,the relationships between stress s(t) and strainε(t)of a spring and a dashpot can be expressed in terms of differential operators:sðtÞ¼ED0RLεðtÞεðtÞ¼h D1RLεðtÞ)(3)where E and h are the elastic modulus and viscosity coefficient, respectively.The fractional rheological models are on the basis of an element called“intermediate model”by Smit and de Vries(1970),or“spring-pot”by Koeller(1984).The fractional derivative element shown in Fig.1is represented by a diamond,which has been adopted by many scholars(Bagley and Torvik,1979;Welch et al.,1999;Dikmen, 2005).Let s¼h/E be the creep time,the constitutive equation of the fractional derivative element can be expressed assðtÞ¼E s a D aRLεðtÞð0a1Þ(4)where D a is the fractional differentiation defined by Eq.(2).It is noted that for a¼0,the model defined by Eq.(4)is a spring.In the case of a¼1,Eq.(4)can be the constitutive equation of a dashpot. The coefficient a is therefore considered to be a dimensionless parameter concerning the memory of materials(Koeller,1984).The Merchant model consists of a Kelvin e Voigt model and a spring connected in series.As shown in Fig.1,if the dashpot in the Kelvin e Voigt model is replaced by a fractional derivative element, the FMM is obtained.The stress e strain relationship of this model can be expressed asE0ÀD a RLþ1s a1ÁεðtÞ¼ÀD a RLþ1t a1ÁsðtÞ(5) where s1¼h/E1,t1¼s1=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi1þE0=E1ap.It is obvious that if a¼1,the FMM collapses to the standard Merchant model(SMM).3.Closed-form solutions using the fractional soil efoundation interaction modelAs shown in Fig.2,a rectangular plate rests on a fractional Merchant foundation with an average thickness of d.The plate is simply supported on all four edges and is subjected to a uniformly distributed load of q0.The length,width and thickness of this plate are a,b and h,respectively.The governing equation for plate deflection w(x,y)isD V2V2wðx;yÞþRðx;yÞ¼q0(6) where R(x,y)is the foundation reaction;D is theflexural rigidity of the plate defined by1σFig.1.Four-parameter FMM.q(per unit area)yxzFig.2.Schematic illustration of a loaded rectangular plate resting on a fractional Merchant foundation.C.Zhang et al./Journal of Rock Mechanics and Geotechnical Engineering6(2014)373e379 374D¼Eh312À1Àm2Á(7)where m is the Poisson’s ratio of the plate.The solutions of bending moments M x and M y of the foundation plate areM x¼ÀD v2wv x2þm v2wv y2!M y¼ÀD v2wv y2þm v2wv x2!9>>>>>=>>>>>;(8)3.1.Elastic solutionFor a plate resting on a Winkler-type foundation consisting of elastic springs with stiffness k¼E/d,the reaction of the foundation is Rðx;yÞ¼kwðx;yÞ(9) The plate deflection can be derived from Eq.(6)(Timoshenko and Woinowsky-Krieger,1959)aswhere m,n¼1,2,3,..Taking the Laplace transforms of Eqs.(6),(9)and(10),we obtain the governing equation and the resulting deflection expressed in the“s”domain:D V2V2wðx;y;tÞþkwðx;y;sÞ¼q0s(11)3.2.Viscoelastic solutionAssuming the surface load is applied on the foundation plate quasi-statically,i.e.qðtÞ¼q0HðtÞ(13) where H(t)is the Heaviside step function.The plate deflection w(x,y,t)is given byD V2V2wðx;y;tÞþRðx;y;tÞ¼qðtÞ(14)Here the foundation reaction R(x,y,t)is governed by the FMM which satisfies:k0ÀD a RLþ1s a1Áwðx;y;tÞ¼ÀD a RLþ1t a1ÁRðx;y;tÞ(15) where s1¼h*/k1;t1¼s1=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi1þk0=k1ap;k0,k1and h*are the three parameters of the viscoelastic foundation defined by the FMM.The Laplace transforms of Eqs.(13)e(15)yield:D V2V2wðx;y;sÞþkðsÞwðx;y;sÞ¼q0s(16)ðsÞ¼k0s aþ1s a1s aþ1t a1(17)According to the correspondence principle(Christensen,1982), the Laplace elastic and viscoelastic equations are equivalent if the geometry and the boundary conditions are the same.The visco-elastic problem will therefore be treated in terms of the analogous elastic problem in the following derivation.Subsequently,the viscoelastic solution can be obtained by replacing k with sÞin Eq.(12),i.e.C.Zhang et al./Journal of Rock Mechanics and Geotechnical Engineering6(2014)373e379375Taking the inverse Laplace transform of Eq.(18),we getwhere T ¼ðf þk 0Þ=ðf =t a 1þk 0=s a 1Þ,f ¼p 4D f½ð2m À1 =a 2þ½ð2n À1Þ=b 2g 2,and E a is the Mittag-Lef fler function de fined asE a ðt Þ¼X N 0t nG ða n þ1Þ(20)Similarly,the foundation reaction and the bending moments of the plate areR ðx ;y ;t Þ¼16q 0k 0p 2,XN m ¼1XN n ¼1sin ð2m À1Þp x a sin ð2n À1Þp ybð2m À1Þð2n À1Þðf þk 0Þ"Ts a 1þ1ÀT s a 1!E aÀta#(21)M x ¼D "2m À1p 2þm 2n À1p 2#w ðx ;y ;t ÞM y ¼D "m2m À1a p 2þ 2n À1bp 2#w ðx ;y ;t Þ9>>>>=>>>>;(22)Eqs.(19),(21)and (22)are the solutions of de flection,founda-tion reaction,and bending moments of a rectangular plate restingon a fractional Merchant foundation under a uniformly distributed load.Obviously,when the fractional differential order a ¼1,the Mittag-Lef fler function reduces to e t .As a result,Eqs.(19),(21)and (22)turn into the viscoelastic solutions derived from the SMM.4.Numerical example and analysis4.1.Properties of the FMM in comparison with standard models Based on a simple algorithm for evaluating the Mittag-Lef fler function (Koeller,1984),a numerical example is presented to analyze the time-dependent properties of a rectangular plate resting on a viscoelastic foundation subjected to a uniformly distributed load of 100kPa using the FMM.Tables 1and 2give the values of related parameters used in this analysis.The calculated results,i.e.the distributions of plate de flection,bending moment and foundation reaction in the longitudinal direction,are presented in Figs.3e5.It is noted that the plate de flection,bending moment and foundation reaction are symmetrical to the axis of the plate.Fig.3shows the calculated results of plate de flection using the FMM on t ¼0d,150d and 1000d,in comparison with the pre-dictions from the EM and the SMM.All the models show that the maximum de flection always occurs at the plate center.When t ¼0d,the calculated de flections using the SMM and FMM correspond to the solution of the EM given in Eq.(10)where the modulus k is replaced by k 0.In comparison with the results of theFMM,those calculated from the SMM are smaller when t ¼150d but develop quickly and eventually tend to be stable (t ¼1000d).With elapsed time,the de flections calculated from the SMM and FMM approach the solution of the EM as well where k in Eq.(10)is replaced by k *¼k 0k 1/(k 0þk 1).Using the current parameters,it approximately takes 1500d for the de flections to be stable using the SMM,while it will be much longer using the FMM.Similar phenomena are observed for the bending moments of the plate and the foundation reactions plotted in Figs.4and 5.It is again demonstrated that the FMM is capable of describing the long-term performance of a plate resting on a viscoelastic foundation.4.2.Parametric study of the FMMAs shown in Eq.(19),the proposed FMM has four parameters,i.e.the spring stiffness k 0and k 1,the viscosity coef ficient h *,and the fractional differential order a .When t ¼0d and t /N ,the plate de flections and foundation reactions can be calculated from the EM as long as the modulus k is respectively replaced by k 0and k *.Therefore,it is clear that k 0and k 1are relevant to the upper and lower bound solutions of the FMM.The in fluences of the other two parameters,namely viscosity coef ficient h *and the fractional differential order a ,on the de flec-tion e time relationships are presented in Figs.6and 7,respectively.It is observed from Fig.6that the effect of h *of the FMM on the plate de flection is similar to that of the SMM.The parameter h *has an effect on the rate of de flecting but does not affect the initial and the ultimate de flection.With the increase of h *,it takes more time to obtain the ultimate de flection.Fig.7depicts the impact of the fractional differential order a on the time-dependent plate de flection.The fractional differential order a varies from 0to 1here.When a ¼0,the resulting plate de flection is permanent immediately after the load is applied and its value equals the EM solution.It seems that the development of time-dependent de flection can be divided into two stages by a characteristic point at the de flection of around 24.8mm.In the first stage,the de flection decreases with the increase of a ;while in the second stage,the de flection increases with increasing a .As mentioned previously,the fractional derivative element is intermediate between purely solid and purely liquid when a varies from 0to 1.Therefore,a low value of a corresponds to a plate resting on a sandy soil foundation with a large permeability coef-ficient.In contrast,the permeability coef ficient is smaller for a clayey soil foundation corresponding to a higher a value.By introducing the fractional differential order a ,the fractional soil e foundation interaction model can simulate various cases.In particular,the fractional derivative-based Merchant model may account for the de flection of plate over many decades of time.Similar phenomena are obtained for the curves of bending mo-ments or foundation reactions versus time.Table 1Properties of the rectangular plate.Length a (m)Width b (m)Height h (m)Bending rigidity D (MPa m 3)10100.475Table 2Properties of the fractional viscoelastic foundation.Stiffness k 0(MPa m À1)Stiffness k 1(MPa m À1)Viscosity coef ficient h *(MPa d m À1)Fractionaldifferential order a 5525000.7C.Zhang et al./Journal of Rock Mechanics and Geotechnical Engineering 6(2014)373e 3793765.ConclusionsIn this study,an FMM was proposed to account for the time-dependent performance of a rectangular plate resting on a visco-elastic foundation.Closed-form solutions of plate de flection,bending moment and foundation reaction were derived using thecorrespondence principle and the Laplace transform.The results calculated from the FMM were compared with those predicted using the EM and the SMM.It is found that the upper and lower bound solutions of the plate de flection,bending moment,and foundation reaction of the FMM can be obtained from the EM.The parametric study shows that the FMM can provide a wide rangeofparison of plate de flections calculated using EM,SMM andFMM.parison of bending moments of the foundation plate calculated using EM,SMM and FMM.C.Zhang et al./Journal of Rock Mechanics and Geotechnical Engineering 6(2014)373e 379377predictions.A small fractional differential order a corresponds to a plate resting on a sandy soil foundation characterized by a large initial de flection and a smooth de flection in the later period,while for a clayey soil foundation,the fractional differential order value should be increased.With the viscosity coef ficient h *,the intro-duction of the fractional differential order a provides a powerful method for describing the long-term performance of a foundation plate with a fairly small number of parameters.However,the proposed FMM was simply compared against the SMM.Further veri fication of the proposed model requires the support of abundant measurement data from laboratory and field experiments.Besides,the actual behavior of foundation soil is rather complicated.The plastic deformation of soil was not taken into account in the current study.More re fined fractional calculus-based models should be established to investigate the foundation e plate interaction.Con flict of interestWe wish to con firm that there are no known con flicts of interest associated with this publication and there has been no signi ficant financial support for this work that could have in fluenced its outcome.AcknowledgmentsThe research presented here was financially supported by the National Natural Science Foundation of China (Grant Nos.41230636,41302217)and Suzhou Science and Technology Devel-opment Program (Grant No.SYG201213).ReferencesAtanackovic TM,Stankovic B.Stability of an elastic rod on a fractional derivativetype of foundation.Journal of Sound and Vibration 2004;277(1e 2):149e 61.Bagley RL,Torvik PJ.A generalized derivative model for an elastomer damper.TheShock and Vibration Bulletin 1979;49(2):135e 43.parison of foundation reactions calculated using EM,SMM andFMM.Fig.6.In fluence of viscosity coef ficient h *on the de flection e time curves at the platecenter.Fig.7.In fluence of fractional differential order a on the de flection e time curves at the plate center.C.Zhang et al./Journal of Rock Mechanics and Geotechnical Engineering 6(2014)373e 379378Buczkowski R,Torbacki W.Finite element modelling of thick plates on two-parameter elastic foundation.International Journal for Numerical and Analyt-ical Methods in Geomechanics2001;25(14):1409e27.Chen XP,Zhu HH,Zhou QJ.Study on modified generalized Kelvin creep consoli-dation model.Chinese Journal of Rock Mechanics and Engineering 2006;25(Suppl.2):3428e34(in Chinese).Christensen RM.Theory of viscoelasticity:an introduction.2nd ed.New York,USA: Academic Press;1982.DikmenÜ.Modeling of seismic wave attenuation in soil structures using fractional derivative scheme.Journal of the Balkan Geophysical Society 2005;8(4):175e88.Gemant A.A method of analyzing experimental results obtained from elasto-viscous bodies.Journal of Applied Physics1936;7(8):311e7.Huang MH,Thambiratnam DP.Dynamic response of plates on elastic foundation to moving loads.Journal of Engineering Mechanics2002;128(9):1016e22. Koeller RC.Applications of fractional calculus to the theory of viscoelasticity.Journal of Applied Mechanics1984;51(2):299e307.Mainardi F.An historical perspective on fractional calculus in linear viscoelasticity.Fractional Calculus and Applied Analysis2012;15(4):712e7.Matsunaga H.Vibration and stability of thick plates on elastic foundations.Journal of Engineering Mechanics2000;126(1):27e34.Miller KS,Ross B.An introduction to the fractional calculus and fractional differ-ential equations.New York,USA:Wiley-Interscience;1993.Nassar M.Bending of a circular plate on a linear viscoelastic foundation.Applied Mathematical Modelling1981;5(1):60e2.Smit W,de Vries H.Rheological models containing fractional derivatives.Rheo-logica Acta1970;9(4):525e34.Sun L.Dynamic response of Kirchhoff plate on a viscoelastic foundation to harmonic circular loads.Journal of Applied Mechanics2003;70(4):595e600. Timoshenko SP,Woinowsky-Krieger S.Theory of plates and shells.2nd ed.New York,USA:McGraw-Hill;1959.Welch SWJ,Rorrer RAL,Duren Jr RG.Application of time-based fractional calculus methods to viscoelastic creep and stress relaxation of materials.Mechanics of Time-Dependent Materials1999;3(3):279e303.Yin DS,Ren JJ,He CL,Chen W.A new rheological model element for geomaterials.Chinese Journal of Rock Mechanics and Engineering2007;26(9):1899e903(in Chinese).Yin DS,Wu H,Cheng C,Chen YQ.Fractional order constitutive model of geo-materials under the condition of triaxial test.International Journal for Nu-merical and Analytical Methods in Geomechanics2013;37(8):961e72.Zaman M,Taheri MR,Alvappillai A.Dynamic response of a thick plate on visco-elastic foundation to moving loads.International Journal for Numerical and Analytical Methods in Geomechanics1991;15(9):627e47.Zhong Y,Zhang YS.Theoretic solution of rectangular thin plate on foundation with four edges free by symplectic geometry method.Applied Mathematics and Mechanics2006;27(6):833e9.Zhu HH,Liu LC,Ye XW.Response of a loaded rectangular plate on fractional de-rivative viscoelastic foundation.Journal of Basic Science and Engineering 2011;19(2):271e8(in Chinese).Zhu HH,Liu LC,Pei HF,Shi B.Settlement analysis of viscoelastic foundation under vertical line load using a fractional Kelvin-Voigt model.Geomechanics and Engineering2012;4(1):67e78.Honghu Zhu,born in1979,is an associate professor ofengineering geology and geotechnics at Nanjing Univer-sity,and the associate director of Suzhou Key Laboratory ofDistributed Sensing and Monitoring Technology of CivilInfrastructures.He got the BE in civil engineering fromZhejiang University in2002and MSc in engineering me-chanics from Jinan University in2005.In2009,he gradu-ated from The Hong Kong Polytechnic University andobtained his PhD degree in geotechnical engineering un-der the supervision of Prof.Jian-Hua Yin.From2008to2010,he was a research assistant,research associate,andpost-doctoral fellow in The Hong Kong Polytechnic Univer-sity.In2014,he joined the Department of Engineering,University of Cambridge,as a visiting scholar.His current research interests include the development and application of smart monitoring sys-tems for geotechnical structures,field instrumentation and evaluation of slope stability and related geo-hazards,and modeling of soil e structure interaction.He is the author or co-author of one book,three patents,and more than sixty scientific papers.C.Zhang et al./Journal of Rock Mechanics and Geotechnical Engineering6(2014)373e379379。

分数导数黏弹性准饱和土中球空腔振动特性

分数导数黏弹性准饱和土中球空腔振动特性

分数导数黏弹性准饱和土中球空腔振动特性
杨骁;闻敏杰;高华喜
【期刊名称】《振动与冲击》
【年(卷),期】2013(032)004
【摘要】在频率域内用解析方法研究分析了简谐轴对称荷载和流体压力作用下分数导数黏弹性准饱和中球空腔的稳态响应问题.将土骨架等效为具有分数阶导数本构关系的黏弹性体,基于Biot两相饱和介质模型,通过势函数推导求得了边界部分透水时分数导数粘弹性准饱和土中球空腔的位移、应力和孔压等的解析解.根据界面连续性条件,确定了待定系数的表达式.在此基础上,考察了准饱和土各参数对动力响应的影响,结果表明:轴对称荷载和流体压力两种情况时,相对渗透系数对动力响应的影响有较大的差异.分数导数本构模型更合理地描述了准饱和土中球空腔的振动特性.
【总页数】7页(P127-132,152)
【作者】杨骁;闻敏杰;高华喜
【作者单位】上海大学土木系,上海200072;上海大学土木系,上海200072;浙江海洋学院船舶与建筑工程学院,浙江舟山316004
【正文语种】中文
【中图分类】TU435
【相关文献】
1.饱和横观各向同性分数导数黏弹性土中半封闭衬砌振动响应 [J], 陈学丽;闻敏杰;高华喜
2.黏弹性准饱和土中球空腔动力特性 [J], 高华喜;闻敏杰
3.粘弹性准饱和土中球空腔的动力响应 [J], 徐长节;马晓华
4.分数导数黏弹性模型描述的土中单管桩的水平振动 [J], 牛洁楠;高云飞;周刚;袁晓辉
5.弹性准饱和土中球空腔的动力响应 [J], 徐长节;马晓华;蔡袁强
因版权原因,仅展示原文概要,查看原文内容请购买。

利用分数阶导数模拟的粘弹材料振动模型

利用分数阶导数模拟的粘弹材料振动模型

利用分数阶导数模拟的粘弹材料振动模型
段灵杰;段俊生
【期刊名称】《应用技术学报》
【年(卷),期】2017(017)004
【摘要】利用分数阶导数描述粘弹材料的本构关系,使用关于应变的分数阶导数的阶的积分,研究基于这样的本构关系的粘弹性杆一质量块的稳态振动分析,给出精确的幅频关系和相频关系,分析参数对粘弹性质、阻尼及共振现象的影响。

结果显示这种本构关系能合理地体现材料的粘弹特性。

【总页数】4页(P365-368)
【作者】段灵杰;段俊生
【作者单位】[1]中南大学粉末冶金国家重点实验室,长沙410083;;[2]上海应用技术大学理学院,上海201418
【正文语种】中文
【中图分类】O341
【相关文献】
1.利用分数阶导数模拟的粘弹材料振动模型
2.基于CPML-RML组合边界条件粘弹TTI介质旋转交错网格有限差分正演模拟
3.基于纵横波保幅分离的粘弹介质弹性波正演模拟
4.粘弹材料阻尼性能的分析模拟和预测
5.利用内聚力模型(CZM)模拟弹粘塑性多晶体的裂纹扩展
因版权原因,仅展示原文概要,查看原文内容请购买。

任意层地基中粘弹性楔形桩纵向振动响应研究

任意层地基中粘弹性楔形桩纵向振动响应研究
( 1 .S c h o o l o f E n g i n e e i r n g , C h i n a U n i v e r s i t y o f G e o s c i e n c e s , Wu h a n 4 3 0 0 7 4 , C h i n a ; 2 .MO E K e y ab L o r a t o r y o f S o t f S o i l s a n d G e o e n v i r o n m e n t a l E n  ̄ n e e i r n g , Z h  ̄ i a n g U n i v e r s i t y , H a n g z h o u 3 1 0 0 5 8 , C h i n a )
桩设计参数及材料参 数和桩侧 土成层性对楔形桩纵 向振动响应 的影响。 关键词 :楔形桩 ; 纵向振动 ; 任意层地基 ; 阻抗 函数 ; 时域响应 ; 频域响应
中 图 分 类 号 :T U 4 3 5 文献 标 识 码 :A
Ve r t i c a l d y na mi c r e s po n s e o f a v i s c o e l a s t i c t a pe r e d p i l e e m be d de d i n l a y e r e d f o u n da t i o n WU We n — b i n g ,WANG Ku i — hu a ,DOU Bi n
f i n i t e u n i t s c o n s i d e r i n g v a r i a b l e c r o s s — s e c t i o n o f t a p e r e d p i l e a n d s t r a t i i f c a t i o n o f s u r r o u n d i n g s o i l .T h e n ,a p l a n e s t r a i n

开挖条件下黏土中单桩竖向承载特性模型试验与分析_纠永志

开挖条件下黏土中单桩竖向承载特性模型试验与分析_纠永志

图 5 桩身应变片分布图 Fig. 5 Strain gauges along pile 图 8 不排水剪切试验的应力路径 Fig. 8 Effective stress path of undrained triaxial tests for isotropically consolidated clay 图 6 模型桩 Fig. 6 Model pile
结时通过小盖板将预留孔封上(图 3) 。
图 1 DGJ-250 型大型离心机固结加荷装置 Fig. 1 DGJ-250 centrifuge pre-consolidation loading device
图 2 试验所用模型箱实物图 Fig. 2 Photo of model box
1
1.1
开挖条件下饱和高岭土中单桩竖向 加载模型试验
Abstract: Based on a centrifuge pre-consolidation loading device, a model of pile vertical loading system can effectively control over consolidation ratio is developed out. The laboratory model tests of a single pile in saturated clay under excavation are carried out. Based on the results of model test, considering the change of undrained shear strength and K0 coefficient of soil caused by excavation, a simplified nonlinear approach for analysis of a single pile under excavation is proposed. Calculated results are compared with the test results of laboratory model tests of pile. Good agreement is achieved. In addition, responses of a single pile after excavation under vertical load are studied by the simplified method. Computational results show that after excavation, the ultimate bearing capacity of pile and pile head stiffness will reduce. A rational prediction method for estimating the loss of bearing capacity should consider not only the decease of the overburden pressure of the surrounding soil, but also the increase of the K0 coefficient and undrained shear strength. Key words: model test; excavation; ultimate bearing capacity; undrained shear strength; over-consolidation ratio

粘弹性材料本构模型的研究

粘弹性材料本构模型的研究

粘弹性材料本构模型的研究第23卷第6期高分子材料科学与工程V o l.23,N o .62020年11月POL Y M ER M A T ER I AL S SC IEN CE AND EN G I N EER I N GN ov .2020粘弹性材料本构模型的研究Ξ路纯红,白鸿柏(军械工程学院,河北石家庄050003摘要:介绍了近年来建立粘弹性材料本构模型的方法。

目前主要有两种方法:利用现有本构模型;对粘弹性材料进行试验研究,拟合实验曲线。

关键词:粘弹性材料;本构模型中图分类号:O 631.2+1文献标识码:A 文章编号:100027555(20200620028204随着化学化工和材料工业的发展,粘弹性材料被广泛应用于航空航天、机械工程、高层建筑、车辆工程以及家用电器等领域。

研究粘弹性材料的力学性能,使其在工程应用中发挥良好的阻尼性能和耗散性能,关键是构建能够精确描述材料本构关系的粘弹性本构模型。

然而粘弹性材料的力学性能如剪切模量、损耗模量、损耗因子等受环境温度、振动频率、应变幅值等影响很大,因此,其本构关系的建立将非常复杂。

本文将对近年来粘弹性材料本构模型的研究成果进行简要的综述,并对今后的研究趋势提出几点建议。

1利用现有模型1.1粘弹性本构模型由于粘弹性材料的力学性能如剪切模量、损耗模量、损耗因子等通常与环境温度、振动频率、应变幅值等有关,因此粘弹性材料的本构关系将是复杂的。

国内外许多学者对此进行了研究,目前常用的粘弹性材料本构模型如下。

1.1.1M axw ll 模型:M axw ell 模型认为,粘弹性材料可以等效为一个弹簧和一个粘壶元件相串联而成,其本构关系为:Σ(t +p 1Σα(t =q 1Χα(t (1式中:Σ(t 和Χ(t ——粘弹性材料的剪应力和剪应变;p 1和q 1——由粘弹性材料性能确定的系数。

在简谐应变的激励下,由本构关系(1式可得:式中:G 1、G 2——储能模量(剪切模量和损耗模量;Γ——损耗因子,用于描述粘弹性材料的阻尼性能,Γ越大,材料阻尼性能越好,Γ越小,材料阻尼性能越差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

182 工程力 [6] 学 5 结论在考虑三维波动效应的条件下,综合运用分数导数理论、土动力学理论和桩基动力学相关理论,并借助于分离变量法等手段,研究了分数导数粘弹性土中桩基的竖向振动问题。

由于土体的力学行为受温度、湿度、孔隙率等环境的影响较大,利用分数导数粘弹性模型来描述土体的应力-应变关系,从而达到精确刻画土体力学特性的目的。

通过研究发现分数导数粘弹性土中桩基的竖向振动受分数导数的阶数、土体模型参数和长径比的影响较大,为了更好的进行桩机抗震设计和桩基检测,需要综合考虑桩基和土体的力学特性。

参考文献: [1] Nogami T, Novak M. Soil-pile interaction in vertical vibration [J]. Earthquake Engineering and Structural Dynamics, 1976, 4: 277―293. Novak M, Nogami T, Aboul-Ella F. Dynamic soil reactions for plane strain case [J]. Jounal of Engineering Mechanics, 1978, 104(4: 953―959. Nogami T, Konagai K. Time domain axial response of dynamically loaded single piles [J]. Jounal of Engineering Mechanics, 1986, 112(11: 1241―1252. Mamoon S M, Kaynia A M, Banerjee P K. Frequencydomain dynamic analysis of piles and pile groups [J]. Jounal of Engineering Mechanics, 1990, 116(10: 2237―2257. Novak M. Dynamic stiffness and damping of piles [J]. Canadian
Geotechnical Journal, 1974, 11: 574―598. [2] [3] [4] [5] 胡昌斌, 黄晓明. 成层粘弹性土中桩土耦合纵向振动时域响应研究[J]. 地震工程与工程振动, 2006, 26(4:
205―211. Hu Changbin, Huang Xiaoming. A quasi-analytical solution to soil-pile interaction in longitudinal vibration in layered soils considering vertical wave effect on soils [J]. Earthquake Engineering and Engineering Vibration, 2006, 26(4: 205―211. (in Chinese [7] 周绪红 , 蒋建国 , 邹银生 . 粘弹性介质中考虑轴力作用时桩的动力分析[J]. 土木工程学报, 2005, 38(2: 87―91. Zhou Xuhong, Jiang Jianguo, Zou Yinsheng. Dynamic analysis of piles under axial loading and lateral dynamic force in visco-elastic medium [J]. China Civil Engi neering Journal, 2005, 38(2: 87―91. (in Chinese [8] 刘林超, 张卫. 具有分数 Kelvin 模型的粘弹性岩体中水平圆形硐室的变形特性[J]. 岩土力学, 2005, 26(2: 287―289. Liu Linchao, Zhang Wei. The deformation proprieties of horizontal round adits in viscoelastic rocks by fractional Kelvin model [J]. Rock and Soil Mechanicals, 2005, 26(2: 287―289. (in Chinese [9] Bagley R L, Torvik P J. A theoretical basis for the application of fractional calculus to viscoelasticity [J]. Journal of Rheology, 1983, 27(3: 201―210. [10] Zhu Zhengyou, Li Genguo, Chen Ch angjun. Quasi-static and dynamical analysis for viscoelastic Timoshenko beam with fractional derivative constitutive relation [J]. Applied Mathematics and Mechanics, 2002, 23(1: 1―7. [11] Miller K S, Ross B. An introduction to the fractional calculus and f ractional differential equations [M]. New York: John Wiley & Sons, 1993.。

相关文档
最新文档