焊接机器人总体设计

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

焊接机器人总体设计

此次设计的目的是设计一台焊接机器人,本文主要对焊接机器人的机械结构系统部分进行研究、设计和分析。

1 焊接机器人总体设计的思路

设计机器人大体上可分为两个阶段:

(1)系统分析阶段

1)根据焊接机器人系统索要实现的目标,明确所采用机器人的目的和任务;

2)分析机器人所在系统的工作环境;

3) 根据焊接机器人的工作要求和工作环境,基本上确定机器人的功能和方案。例如机器人的自由度、信息的存储量、计算机功能、承受力矩、动作精度的要求、容许的运动范围、静动载荷以及对温度、震动等环境的适应性。

(2)技术设计阶段

1)根据系统的要求来确定机器人的自由度和允许的空间工作范围,选择机器人的坐标形式和工作方式;

2)拟订机器人的运动路线和空间作业图;

3)确定驱动系统的类型;

4)选择各部件的具体结构以及尺寸,进行机器人总装图的设计与装配;

5)绘制机器人的零件图,并确定尺寸。

2 焊接机器人自由度和坐标系的选择

机器人的运动自由度是指各机器人系统运动部件在三维空间就是固定坐标系所具有的独立运动数,对于每一个构件来讲,它有几个运动坐标就说明其有几个自由度。各运动部件和机构自由度的总和就是机器人的自由度数。机器人的手部要像人手一样灵活的完成各种动作是比较困难的,因为人的手是由手指、掌、腕、臂等19个关节组成,共有27个自由度。而生产实践过程中没有必要需要机器人的手有这么多的自由度一般为3-6个(不包括手部)此次设计的焊接机器人为4自由度,四个自由度分别为:腕部的回转;小臂部分的伸缩;大臂部分的回转;大臂部分的伸缩。

按机械手手臂的不同运动形式及其组合情况,其座标型式可分为直角座标

式、圆柱座标式、球座标式和关节式。由于本机械手在上下料时手臂具有升降、收缩及回转运动,因此,采用圆柱座标式。相应的机械手具有三个自由度,为了弥补升降运动行程较小的缺点,增加手臂摆动机构,从而增加一个手臂上下摆、动的自由度。

工业实践机器人的结构形式主要有直角坐标型结构、圆柱坐标型结构、球坐标型结构、关节型结构四种。各结构形式及都有其相应的特点和优点,分别介绍如下:

(1) 直角坐标机器人结构

直角坐标机器人的空间运动主要是用三个相互垂直的直线运动来实现的,如图2-1(a)所示。由于直线运动是最易于实现全闭环的位置控制的一种运动,因此,直角坐标机器人可以达到非常高的位置精度(微米级)。但是,由于这种直角坐标机器人的运动空间相比于其他机器人的结构尺寸来讲,是比较小的。所以,为了实现一定的运动空间,直角坐标机器人的结构尺寸就可能要比其他几种类型的机器人的结构尺寸大得很多。

直角坐标机器人的工作空间整天上来说是一个空间长方体。直角坐标机器人主要是用于装配作业及搬运作业,直角坐标机器人总共有以下几种结构类型的:悬臂式,龙门式,天车式三种结构错误!未找到引用源。。

(2) 圆柱坐标机器人结构

圆柱坐标机器人系统的空间运动在原理上可以用一个空间的回转运动以及两个直线运动加以实现的,如图2-1(b)。这种机器人结构相对比较简单,精度也不是很高,经常用于搬运作业。其工作空间是一个呈圆柱状的空间。

(3) 球坐标机器人结构

球坐标机器人系统的空间运动可以看为两个空间的回转运动和一个直线运动,参见图2-1(c)。这种机器人相比于其他类型的机器人其比较结构简单、成本较低,但精度不是很高。主要用在搬运作业。工作空间呈一个类球形的空间错误!未找到引用源。。

(4) 关节型机器人结构

关节型机器人系统的空间运动是由三个空间回转运动实现的,参见图2-1(d)。关节型机器人有以下几个优点:动作灵活,结构紧凑,占地面积小。但是

相对机器人本体尺寸,、因此其工作空间比较大。这种机器人在工业中应用十分广泛并且在生活中也较为常见,例如焊接、喷漆、搬运、装配等作业,都广泛运用这种类型的机器人。

关节型机器人结构,有两种类型水平关节型和垂直关节型两种。

根据要求及在工业实际生产中的用途,此次设计的焊接机器人采用是第一种机器人即直角坐标型机器人。

a)直角坐标型 b)圆柱坐标型 c)球坐标型 d)关节型

图2-1 四种机器人坐标形式

3 焊接机器人传动方案论证

焊接机器人(直角坐标型)的驱动方式有液压式、气动式和电动机式三种。

(1) 液压驱动:是指动源发动机或者电机驱动液压油泵产生压力油,压力油的压力能再去驱动液压马达,由液压马达产生并且提供机器需要的动力。是以液压的压力来驱动执行机构运动的机械手。其主要特点是:抓重可达几百公斤以上、传动平稳、结构紧凑、动作灵敏。但对密封装置要求严格,不然油的泄漏对机械手的工作性能有很大的影响,且不宜在高温、低温下工作。若机械手采用电液伺服驱动系统,可实现连续轨迹控制,使机械手的通用性扩大,但是电液伺服阀的制造精度高,油液过滤要求严格,成本高

(2) 气动驱动常用于开关控制和顺序控制的机器人,相比于液压驱动的机器人,气动驱动由于压缩空气动力粘度和动力粘度都相对较小,并且空气的摩擦力较小,因此气动驱动的机器人容易达到高速;因为可利用工厂集中空气体压缩机站的设备提供所需要的气体,大大的减少了动力和驱动设备;而且空气介质不会污染环境,价格相对也较为便宜,并且安全在极端的温度下都可以正常工作,比较适合焊接这种高温作业,空气取之不尽用之不竭,相对于液压驱动气压驱动

更为廉价,因而气动驱动元件比液压元件价格低。是以压缩空气的压力来驱动执行机构运动的机械手。其主要特点是:介质李源极为方便,输出力小,气动动作迅速,结构简单,成本低。但是,由于空气具有可压缩的特性,工作速度的稳定性较差,冲击大,而且气源压力较低,抓重一般在30公斤以下,在同样抓重条件下它比液压机械手的结构大,所以适用于高速、轻载、高温和粉尘大的环境中进行工作

(3) 电机驱动可分为交流电动机驱动,交流伺服电动驱动、直流伺服电动机驱动以及步进电动机驱动。随着科学技术的发展,材料性能的提高,电动机也得到很大的提高,各方面的性能也在随之提高并且电动机使用起来更加简单方便,所以就目前来看,机器人驱动已经渐渐变为电动机驱动式所代替。即有特殊结构的感应电动机、直线电机或功率步进电机直接驱动执行机构运动的械手,因为不需要中间的转换机构,故机械结构简单。其中直线电机机械手的运动速度快和行程长,维护和使用方便。此类机械手目前还不多,但有发展前景。

机械传动机械手驱动方式:即由机械传动机构(如凸轮、连杆、齿轮和齿条、间歇机构等)驱动的机械手。它是一种附属于工作主机的专用机械手,其动力是由工作机械传递的。它的主要特点是运动准确可靠,用于工作主机的上、下料。动作频率大,但结构较大,动作程序不可以变。

表2-1三种驱动系统的比较

内容

驱动方式

液压驱动气动驱动电机驱动

输出力

压力高,可获得阿

大的输出力和输是

出功率

压力相对要小,输

出力和输发出功率

输出力较大

控制性能

利用液体的不其

可压缩性,控制精度

为较高,输出功率

气体压缩体性大,

精度低,阻尼效果

差,低速不易控制,

要求也控制

精度高,并且

功率较大,可

相关文档
最新文档