椭圆滤波器的设计说明
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章摘要
本文简单、直观地介绍了椭圆低通滤波器的基本理论和设计思想,阐述了设计椭圆低通滤波器的具体步骤,利用MATLAB产生一个包含低频、中频、高频分量的连续信号,并实现对连续信号进行的采样。文中还对采样信号进行频谱分析,利用设计的椭圆滤波器对采样信号进行滤波处理,并对仿真结果进行分析和处理。详细介绍了在用MATLAB
设计椭圆滤波器用到的工具和命令。
第二章引言
信号处理是科学研究和工程技术许多领域都需要进行的一个重要环节,传统上对信号的处理大都采用模拟系统实现。随着人们对信号处理要求的日益提高,以及模拟信号处理中一些不可克服的缺点,对信号的许多处理而采用数字的方法进行。近年来由于大规模集成电路和计算机技术的进步,信号的数字处理技术得到了飞速发展。数字信号处理系统无论在性能、可靠性、体积、耗电量、成本等诸多方面都比模拟信号处理系统优越的多,使得许多以往采用模拟信号处理的系统越来越多地被数字处理系统所代替,数字信号处理技术在通信、语音、图像、自动控制、雷达、军事、航空航天、医疗和家用电器等众多领域得到了广泛的应用。
在数字信号处理中,数字滤波器十分重要并已获得广泛应用,数字滤波器与模拟滤波器比较,具有精度高、稳定、体积小、重量轻、灵活、不要求阻抗匹配以及实现模拟滤波器无法实现的特殊滤波功能等优点。在各种滤波器中,椭圆滤波器具有其独特的优点。
本次设计中所用到数学软件为MATLAB。MATLAB和Mathematica、Maple并称为三大数学软件,它是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。
第三章椭圆滤波器的基本理论
3.1椭圆滤波器的概述
常用数字滤波器的类型有巴特沃斯(Butterworth) ,切比雪夫(Chebyshev) 及椭圆型 滤波器,其中椭圆滤波器(Elliptic filter )又称考尔滤波器(Cauer filter ),是一种性能优越的滤波器。从传递函数来看,巴特沃斯和切比雪夫滤波器的传输函数都是一个常数除以一个多项式, 为全极点网络, 仅在无限大阻带处衰减为无限大, 而椭圆函数滤波器在有限频率上既有零点又有极点。极零点在通带产生等波纹, 阻带的有限传输零点减少了过渡区, 可获得极为陡峭的衰减曲线。也就是说在阶数相同的条件下,椭圆滤波器相比于其他类型的滤波器,能获得更窄的过渡带宽和较小的阻带波动, 就这点而言, 椭圆滤波器是最优的。它陡峭的过渡带特性是用通带和阻带的起伏为代价来换取的,并且在通带和阻带的波动相同,这一点区别于在通带和阻带都平坦的巴特沃斯滤波器,以及通带平坦、阻带等波纹或是阻带平坦、通带等波纹的切比雪夫滤波器。 总结起来,椭圆滤波器具有以下特点:
1、椭圆低通滤波器是一种零、极点型滤波器,它在有限频率围存在传输零点和极点。
2、椭圆低通滤波器的通带和阻带都具有等波纹特性,因此通带,阻带逼近特性良好。
3、对于同样的性能要求,它比前两种滤波器所需用的阶数都低,而且它的过渡带比较窄。
但是椭圆滤波器传输函数是一种较复杂的逼近函数, 利用传统的设计方法进行电路网络综合要进行繁琐的计算, 还要根据计算结果进行查表, 整个设计, 调整都十分困难和繁琐。而用MATLAB 设计椭圆滤波器可以大大简化设计过程。 3.2椭圆滤波器设计的数学推导
椭圆滤波器的振幅平方函数为 :
2
22
1
()1/a N p H j R εΩ=
+ΩΩ()
(1) 其中()
p ΩN R 是雅可比(Jacobi) 椭圆函数,雅可比椭圆函数()
p ΩΩ=N R 是阶数N 的有理函数,N=5时的特性曲线如图1所示。
图1 N=5时雅可比椭圆函数的特性曲线
由图1 可见,在归一化通带( - 1 ≤Ω ≤1) ,2
5R (Ω) 在(0 ,1) 间振荡,而超过L Ω 后,25R (Ω) 在( 2L , ∞) 间振荡。L 越大,L Ω也变大。这一特点使滤波器同
时在通带和阻带具有任意衰减量。L 是一个表示波纹性质的参量。
雅可比椭圆函数还具有以下性质:
()
Ω=
⎪⎭⎫
⎝⎛ΩN N R R 11 (2) 阶数N 等于通带和阻带最大点和最小点的总和,ε为与通带衰减有关的参数。 系统函数和阶数N 是由系统下面的性能指标来确定的,主要有:截止频率C Ω,通带最大衰减P A 和阻带截止频率S Ω以及阻带最小衰减S A 。
假定0Ω是频率归一化的基准频率,即
S C ΩΩ=Ω0 (3)
定义频率的选择性因数k 为
S
C
ΩΩ=
k (4) 则截止频率分别归一化为
k
k C 1
0==ΩΩ=
Ω (5) 再次假定
()()
25
.0225
.02
11115
.0g k k -+--= (6)
13
905
0015152g g g g g +++= (7) S A b 1.0210= (8)
P
A 1.0210=ε (9)
则得到椭圆滤波器的阶数N 为
⎪⎪⎭
⎫ ⎝⎛⎪
⎪⎭⎫
⎝⎛--≥
g N 1lg 11b 16lg 22ε (10)
这时,令归一化的基准频率为10=Ω,则得到归一化后的椭圆低通滤波器的系统函数为
()()∏=+++=M i i
i i
aN C B s A s s D H s H 12
200 (11)