线性规划PPT优秀课件

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x
的最大值或最小值。
A(-1,-1)
答案:当x=-1,y=-1时,z=2x+y有最小值-3. 当x=2,y=-1时,z=2x+y有最大值3.
探索结论
线性规划
例2 解下列线性规划问题: 求z=300x+900y的最大值和最小值, 使式中x、y满足下列条件:
2 x y 300 x 2 y 250 x 0 y 0
修Ⅱ甘肃青海宁夏贵州新疆等地区)第16题)
解下列线性规划问题:求z=2x+y的最大值, 使式中x、y满足下列条件:
x y 1, y x, y 0,
启动几何画板
答案:当x=1,y=0时,z=2x+y有最大值2。
探索结论
线性规划
练习2 解下列线性规划问题: 求z=3x+y的最大值,使式中 y 8 x、y满足下列条件:
解线性规划问题的一般步骤: 第一步:在平面直角坐标系中作出可行域; 第二步:在可行域内找到最优解所对应的点; 第三步:解方程的最优解,从而求出目标函数 的最大值或最小值。
探索结论
线性规划
作业:P64 习题 7.4
2
探索结论
85.每一年,我都更加相信生命的浪费是在于:我们没有献出爱,我们没有使用力量,我们表现出自私的谨慎,不去冒险,避开痛苦,也失去了快乐。――[约翰· B· 塔布] 86.微笑,昂首阔步,作深呼吸,嘴里哼着歌儿。倘使你不会唱歌,吹吹口哨或用鼻子哼一哼也可。如此一来,你想让自己烦恼都不可能。――[戴尔· 卡内基] 87.当一切毫无希望时,我看着切石工人在他的石头上,敲击了上百次,而不见任何裂痕出现。但在第一百零一次时,石头被劈成两半。我体会到,并非那一击,而是前面的敲打使它裂开。――[贾柯· 瑞斯] 88.每个意念都是一场祈祷。――[詹姆士· 雷德非] 89.虚荣心很难说是一种恶行,然而一切恶行都围绕虚荣心而生,都不过是满足虚荣心的手段。――[柏格森] 90.习惯正一天天地把我们的生命变成某种定型的化石,我们的心灵正在失去自由,成为平静而没有激情的时间之流的奴隶。――[托尔斯泰] 91.要及时把握梦想,因为梦想一死,生命就如一只羽翼受创的小鸟,无法飞翔。――[兰斯顿· 休斯] 92.生活的艺术较像角力的艺术,而较不像跳舞的艺术;最重要的是:站稳脚步,为无法预见的攻击做准备。――[玛科斯· 奥雷利阿斯] 93.在安详静谧的大自然里,确实还有些使人烦恼.怀疑.感到压迫的事。请你看看蔚蓝的天空和闪烁的星星吧!你的心将会平静下来。[约翰· 纳森· 爱德瓦兹] 94.对一个适度工作的人而言,快乐来自于工作,有如花朵结果前拥有彩色的花瓣。――[约翰· 拉斯金] 95.没有比时间更容易浪费的,同时没有比时间更珍贵的了,因为没有时间我们几乎无法做任何事。――[威廉· 班] 96.人生真正的欢欣,就是在于你自认正在为一个伟大目标运用自己;而不是源于独自发光.自私渺小的忧烦躯壳,只知抱怨世界无法带给你快乐。――[萧伯纳] 97.有三个人是我的朋友爱我的人.恨我的人.以及对我冷漠的人。 爱我的人教我温柔;恨我的人教我谨慎;对我冷漠的人教我自立。――[J·E·丁格] 98.过去的事已经一去不复返。聪明的人是考虑现在和未来,根本无暇去想过去的事。――[英国哲学家培根] 99.真正的发现之旅不只是为了寻找全新的景色,也为了拥有全新的眼光。――[马塞尔· 普劳斯特] 100.这个世界总是充满美好的事物,然而能看到这些美好事物的人,事实上是少之又少。――[罗丹] 101.称赞不但对人的感情,而且对人的理智也发生巨大的作用,在这种令人愉快的影响之下,我觉得更加聪明了,各种想法,以异常的速度接连涌入我的脑际。――[托尔斯泰] 102.人生过程的景观一直在变化,向前跨进,就看到与初始不同的景观,再上前去,又是另一番新的气候――。[叔本华] 103.为何我们如此汲汲于名利,如果一个人和他的同伴保持不一样的速度,或许他耳中听到的是不同的旋律,让他随他所听到的旋律走,无论快慢或远近。――[梭罗] 104.我们最容易不吝惜的是时间,而我们应该最担心的也是时间;因为没有时间的话,我们在世界上什么也不能做。――[威廉· 彭] 105.人类的悲剧,就是想延长自己的寿命。我们往往只憧憬地平线那端的神奇【违禁词,被屏蔽】,而忘了去欣赏今天窗外正在盛开的玫瑰花。――[戴尔· 卡内基] 106.休息并非无所事事,夏日炎炎时躺在树底下的草地,听着潺潺的水声,看着飘过的白云,亦非浪费时间。――[约翰· 罗伯克] 107.没有人会只因年龄而衰老,我们是因放弃我们的理想而衰老。年龄会使皮肤老化,而放弃热情却会使灵魂老化。――[撒母耳· 厄尔曼] 108.快乐和智能的区别在于:自认最快乐的人实际上就是最快乐的,但自认为最明智的人一般而言却是最愚蠢的。――[卡雷贝· C· 科尔顿] 109.每个人皆有连自己都不清楚的潜在能力。无论是谁,在千钧一发之际,往往能轻易解决从前认为极不可能解决的事。――[戴尔· 卡内基] 110.每天安静地坐十五分钟· 倾听你的气息,感觉它,感觉你自己,并且试着什么都不想。――[艾瑞克· 佛洛姆] 111.你知道何谓沮丧---就是你用一辈子工夫,在公司或任何领域里往上攀爬,却在抵达最高处的同时,发现自己爬错了墙头。--[坎伯] 112.「伟大」这个名词未必非出现在规模很大的事情不可;生活中微小之处,照样可以伟大。――[布鲁克斯] 113.人生的目的有二:先是获得你想要的;然后是享受你所获得的。只有最明智的人类做到第二点。――[罗根· 皮沙尔· 史密斯] 114.要经常听.时常想.时时学习,才是真正的生活方式。对任何事既不抱希望,也不肯学习的人,没有生存的资格。 ――[阿萨· 赫尔帕斯爵士] 115.旅行的精神在于其自由,完全能够随心所欲地去思考.去感觉.去行动的自由。――[威廉· 海兹利特] 116.昨天是张�
可行域
(5,2)
(1,1)
线性规划
例1 解下列线性规划问题: 求z=2x+y的最大值和最小值,使式中x、y满足下 列条件: 2x+y=0 y
解线性规划问题的一般步骤:
2x+y=-3 y x 1 1 第一步:在平面直角坐标系中作出可行域; C( , ) 2 2 第二步:在可行域内找到最优解所对应的点; x y 1 O y 1 第三步:解方程的最优解,从而求出目标函数 B(2,-1) 2x+y=3
简单的线性规划
讲线性规划
复习二元一次不等式表示的平面区域
y 在平面直角坐标系中,以二 元一次方程 x+y-1=0 的解为坐 结论:二元一次不 x+y-1>0 标的点的集合 {(x,y)|x+y-1=0} 等式ax+by+c>0 在平面 1 是经过点 (0 , 1) 和 (1 , 0) 的一 直角坐标系中表示直线 条直线 l , 那么以二元一次不等 ax+by+c=0 某一侧所有 1 O x 式 x+y-1>0 的解为坐标的点的 点组成的平面区域。不 集合 {(x , y ) | x + y表示的 - 1 > 0 } 是 x+y-1<0 等式 ax+by+c<0 什么图形 ? 是另一侧的平面区域。 x+y-1=0
探索结论
复习判断二元一次不等式表示哪一 侧平面区域的方法
由于对在直线ax+by+c=0同 一侧所有点(x,y),把它的坐标 (x,y)代入ax+by+c,所得的实 数的符号都相同,故只需在这条 直线的某一侧取一特殊点(x0,y0) 以ax0+by0+c的正负的情况便可 判断ax+by+c>0表示这一直线 哪一侧的平面区域,特殊地,当 c≠0时常把原点作为此特殊点
x-y=7 C(3,6) y=6
3x+y=29
2 x 3 y 24 x y 7 y 6 x 0 y 0
(0,6)
2x+3y=24
B(9,2) O A (7,0)
3x+y=0
12
x
答案:当x=9,y=2时,z=3x+y有最大值29.
探索结论
线性规划小结
y
2x+y=300
x+3y=0
A 125
300x+900y=112500
C x+2y=250 150 B 250
300x+900y=0
O
答案:当x=0,y=0时,z=300x+900y有最小值0. 当x=0,y=125时,z=300x+900y有最大值112500.
探索结论
线性规划
练习1(2004高考全国卷4理科数学试题(必修+选
O
C B
3x+5y-25=0 A x-4y+3=0
x
启动几何画板
线性规划
线性规划:求线性目标函数在线性约束条件下的最 大值或最小值的问题,统称为线性规划问题.
可行解 :满足线性约束条 件的解(x,y)叫可行解;
2x+y=12
2x+y=3
可行域 :由所有可行解组 成的集合叫做可行域;
最优解 :使目标函数取得 最大或最小值的可行解叫 线性规划问题的最优解。
y
1
x+y-1>0
1
O
x+y-1<0 x+y-1=0
x
复习二元一次不等式表示平面区域的范例 例1 画出不等式2x+y-6<0表示的平面区域。 y
6
注意:把直
线画成虚线以 表示区域不包 括边界
O
2x+y-6=0
3
x
复习二元一次不等式表示平面区域的范例 y
5
例2 画出不等式组 x+y=0
x y 5 0 x y 0 x 3
x 4 y 3 3x 5 y 25 x 1
求z的最大值与最小值。
探索结论
线性规划
问题:
目标函数 (线性目标函数)
线性约 束条件
y
x=1
设z=2x+y,式中变量满足 下列条件:
x 4 y 3 3x 5 y 25 x 1
求z的最大值与最小值。
x-y+5=0
O
3
x
表示的平面区域。
x=3
Biblioteka Baidu
复习二元一次不等式表示平面区域的范例
例3 画出不等式组
x y 6 0 x+y-6=0 x y 0 3 A y=3 y 3 B 5 0 x 5 x=5 表示的平面区域。 x-y=0
y 6
C
6
x
线性规划
问题:设z=2x+y,式中变量满足下列条件:
相关文档
最新文档