飞机柔性装配型架关键特性的识别与控制
飞机装配-装配型架的安装
问题一:型架安装不正
总结词
型架安装不正会导致飞机装配出现问题,影响产品质量。
详细描述
可能由于地面不平整、安装人员技能不足或测量误差等原因,导致 型架安装不正。
解决方案
在安装前确保地面平整,使用水平仪进行校准;加强安装人员的技 能培训,提高测量精度,确保型架安装正确。
问题二:型架部件损坏
1 2
总结词
安装后的检查与调整
几何精度检查
使用测量工具检查型架的整体几何精度,包 括平面度、垂直度和扭曲度等。
紧固件检查
对所有使用的紧固件进行检查,确保它们紧 固、无松动。
定位器检查
检查定位器的功能是否正常,确保它们能够 准确、稳定地固定飞机部件。
调整与修正
根据检查结果,对型架进行必要的调整和修 正,以确保其满足飞机装配的要求。
通过自动化装配技术,可以大幅提高 装配效率和精度,减少人工干预和人 为错误。
柔性装配技术
柔性装配技术是指利用柔性工 装和柔性制造系统实现飞机装 配灵活性和可调整性的技术。
通过柔性装配技术,可以实现 不同型号、不同规格的飞机装 配的快速转换和调整,提高生 产效率和适应能力。
柔性装配技术还可以降低生产 成本和资源消耗,提高企业的 市场竞争力。
感谢您的观看
THANKS
检查型架的结构完整性,确保无损坏或变形。
载重能力检查
检查型架的载重能力,确保满足使用要求。
保养与维修
维修与更换
对损坏或磨损严重的部件进行维修或更换, 确保型架的正常使用。
润滑保养
定期对型架进行润滑保养,保证其正常运转。
记录与报告
对维护和保养过程进行记录,并及时报告异 常情况。
05 装配型架的常见问题及解 决方案
飞机数字化柔性装配关键技术及其发展_邹方
装配测试
1. 自动激光超声检测技术 2. 外形数字化柔性测量技术 3. 数字化检漏技术
1. 激光超声波检测仪 2. 三维光学成像测量系统 3. 便携式计算机辅助红外照相测量系统
可以组成数字化柔性装配系统。 飞机的装配一般分为4个阶段:
装配设计、装配准备、装配进行、装
进入90年代,人们越来越重视飞 中,各主机厂都不同程度地采用了这 2005 年实现每月生产 38 套机翼,在
机的装配技术。最为著名的有欧洲 种技术。
机翼翼盒自动装配研究项目的第二期
JAM(Jigless Aerospace
洛克希德·马丁公司在先进军机 (AWBA II,1998 年启动,为期2年)
M a n u f a c t u r e )、欧洲 A D F A S T 研制中采用了“柔性装配技术”,应 中考虑了多种柔性装配技术,以便降
装配关键特征树
务,尺寸调整复杂困难,严重影响飞 机的交付周期;
(2) 由于飞机的部件与全机身装
产品图
装配后的产品
配的自动化水平低,严重影响了飞机
的有效装配时间和加工质量的一致
性,装配效率低;
(3) 模拟量移形技术协调问题多, 约占整个新机研制技术问题的 80%,
产品零件图
制造后的零件装配 制造
严重影响周期;
2 0 0 6 年第9 期 航空制造技术 31
专 稿 SPECIAL PAPER
用了自动化装配技术,这些工作为我
数字化柔性装配是建立在计算机 完成装配任务,达到优质、高效、低
国开展柔性装配技术的研究提供了一 数字信息处理平台上的融合飞机的全 成本、节省时间。先进的飞机柔性装
定的研究基础。
数字量协调体系,应用计算机信息技 配技术是保证飞机部件和飞机整体性
飞机框式部件柔性装配型架的研究
华
10 3 2 阜 新 衡 天 矿 山设 备 安 全 检 测 有 限 责 任 公 司 , 1 16;. 辽
摘 要 : 机 框 式 部 件 柔 性 装 配 是 实 现 飞 机 柔 性 装 配 的关 键 性 技 术 之 一 , 数 字 化 技 术 贯 穿 于 部件 的工艺及 装配 型架制造 过程 的分析 , 结合 飞机数字 化制
主要 的承力 部件 , 以加强 框 上 的零 件 连 接一 般 所 采 用铆 接 。
将 这种 框与 蒙皮 划 分 为 一 个装 配单 元 , 即壁 板 式 装配 , 而不单 独进 行框 的装 配 。加强 框承 力较 大 ,
一
2 飞 机 框 式 部 件 专 用 装 配 型 架
目前 国内各 主机 厂 的框式部 件装 配均 采用 一 种专 用 的工 艺装 备—— 框 装配 型架 。这种 专用 型 架 的局 限性在 于 每 当新机 种 生 产 时 , 架 必 须 由 型 具 有 实 践 经 验 的专 家 重 新 设 计 J 专 业 厂 家 生 ,
加 强型 材一般 铆 接在 框板 上 , 加强 作用 。 起
框 在装 配时 的 定位 方 式 有 定 位 板定 位 、 线 划
5 % , 最终 产 品质 量 在 很大 程 度 上 取 决 于装 0 且
配 的质量 ¨ 。飞机 的装配 型架 是保 障 飞机 制造
质 量 的最后屏 障 , 是完 成飞 机各组 件 、 部件 及整 机
历的。
表 1 框 式 部 件 装 配 型 架 的 生产 状 况
序 号 名 称
l 2
结构 与装配型架并行设计 以及柔性设 计技术是 国外 飞机装配型架采用的新方法和新技术 J 。
1 飞机 框 式 部 件 的工 艺 性 分 析
机身柔顺对接装配及接触力分析方法
机身柔顺对接装配及接触力分析方法摘要:飞机组装是飞机制造过程中的主要任务它是根据设计图纸、参数要求、技术标准和技术规定,根据飞机制造中的可互换性要求和尺寸协调原则,组装和连接飞机产品零部件的过程,目的是将零部件和整个设备形成一体飞机组装是一项综合、复杂、多学科和多学科的技术,对飞机产品的制造、生产周期和组装质量产生重大影响。
本文主要分析机身柔顺对接装配及接触力分析方法。
关键词:飞机装配;翼身对接;叉耳对接;柔顺装配;接触力建模引言飞机装配是飞机制造过程中的重要组成部分,涉及学科领域广泛、难度较大,是一项综合性制造技术。
其中,机翼装配精度要求高、配合件昂贵、装配难度大,精度要求在0.05mm以内。
传统机翼机身对接装配使用专用型架配合人工辅助的方式进行装配,由于人工操作误差、型架制造误差,机翼位姿精度难以保证,而机翼连接结构间隙狭小,装配过程中产品易发生变形、碰撞和磨损。
为了提高装配质量,目前主要有两种方式:(1)使用由数字测量系统、数字定位装置、控制系统组成的数字化调姿定位系统来提高调姿定位精度;(2)使用柔顺对接技术来平滑对接过程中的接触力。
但上述方式仍难以保证对接装配的顺利进行。
1、机翼装配数字化调姿及柔顺对接机构机翼结构形式多种多样,如边条翼、后掠机翼、前掠翼和三角翼等,翼身对接形式也不尽相同,如叉耳、轴孔和齿垫等形式。
为降低制造成本、提高装配效率,需要设计一种面向机翼对接装配的柔性工装,通过快速重构满足不同机型、不同连接形式的对接装配要求。
基于上述需求,浙江大学飞机数字化装配课题组设计了一种结合数字化调姿定位技术与柔顺对接技术的机翼数字化调姿对接系统。
该系统既可以满足机翼在各种小间隙连接形式中的低应力无损装配,又实现了调姿对接系统与装配部件“一对多”的模式,不再局限于特定机型、特定对接形式,充分体现了数字化、柔性化的装配理念。
2、机身结构分析与装配工艺设计机身是飞机的核心,通常结构与其他飞机相同。
飞机前机身柔性装配平台控制系统设计
— —Βιβλιοθήκη - . | 2 5 2 一 .
匝亘 固
—— ; ; ;
飞机前机 身柔性装配平台控制 系统设计
The f l e xi bl e as sem bl y pl at f or m con t r ol s y st em desi gn o f t h e Pr i or ai r cr a f t f us el age
全 贴 合并 且 均 匀分 布 的 吸 附 点 阵 ,能 精 确 、牢 固
地夹 持壁板 以完成钻 孔 、铆 接 和铣切 等 工作 。
相 对 来 说 ,国 内在 该 方 面 发 展起 步 较 晚 , 虽 然 做 了许 多 相关 技 术研 究 ,但 是 水 平 差 距依 然相 当 大 。 国 内 如 西 飞 、 成 飞 和 洪 都 等 仍 大 量 采 用
摘 要 :针对现阶段 一种装配平台只 能完成 一种型号飞机前机身装配作业的现状 ,本文提 出一种针对不 同型号飞机 的前机身柔 性装配平 台的设计方法 。本文详细介 绍了该柔性 工装平 台多 轴复 合控 制的运行 原理 ,通 过进.  ̄ PL C的R S 4 8 5 控 制系统 网络 的搭建 ,实现 了对该工装平 台控制系统 的整体设计 ,同时基于V c + + 和c A T I A 的二次开发完成 了伺服系统和上位机控制系统 的设计 。 并运用三 坐标测量机 对该柔性 工装单元进行 了精度检验 ,结果表明该控 制系统 能够 满足 工装 平台的功 能和精度要 求 ;同 时该 项技术能够 降低航空制造 业的生产 成本、缩短产品 的生产周 期 、减少劳动强度 ,对数字化柔性 工装技术 的进 一步深入研究具有重要意义。
传 统 的刚 性 工 装 型架 进 行 人 工 装 配 ,装 配 的 自动
飞机装配定位方法及其应用案例
一、飞机装配定位方法及其应用案例飞机装配过程一般是由零件先装配成比较简单的组合件和板件,然后逐渐地装配成比较复杂的锻件和部件,最后将部件对接成整架飞机;机翼和机身具有不同的功能,故结构不同,所以要设计成两个单独的部件,发动机装在机身内,为便于更换,维护和修理,将机身分为前机身和后机身,鸵面相对于固定翼作相对运动,故划分为单独部件,某些零件设计有可卸件,以便维护,检查及装填用;在装配过程中首要问题是要按图纸及设计要求确定零件,组合件之间的相对位置,即进行装配定位;;定位方法是完成在装配过程中定位零件、组合件的手段,包括基准件定位法、画线定位法、装配孔定位法和装配型架定位法四种常用的定位方法:1、用基准零件定位待装配的零件、组合件以基准零件、组合件或者先装的零件、组合件来确定装配位置;这种装配定位方法简便易行,装配开放,协调性好,在一般机械产品中大量使用;基准零件一般是先定位或安装好的零件,零件要有足够的刚度及较高的准确度,在装配时一般没有修配或补充加工等工作;在飞机制造中,液压、气动附件以及具有如图1-1所示,连接框和长行用的角片可以预先装在长行上,然后按角片确定框的纵向位置,或者在骨架装配时按框和长珩定位角片;这种基准件定位法要求基准件位置准确、刚性强,多用于小零件和小组合件的定位,方法简单、方便;2、用画线定位即待装配的零件按画在零件上的线条确定装配位置,如图1-2所示,角材位置按腹板上划线定位;这种定位方法准确度较低,一般用于刚性较大,无协调要求和位置准确度要求不高的零件定位;还有此方法工作效率不高,容易产生差错,所以在飞机研制阶段为了减少工艺装配数量,采用这种方法定位零件,在成批生产中作为一种辅助的定位方法3、用装配孔定位即是把相互连接的零件、组合件分别按一定的协调手段,具体过程如下:装配以前,在各个零件的部分铆钉位置上一般是每隔400mm左右钻一个装配孔,孔径比铆钉孔径小预先按各自的钻孔样板分别钻出装配孔,装配时个零件之间的相对位置按这些装配孔设置;如图1-3所示;其中,孔称为装配孔;装配孔的数量取决于零件的尺寸和刚度,一般不少于两个;在尺寸大、刚性弱的零件上取的装配孔数量应适当增加;这种定位方法在铆接装配中应用比较广泛;它适用于平面型和单曲面壁板型组合件装配;按装配孔定位的特点:1定位迅速、方便;2减少或简化装配型架;3开敞性好;4比画线定位准确度高;用装配孔定位的装配方法不需要使用专用夹具,故在成批生产中,在保证准确度前提下,应尽量使用装配孔定位的方法;对一些形状不是很复杂的组合件或板件,如平板、单曲度以及曲度变化不大的双曲度外形板件,都可采用装配孔方法进行装配;4、用装配型架定位最基本的一种定位方法;准确度取决于装配型架的准确度,保证装配准确度先保证装配型架的准确度;由于飞机的零件、组合件尺寸大,刚度小,因此,为了进一步提高零部件之间的协调性和互换性,确保装配准确度,在飞机装配中通常采用装配型架夹具定位来保证零组件在空间相对准确的位置关系;装配型架定位是飞机制造中最基本的一种定位方法,它除了起定位作用外,还有校正零件形状和限制装配变形的作用;一般机械产品的装配夹具是为了提高生产生产率,而飞机装配型架的主要功能是确保零件组件在空间相对正确位置;零件定位、校正零件组件的空间位置的准确度;图1-4 机翼装配型架示意图图1-4所示为机翼装配型架示意图;机翼外形由卡板定位,机翼接头及副翼悬挂接头由反映部件之间连接关系的接头定位器来定位;飞机装配中采用了大量装配复杂的型架,使制造费用大,生产准备期长,因此,在型架设计中应仔细研究各装配单元的定位方法,在确保准确度的前提下,综合采用各种定位方法,使型架结构尽可能简单;装配型架定位的特点:1装配的准确度高,有校验零件外行和限制装配变形的作用;2定位迅速、方便,可以提高装配工作生产率;3装配工作不够开敞,定位件占具空间;4保证产品达到生产互换和使用互换的要求;5生产准备周期长;5、用坐标定位孔定位,定位孔分别配置在型架和零件上而装配孔在装配的两个零件上;6、用基准定位孔定位,基准定位孔是配置在两个组合件板件或者锻件,而装配孔在两个零件上对定位的要求:1保证定位符合图纸和技术条件所规定的准确度要求;2定位和固定要操作简单可靠;3所用的工艺装备简单,制造费用少;二、飞机装配型架的作用及其应用案例型架的功用:1、保证产品的准确度及互换性;首先,应有过定位来保证零件的准确形状,这样才能保证工件在装配过程中既有准确形状又有必须的工艺刚度;其次,无论铆接、胶接、焊接,在连接中都产生不同程度的变形,装配型架要能限制工件的变形;第三,一般机械制造中保证产品互换性主要通过公差及配合制度和通用量具,而飞机制造中通过相互协调的成套的装配型架;因此型架的另一特点是成套性和协调性;2、改善劳动条件,提高装配工作生产率,降低成本;飞机装配型架关键特性具有一般关键特性的特点,同时结合飞机柔性装配型架与数字化测控制系统在飞机装配中的应用,飞机装配型架关键特性还具有一些独特的特点:1在装配型架设计阶段,根据用户需求与被装配产品特点,结合当前企业拥有的加工、制造等能力,设计产品装配型架;在设计过程中主要涉及为保证飞机产品主要尺寸和位置的定位器设计、保证产品外形准确度的定位面的设计等,初步把这些主要尺寸作为关键特性进行控制;装配型架关键特性与一般关键特性一样根据关键特性的可测量性和可控制性沿制造树逐级向下传递,形成关键特性树,同时上级关键特性由下级关键特性保证;2在装配型架安装阶段,把设计阶段定义的保证产品主要尺寸和外形准确度等定位特征作为关键特性,在主要定位结构上设置靶标点,把测量靶标点的坐标与理论坐标相比较,进行实时反馈和补偿,精确安装各种定位器;3在产品装配阶段,控制系统控制随动定位器运动到理论位置以精确定位产品,把这类通过控制系统控制的随动定位器或定位机构的精确定位也作为关键特性进行控制;航空制造业的竞争日趋激烈,人们要求飞机的承载能力更强,更高效,而交货周期却更短;为满足这些严格的要求,飞机设计师不得不寻求更先进的设计方法和工具,以提高产品质量,缩短研制周期;有限元分析方法和智能设计系统加速了产品的优化设计,使零件、组合件的设计达到了前所未有的精度;这些先进的方法和工具为型架设计方法的改进提供了技术基础;传统型架设计方法存在的问题飞机结构件尺寸大,刚度小,而制造精确度要求高;为保证产品制造精度和互换协调,飞机制造过程中采用了成套装配型架;为减小装配过程中结构的变形并保证准确定位,现有装配型架采用刚性结构,而且一套型架只能用于一个装配对象,因此,飞机许多公司都采用了“确定装配”生产准备过程中需制造大量的装配型设计方法;架;由于尺寸大,结构复杂,因此,装确定装配是用来描述产品设计过程的配型架的制造周期长,成本高,而且占一个术语,其基本思想是构成产品的地面积大;传统的装配型架上要安装许多定位件,为保证定位精度,定位件的安装往往需要专用安装仪器,如电子经纬仪、激光准直仪等,工作的分散性差,安装效率低,安装周期长;一般飞机生产准备周期占飞机研制周期的1/2以上,而装配型架的设计制造是飞机生产准备的主要内容之一;减少型架的制造时间对缩短整个飞机研制周期有重要意义;为缩短生产准备周期,人们希望飞机设计完成后,生产工装很快就能投入使用,而型架设计的依据是飞机结构数据,因而传统的型架设计往往在飞机设计完成后才开始进行;实际生产过程中,在型架设计中确定装配设计方法装配对象的设计数据经常改动,导致装配型架的设计随之改动,这又延长了型架的设计制造周期;确定装配设计方法为缩短飞机研制周期,目前国外许多公司都采用了“确定装配”设计方法;装确定装配是用来描述产品设计过程的一个术语,其基本思想是构成产品的不同零件在预定义的结合面配合装配,整个装配过程不需要专门的测量仪器和复杂的测量及调整;确定装配设计方法属于面向制造和装配的设计方法的一部分,这种设计方法的潜在好处是减少工装和工具,提高装配效率,从而减少生产准备周期和制造费用;从理论上讲,这种设计方法要求零件的准确度高,不同零件“吸附在一起Snaptogether”就可保证产品装配的准确度;因此,这种设计方法必须以三维CAD系统和智能设计为设计工具,以高精度CNC设备为加工手段;在型架设计中确定装配设计方法的一个具体应用就是采用“销钉板”Pegboard,比如在立柱上加工许多标准的坐标孔,有相应标准的销钉与坐标孔配合;为了定位装配对象,专门加工了许多定位用刻度板完成专用结构的设计制造,这些刻度板上也有坐标孔,专用门加工了许多定位用刻度板,这些刻度板上也有坐标孔,可以通过销钉及相应的坐标孔将刻度板定位在立柱的销钉板上;刻度板是专门针对针对装配对象的特点加工的,用于桁条等结构的定位;飞机结构和装配型架的并行设计民用飞机的结构尺寸愈来愈大,如目前最大的超大型客机A380,双层客舱,高24m,长73m,翼展宽80m,标准机型载客550~650人;飞机结构的大型化对设计人员提出了新的挑战;由于结构尺寸的增大,设计人员需要解决承载和空气动力外形方面所遇到的许多问题,从而导致设计周期更长,设计更改更多,这必然影响工装的设计、制造周期,延长了产品的上市周期;要缩短产品上市周期,在飞机结构设计的同时就应开始工装设计,即飞机产品和飞机工装的并行设计;由于工装的设计依据来源于飞机产品数据,要在最终产品数据还未确定的情况下进行工装设计,工装的部分结构必须独立于产品数据;工装和产品并行设计的一个基本思路是改变传统的工装结构,将其划分为独立于产品数据或只需要基本数据的标准结构和依赖于最终产品数据的专用结构件两部分;装配型架的标准结构部分主要有立柱、底座、辅助支撑等,专用部分主要有用于定位桁条的刻度板、接头定位件等;专用件一般尺寸较小,设计、加工制造周期很短,并且不需专门的大型加工设备;标准结构的设计不需要最终产品数据或只需一些基本数据,因此在飞机产品设计的初期就可进行设计制造可进行设计制造,当产品最终版本发放后只需较短的时间就可完成专用结构的设计制造;标准件和专用件采用确定装配设计方法非常方便,并且不需专用安装工具,装配周期短;这样,在产品设计完成后很短时间内型架就可投入产品装配;确定装确定装配和并行设计方法在A380壁板装配型架的设计制造中取得了巨大的成功;空中客车英国公司以三维零件实体定义和开发的智能设计系统为工具,制造工程师可以将零件几何特征很快转换为桁条定位指针,用于定位每一个桁条;装配型架的柔性设计大型飞机的装配型架更加庞大,制造周期长,占地面积大;传统的装配型架采用刚性结构,一套型架只能装配一个组合件或部件;柔性装配型架可以装配不同产品,能够减少型架数量,从而减少工装制造周期和费用,减少生产用地;柔性设计的基本思想是在型架中采用可以快速调整的机构,以满足不同装配对象的装配要求;一般型架有数个立柱,每个立柱上有多个定位件;分析A340-600的柔性型架的桁条定位部分可以发现;柔性型架的立柱、定位件,甚至底座都是可以移动或调整的;采用确定装配设计方法设计制造的A380壁板装配型架有数个桁条定位在型架上;型架的立柱上有带多个坐标孔的“销钉板”上;定位桁条的刻度板通过定位梢固定在“销钉板”上;立柱上的定位指针在Z向可以通过螺纹调整,通过丝杠可以在Y向移动;立柱通过底座上的导轨可作X向移动;为了保证装配对象在Y向的定位,在底座上往往有多个辅助支撑;辅助支撑通过导轨可作X向移动,Y向定位点可以通过调整伸缩顶杆来调整;空客英国公司制造的柔性高速铆接系统中有两套柔性装配型架,可以铆接A330/340,A319/320/321;A300系列飞机机翼上下共有12种壁板,型架经过一定的调整,还可用于8种壁板的装配;每套型架有10个可移动的立柱,2个围框式接头定位板,5个辅助支撑及底座;每个立柱上有一套定位系统以满足不同壁板结构的定位要求;定位系统包括4个可调节指针定位机构,其中上下2个指针从蒙皮外表面定位,中间两个指针从蒙皮内部对壁板定位;大型飞机装配型架在飞机研制过程中占有重要地位,其设计方法对飞机研制周期有较大影响;柔性设计方法和并行设计的采用可明显缩短型架的制造周期,减少型架数量和占地面积,对降低成本和缩短研制周期具有重要的影响;确定装配设计方法是并行设计和柔性设计实施的基础,而确定装配设计方法必须以三维实体定义和智能设计系统为设计工具,以提高CNC加工设备为手段;三、飞机装配中胶接工艺特点及其应用案例胶接是利用胶粘剂在联接面上产生的机械结合力、物理吸附力和化学键合力而使两个胶接件起来的工艺方法;胶接不仅适用于同种材料,也适用于异种材料;胶接工艺简便,不需要复杂的工艺设备,胶接操作不必在高温高压下进行,因而胶接件不易产生变形,接头应力分布均匀;在通常情况下,胶接接头具有良好的密封性、电绝缘性和耐腐蚀性;胶接是通过胶粘剂将零件连接成装配件的一种方法;与传统的连接方法相比有以下显著的特点:胶接的优点:1不削弱基体材料,形成的接缝时连续的,受力分布比较均匀,连接薄板时,改善了支撑情况,提高了临界应力;2减轻结构重量,提高疲劳强度;3多层胶接提高材料利用率,提高结构破坏安全性能;4胶接结构平滑,有良好的气动性能;5有良好的密封性;6胶接层对金属有防腐保护作用,可以绝缘和防止电化学腐蚀胶接的缺点 ;1性能分散力较大;2生产质量控制要求严格;3胶接质量不易检查;4使用范围受限制,存在老化问题;由于上述的种种优缺点,胶接技术在工业和生活中的应用非常广泛; 当今金属胶接技术的发展方向;1 不断完善及提高胶接质量品质;2 不断降低成本、提高生产效率;3 开拓和发展新材料、新结构的航空胶接技术;胶接的一大重要应用是设备的密封;用液态的密封胶代替传统的橡皮、石棉铜片等固态垫料,使用方便,且可降低对密封面加工精度的要求,同时密封胶不会产生固态垫片因压缩过度和长时间受力而出现的弹性疲劳破坏,使密封效果更加可靠;航空工业是胶接应用的重要部门;由于金属联接件的减少,胶接结构与铆接或结构相比,可使机件重量减轻20~25%,强度比铆接提高30~35%,疲劳强度比铆接提高10倍;因而现代飞机的机身、机翼、舵面等都大量采用胶接的金属板金结构和蜂窝夹层结构,有的大型运输机胶接结构达3200米,有的轰炸机胶接面积占全机表面积的85%;胶接结构在航天领域中必不可少,它有着阻裂、吸波、减震、隔音等特殊作用已经广泛应用于航天工业当中;图3-1 现代飞机的胶接然而在传统的飞机制造过程中需要大量铆钉将金属板连接起来一架小型飞机需要上万个铆钉,若采用胶接代替铆接,可使飞机质量减轻20%、强度提高30%}IZ};如果飞机机身的壁板、整体油箱、机翼的零部件、直升机旋翼、舱门和地板等均采用胶接结构,可明显减轻飞机的质量、改善抗疲劳性和抗腐蚀性能,并具有节油提速增加航程、气动性能好、工艺简单、降低成本、密封绝缘、表面光滑美观和应力分布均匀等优点;目前在各种军用飞机、民用飞机的制造过程中,许多部位均采用结构胶进行粘接与密封如机身隔框、后机身蒙皮、发动机整流罩、副翼蒙皮、机翼前缘、垂尾和平尾前缘、翼根整流片、飞机油箱、机窗、座舱13-14}以及隔板、压板、防火层、出人门、窗口、气孔、管路、机身门窗、各种箱盖端面、垂尾及方向舵连接处等;所谓大飞机是指起飞总质量超过100 t的运输类飞机,既包括军用、民用大型运输机,也包括150座以上的干线客机;近年来在国际大飞机项目研究中,高分子胶粘剂的作用举足轻重:①具有粘接飞机零部件的作用;②具有良好的使用性能如优异的加工性能、良好的热性能、优良的粘接性能、低密度、抗老化性优和环境稳定性好等;因此,胶接结构取代传统连接方式是一种必然趋势,对提高产品性能、减轻结构质量、简化制造工艺和降低费用等具有明显作用;在飞机制造过程中使用的结构胶主要有①青结构胶,如自力-2,J-44-1,SY-13 ,J-40和SY-18等;②酚醛/丁睛结构胶,如JX-4 ,J-04,XJ-9,SF-1 ,JX-9,J-O1用于粘接金属、非金属结构件,20℃剪切强度>20 MPa,150 }C剪切强度>9 MPa和J-1520℃剪切强度>29.4 MPa , 150 }剪切强度>>15.7 MPa,250 }C剪切强度>>8.0 MPa等;③氨酚醛/丁睛结构胶,如J-03 20 }C剪切强度20 MPa,150 9C剪切强度7 MPa等;④酚醛/EP/丁睛结构胶,如J-42等;⑤改性EP结构胶,如自力一4,SL-1等;OEP/聚硫结构胶,如SY-16等;⑥酚醛/缩醛/EP结构胶,如SY-32等;⑦酚醛/缩醛/有机硅结构胶,如204等;我国从20世纪50年代末开始研制航空用结构胶比国外晚了1020年:首先仿制了尼龙/酚醛有孔蜂窝结构胶,其缺点是耐水性能很差;然后改用了自制的丁睛/酚醛结构胶耐温200 0C 20世纪70年代初,成功研制出环氧/丁睛型自力一2结构胶,并将其用于直一五机旋翼无孔蜂窝后段的胶接,从而有效解决了有孔蜂窝结构开胶等问题;随后开发了多种无孔蜂窝结构胶及其配套胶;20世纪80年代,环氧/聚矾型胶粘剂;SY-14胶膜研制成功;1984年,磷酸阳极化耐久铝蜂窝芯研制成功;20世纪90年代,研制出包括胶膜I}l、底胶和发泡胶在内的中温固化、高温固化结构胶系列,特别是中温固化结构胶的应用使航空技术有了较大的进展;近年来某些主要的飞机制造公司相继建立了胶接生产线:西飞公司的胶接生产线,其面积达6 000 mZ,热压罐最大直径3.6 m、长lOm;沈飞公司的铝合金磷酸阳极化工艺取消了含铬酸盐脱氧工序,采用硝酸脱氧,在国际上处于领先地位;近三年来,我国航空等运输用胶粘剂用量的增长率达到11.8%左右},由此说明国内航空用胶粘剂的需求量与日俱增;国内自制的胶粘剂很多都不能满足使用要求,因此每年必须进口大量结构胶和密封胶固;1998年我国自制的胶粘剂仅占世界总量的7%,而美国产品占35%I'}1;航空用胶粘剂更是少之又少;国内客机中大多采用自力一2等结构胶;胶接结构在航天领域中必不可少,它有着阻裂、吸波、减震、隔音等特殊作用已经广泛应用于航天工业当中;图3-2 Cy-35随着近代科学技术的快速发展,运载火箭、洲际导弹、航天飞机等空间运载工具以及飞机、汽车、船舶等交通工具都朝着质量轻、可靠性好、寿命长和能耗低等方向发展;这些新的设计理念对胶粘剂的性能提出了更高的要求,即胶粘剂既要具备良好的综合力学性能,还要具备足够的耐热性能,’};在飞机高速飞行过程中,蜂窝结构件外表的局部温度可260--316℃,其内部温度也可达到200-260℃;由于铝合金的最高使用温度是180℃,故必须采用钦合金或碳纤维复合材料来制造蜂窝结构件;这种结构的设计要求胶粘剂除了具有耐高温性能之外,还必须对钦合金、碳纤维复合材料等具有良好的粘接性能;因此,航空航天等高科技领域对结构胶综合性能的要求越来越高,21世纪的民用飞机要求结构材料必须朝着低密度、高强度、高韧性、耐高温、抗氧化、抗腐蚀、抗疲劳以及隐身吸波性好等方向发展,而优良的航空用结构胶在制造满足上述要求的航空结构部件方面,具有重要的作用;近年来飞机上所用胶粘剂的品种不断增多、数量不断增大,其中改性EP环氧树脂胶粘剂4占68%,此外还包括改性PU聚氨醋、聚酞亚胺5-6和双马来酞亚胺等胶粘剂;另外,结构胶已广泛用于客机的制造:波音一747飞机胶接面积3 200 mz ,洛克希德公司L-1011飞机2 800 mz ,德国MBB公司A300飞机586 m2和A310飞机631 m2 ;而美国B-58飞机上的机身机翼、操作面和整流罩等部位,其胶接面积为全机的80%四、先进飞机装配技术及其应用案例飞机装配是根据尺寸协调原则,将飞机零件或组件按照设计和技术要求进行组合、连接形成更高一级的装配件或整机的过程;社会的需求、市场竞争及相关技术的不断发展,推动着飞机装配技术不断向更高水平演进;迄今为止,飞机装配技术已经历了从人工装配、半自动化装配到自动化装配的发展历程,目前快速发展的柔性装配将自动化装配技术推向了一飞机装配技术已经历了从人工装配、半自动化装配到自动化装配的发展历程,目前快速发展的柔性装配将自动化装配技术推向了一个新的高度;国外先进装配技术的发展状况近10余年来,国外飞机装配技术发展迅速,以B777、A340、A380、F-22、F-35等为代表的新型军、民机集中反映了国外飞机制造技术的现状和发展趋势,在装配技术上基于单一产品数据源的数字量尺寸协调体系,实施数字化尺寸工程技术,通过装配仿真实现装配过程优化,应用柔性模块化的工装技术、加工和检测单元并集成应用为一系列的自动化装配系统进行机体结构的自动化装配,大量米用了长寿命连接技术,实现了长寿命飞机结构的高质量、高效率装配;下面分别从自动化装配工装、自自动化装配单元、自动化装配系统、自动制孔、自动钻铆、装配检测、数字化装配管理技术等方面来介绍国外先进装配技术;1、自动化装配工装技术与传统的装配工装不同,国外装配工装已经发展成数控自动化工装,主要包括行列式柔性装配工装、多点成形真空吸盘式柔性装配工装、分散式机身柔性装配工装、自动对接平合等几类,它们具有模块化、数字化和自动化的特点;1 行列式柔性装配工装行列式柔性装配工装包括壁板工装和翼梁工装;前者用于空客系列民机的机翼壁板的装配,后者用于波音飞机如B-737、B-777、C一17 等飞机翼梁的装配;空客机翼壁板柔性装配工装可完成A330/340、A319/ 320/321 /A300系列飞机的机翼壁板的装配;最新的A380飞机也采用了此类装配工装;。
浅谈飞机柔性装配技术
浅谈飞机柔性装配技术【摘要】本文结合国内现阶段飞机生产装配情况,并与国外先进装配工艺进行比较,探讨了飞机数字化生产阶段采用柔性装配技术的优势与发展前景。
【关键词】数字化;柔性化装配;技术0 背景飞机装配是将大量零件按图纸进行定位与连接的过程,是飞机制造的重要环节之一,其工作量约占整个飞机制造劳动工作量的一半左右。
在传统的飞机装配过程中,需要用特定的工装型架来保证装配精度,由于飞机气动外形的差异,导致型架是唯一的。
伴随用户需求的不断变化与丰富,飞机装配生产线也将越来越“丰富”。
传统的“硬性”装配生产线在未来将受到挑战,这种“一对一”的装配模式,其配套专用型架的设计、生产和调试周期很长,且体积大、成本高、占地面积大,不利于产品的研制与快速布局生产。
随着近年来飞机设计行业内数字化、信息化的推进,越来越多的零件将抛开传统的基于模线样板的模拟量传递走向数字化信息传递之路。
而采用传统的型架进行人工装配的方式,自动化和柔性化水平低,已无法满足精确化制造装配的要求。
1 国内外研究现状飞机的数字化装配技术于20世纪90年代在欧美等航空制造业发达国家开始使用,柔性装配技术是近几年才逐渐在航空制造业开始研究和部分应用于生产。
国外飞机制造技术表明,采用柔性能够装配是缩短生产周期,降低生产成本的有效措施。
它能克服传统飞机制造业模线-样板法在模拟量协调体系下需要大量实物工装且应用单一,制造周期长,费用高,厂房利用率低等缺点,它通过与柔性工装、自动化制孔设备、数控钻铆或自动铆接等设备的集成可组成自动化,数字化的柔性装配系统,能明显缩短装配周期,提高和稳定装配质量。
据悉,在装配中使用了体现柔性工装特点的龙门钻削系统技术的X-35战机,其制造周期缩短了三分之二,工装由350件减少至19件,制造成本降低了一半。
其采用的激光定位,电磁驱动能实现精密制孔,不仅能降低钻孔出错率,而且大大降低了工具和工装。
目前,北航与沈飞合作,在国内研制出首个针对壁板类组件的柔性装配工艺装备—数控柔性多点装配型架。
飞机部件装配数字化柔性工装技术研究
设备研制EQUIPMENT DEVELOPMENT[摘要] 面向新一代飞机机身部件数字化、柔性化装配需求,基于柔性工装技术,设计了飞机机身部件数字化柔性装配工装系统。
通过研究数字化柔性装配工装及其相关技术,详细设计了柔性工装的机械系统,建立了基于现场总线技术的工装运动多轴控制系统,开发了柔性工装系统专用的装配数据生成软件。
飞机部件装配数字化柔性工装的设计,为在国内推广应用柔性装配工装技术,构建数字化柔性装配生产线,实现新一代飞机的全数字化装配奠定了基础,具有重要的现实意义。
关键词:机身部件 柔性工装 柔性装配生产线[ABSTRACT] The system of digital flexible as-sembly tooling to the fuselage for requirement of fl exible assembly of next-generation aircraft is designed based on fl exible tooling. By studying on digital fl exible assembly tooling and its related technologies, mechanical system of the fl exible tooling is designed, multi-axis motion control system for tooling based on fi eld bus technology is estab-lished, and fl exible tooling system specifi c to the generat-ing software of assembly data is developed. By the design of digital fl exible assembly tooling for aircraft fuselage, it has important practical signifi cance that promotes applica-tion of fl exible assembly tooling, to build fl exible assem-bly line and achieve full digital assembly which lays the foundation for next-generation aircraft.Keywords: Fuselage Flexible tooling Flexible as-sembly product line飞机部件装配过程是将大量的飞机零件按照数模、相关技术要求等进行组合、连接,实现从零件到组件,再到段件,最终形成部件的过程[1]。
飞机数字化装配柔性工装技术体系研究
飞机数字化装配柔性工装技术体系研究摘要:在飞机组装的数字和柔性化背景下,国内航空业是强有力的倡导者。
要研究飞机柔性工装的数字装配技术,建立柔性工装数字装配技术体系,制定国产柔性工装设计和应用标准和指南。
这有助于提高国内飞机装配工具的数字化,技术柔性化工装应用。
随着我国经济、社会和科学的飞速发展,各行各业的可持续发展,飞机制造的质量和产量不断提高,已经不能满足当前的发展需要,提高新技术的有效应用,提高竞争力和需求。
关键词:飞机;数字化;柔性装配;关键技术结构件是对飞行性能有很大影响的机身连接件和支撑件,飞机结构件主要由数控制造,经过几十年的快速发展。
我国数控飞机设计技术取得了巨大成功,新一代飞机的快速发展和批量生产是国家航空安全的重要保证,结构设计必须面临质量和效率的提高两大挑战。
柔性制造系统是飞机结构件智能制造的重要支柱,为飞机结构件的改造和现代化提供了有效的方法。
飞机零部件加工,混合生产线,批量小,柔性高,要建立柔性生产体系,必须考虑工厂布局,货物运输效率,生产现场信息管理等。
物流设备的配置和规划是构建柔性生产线的前期规划的核心。
一、飞机数字化装配柔性工装技术1.定义和配置数字化柔性工装。
柔性工装是可快速回应产品变更的数字化装配,加速柔性工装的准备时间,并降低制造成本,并使用模块化系统将柔性工装重新装配成数字产品尺寸。
柔性工装技术是与装配的设计、制造和应用相关的一系列技术。
柔性工装结构按功能划分的静态和动态模块静态模块已经是一种模块化结构,主要由标准材料和连接器组成,这些标准材料和连接器是整个模型系统的基础,根据产品的具体要求而设计的动态模块,具有不同的自由度,连接装置可以根据产品的特性与静态框架连接,并适应动态模块。
动态模块可通过调整装置的自由和连接来更改模块的状态,以满足同类产品的要求。
2.柔性定位数字化工装。
柔性工装取决于操作系统的控制能力,而不是传统的固定工装。
为了将设备的定位数据传输到控制系统,首先将定位数据传输到数字控制系统,动态控制系统将数字数据的定位传输到位置矢量,最后通过元件的数字切换完成整个开关过程。
飞机数字化柔性精准装配技术研究及应用
飞机数字化柔性精准装配技术研究及应用2.中航西飞民机与转包项目部西安710089摘要:大型薄壁件是构成机身、机翼外形的主要部件,其厚度一般在(2~3)mm,主要加工形式包括蒙皮成形、铣边和钻孔等加工工艺。
飞机舱门是飞机机身的重要组成部分之一,属于典型的大型薄壁件,飞机上通常设有多种舱门,用以实现载人、载货等用途。
由于传统工艺在加工飞机舱门蒙皮时采用的是托板式刚性夹具,此类工装仅能满足当前舱门蒙皮的夹具工装,而随着航空行业的快速发展,飞机的制造多为中小批量制造,从而导致了我国航空企业生产效率低及资源的严重浪费。
据统计,专用夹具的研制占了整个飞机研发周期的(30~50)%,因此开发可重构的柔性工装系统以适应不同尺寸和不同类型的飞机舱门蒙皮工件的装夹,对于提高飞机研发效率以及节约资源上具有重要的意义。
关键词:飞机;数字化;柔性;装配技术引言飞机产品在制造过程中,其零部件的种类和数量非常多,整机结构复杂,装配耗时且成本高。
同时,构成飞机主体结构的零部件多为钣金件,尺寸较大、质量轻,在装配的过程中容易发生变形。
因此,为保证飞机的装配质量,必须确保待装配零部件的结构外形与安装位置准确,这就需要在装配过程中大量使用专用的装配工艺装备。
装配工艺装备是指飞机产品在由组件、部件装配到总装配的过程中,用以控制其几何参数所用的具有定位功能的专用装备,即产品制造过程中所需的刀具、夹具、模具、量具等工具的总称,在飞机、汽车、轨道机车等制造领域中被广泛应用。
其中,装配型架作为装配工装中的一种重要装配定位夹具,具有独立的定位系统,用于飞机部件、段件、组件等装配单元的定位和夹紧,是飞机装配的重要辅助装置,一般分为骨架、定位件、夹紧件和辅助设备4个部分。
1设备故障预测与健康管理技术特点设备故障预测与健康管理系统本质上是物联网、大数据、人工智能及计算云等新一代信息技术发展的产物,以模型和数据为核心,在对设备运行状态和实际工况感知基础上对设备性能和故障进行实时评估,以预测故障发展趋势,并对设备剩余使用寿命进行估计,最终结合现场资源信息自主提供对应的有效的设备维护保障决策,实现故障快速诊断与恢复,助力先进生产力快速形成,加快产品生产过程。
飞机柔性装配方法在飞机装配中的应用
飞机柔性装配方法在飞机装配中的应用一、飞机装配的需求二、柔性装配方法柔性装配方法是一种新型的装配工艺技术,其核心思想是通过柔性的装配手段,实现对工件的高效、灵活的装配。
相对于传统的装配工艺,柔性装配方法有着明显的优势。
柔性装配方法可以减少对专用夹具和模具的需求,降低了生产成本并减少了生产浪费。
柔性装配方法具有更高的灵活性和适应性,能够适应不同规格、型号的飞机组件的装配需求,减少了装配过程中的调整和换代成本。
柔性装配方法可以实现自动化装配,提高了生产效率,减少了人为错误和装配时间,有助于提高飞机装配的质量和稳定性。
柔性装配方法在飞机制造行业中具有重要的应用前景和意义。
1.利用机器人技术实现柔性装配近年来,随着机器人技术的飞速发展,越来越多的飞机制造企业开始将柔性装配方法与机器人技术相结合,实现飞机零部件的柔性装配。
通过引入工业机器人,可以实现飞机零部件的自动化装配,提高装配效率。
而且,机器人具有柔性的操作方式,可以根据不同的装配任务进行灵活调整,实现多种装配方式,缩短装配周期,提高装配质量。
通过机器人柔性装配方法,可以有效降低装配成本,提高装配效率,增强飞机制造的灵活性和适应性。
数字化技术是当前飞机制造业的一大趋势,其在飞机柔性装配中的应用也日益受到重视。
通过数字化技术,可以实现对飞机组件的高精度测量,实时数据采集和分析,为柔性装配提供了可靠的数据支持。
通过数字化技术,可以实现对飞机组件的三维扫描和建模,为柔性装配提供了精确的装配参数和装配路径,提高了装配的精度和稳定性。
数字化技术还可以实现对装配过程的模拟仿真,辅助人员制定最佳的柔性装配方案,提高了工作效率,减少了人为错误。
数字化技术在飞机柔性装配中的应用将有助于提高飞机装配的精度、稳定性和可靠性。
3.智能化装配工具的应用智能化装配工具是柔性装配方法的重要组成部分,其依靠先进的传感器技术和智能控制系统,实现对飞机组件的高效、精准装配。
通过智能化装配工具,可以实现对飞机组件的实时监控和调整,保证了装配质量。
柔性制造系统在航空制造领域的应用研究
柔性制造系统在航空制造领域的应用研究摘要:在航空制造领域,充分发挥柔性制造系统功能,做好航空零部件生产加工制造作业,需要构建柔性生产线,量化柔性生产程序,编制相关程序,做好航空零部件加工测控工作,正确运用自动化加工工艺。
本文将简单分析柔性制造系统在航空制造领域的应用方案,希望能为航空机械零件加工作业提供参考与借鉴。
关键词:柔性制造系统;航空制造领域;应用方案;航空机械零件航空设备结构组合复杂,对零部件的精密性、安全性、牢固性、可靠性与轻量化的要求非常高,航空机械设备工作的环境也非常恶劣。
确保飞机的安全质量,做好航空机械零件加工生产作业,需要建立柔性制造系统。
本文将简单分析航空机械零部件的特征,并从建立柔性生产线,做好在线检测工作,启用自动化加工工艺,做好航空零部件加工测控工作等四个方面浅谈柔性制造系统在航空制造领域的应用方案。
一、航空机械零部件的特征从整体上分析,航空机械零部件有三大特征:第一,品种多,批量小。
航空设备组合有数万个不同类型的零部件,在壳体类、轴类与壁板类机械中均有安装应用。
随着中国航空事业的迅速发展,飞机的型号更新也很快,这样使得航空机械零部件的生产批量比较小,刚性生产线自然无法满足这些零部件的生产需求,因此,要启用灵活性良好的柔性生产线。
第二,机械零部件结构复杂,加工制造工作难度高。
飞机组合零部件构成复杂,对零部件的承力与轻量化性能的要求很高,所以会导致机械零部件加工作业的难度很大,在具体加工制造过程中,必须谨遵标准要求,严格选用刀具、机床和夹具[1]。
第三,机械零部件的尺寸精度要求极高。
确保航空安全,延长飞机使用寿命,优化飞机性能,必须严格做好组合零部件加工作业,充分确保机械零件的尺寸精度。
简而言之,航空机械零部件对尺寸精度的要求非常高,公差很小,在加工作业中,必须充分确保加工工艺的一致性与高精度。
二、柔性制造系统在航空制造领域的应用方案(一)建立柔性生产线发挥柔性制造系统在航空制造领域的应用价值,首先要建立可行的柔性生产线,将航空机械零部件加工流程纳入到自动柔性生产控制系统中,对柔性生产系统控制功能进行全面优化[2]。
基于数字化的飞机柔性装配技术研究
型相 似部件 装 配 的柔 性 装 配 型架 , 多 点 阵成 形 如 真空 吸 附式 万 能柔性 工装 系统是 一组 带真 空吸盘 的立 柱阵列 , 块化 的立 柱 可 由程 序 控 制 三维 移 模 动到 空 间任 何位 置 定 位 , 成 与装 配 件 曲面完 全 生 符 合并 均匀分 布 的吸 附点 阵 , 能精 确 和 牢 固地 夹 持壁 板 以便 完 成 钻 孔 、 接 和 铣 切 等 装 配 工 作 。 铆
关键 词 : 数字化 ; 柔性 ; 装配 ; 集成
中 图分 类 号 :2 0 V 6 文献 标 识 码 : A
Байду номын сангаас
随着 计算 机科 学 的不 断 发 展 , 字化 技 术 已 数
架 的装 配方式 , 装配 型架 的设计 、 造 、 制 安装 、 调整 基本 采用 了 以飞 机 设 计 数 模 为 依 据 , 合 C D 结 A/
当壁板 外形发 生 变化 时 , 工装 外 形 和 布局 自动进
高飞机装配质量 , 加快飞机研制周期 , 降低飞机生 产成 本 , 改善 飞 机装 配 的工 作 强度 是 飞 机 数 字化
柔性 装配研 究 的主要 问题 。飞机 柔性装 配 是指一
套 装 配工装 ( 配 型 架 ) 够 完 成 两 个 或 两 个 以 装 能
27 年6 1 第 0 0 第月 2卷 3 期
Jun l f hn沈 阳航 空ueo A rn报 a E g er g ora o e yn nt 工 业f 院o at l n i ei S a gIstt 学 e学 u c n n i i
Jn 2 1 u .0 0
Vo . 7 No 3 12 .
装还广泛用于翼梁 、 升降舵、 机身的柔性装配和环 铆 系统 中 。
航空宇航制造——柔性装配技术
航空制造工程概论报告题目:飞机柔性装配技术学院:机电学院班级:05010703学号:2007姓名:2010年04月27日【摘要】结合我国现阶段飞机装配背景,将国内外装配进行比较,探讨了飞机柔性装配技术的优势与发展前景。
对柔性装配工装,柔性制孔,虚拟装配等进行了分析与研究,报告目前国内外飞机柔性装配技术的现状,以及柔性装配技术在未来飞机制造业中的作用。
关键词:柔性装配技术;柔性装配工装;柔性制孔;虚拟装配。
1 背景飞机装配是飞机制造过程的主要环节。
飞机装配过程就是将大量的飞机零件按图纸、技术要求等进行组合、连接的过程,分为部装(零件→组合件→段件→部件)和总装(各部件→全机身)。
飞机的设计制造难度大,周期长,不仅表现在它的零件数控加工量大,而且表现在它的装配复杂性和难度。
飞机的装配工作量约占整个飞机制造劳动量的40%~50%(一般的机械制造只占20% 左右)。
飞机装配质量和效率取决于飞机机械连接技术,如自动钻铆、干涉连接、高质量紧密制孔、孔挤压强化、电磁铆接等,而装配件准确度受制于装配型架的制造和安装准确度。
迄今为止,装配技术已经历了从手工装配、半机械/ 半自动化装配、机械/自动化装配到柔性装配的发展历程。
飞机柔性装配技术的应用是当前国内外飞机制造业数字化制造的大趋势,能够克服飞机制造模线--样板法在模拟量协调体系下需要大量实物工装且应用单一、制造周期长、费用高等缺点,通过与自动化制孔设备、数控钻铆或自动电磁铆接设备等自动化装备的集成可组成自动化、数字化的柔性装配系统,缩短装配周期,提高和稳定装配质量。
柔性装配技术的范畴很广,涵盖了柔性装配工装、柔性制孔、装配系统、装配(含装配工艺)设计、虚拟装配、装配集成管理、数字化检测、面向柔性装配的设计等技术领域。
2 国内外研究现状目前,国内仍大量采用传统型架进行人工装配,装配的自动化和柔性化水平较低,数字量协调尚未贯穿飞机整个装配过程,面向装配的设计理念还未形成共识。
大型飞机柔性装配技术
⼤型飞机柔性装配技术⼤型飞机通常是指起飞总重量超过100t的运输类飞机,包括军⽤、民⽤⼤型运输机,也包括150座以上的⼲线客机。
与⼩型飞机相⽐,⼤型飞机在尺⼨、巡航速度、航载能⼒、可靠性等⼀些基本指标上均有更⾼的要求。
世界航空⼯业发展近百年来,各项技术取得了突飞猛进的发展,尤其在飞机装配与制造领域不断突破新的技术创新。
近10余年来,以波⾳777、波⾳787、A340、A380为代表的⼤飞机集中反映了飞机先进装配技术的现状和发展趋势。
采⽤基于单⼀产品数据源的数字量尺⼨协调体系,通过装配仿真和虚拟现实技术等虚拟制造技术和并⾏⼯程实现装配过程优化,应⽤柔性装配系统进⾏机体结构的⾃动化装配,实现了飞机结构⾼质量、⾼效率装配,以满⾜飞机长寿命、⾼可靠性、低成本和⾼效率制造的要求。
与国外先进的飞机装配技术相⽐,国内航空业仍采⽤⼿⼯装配、半机械化与机械化装配相结合的传统装配⽅式,应⽤⼤量较复杂的专⽤型架定位和夹紧的⾮精益化装配⽅法。
飞机柔性装配技术概述柔性装配技术是⼀种能适应快速研制和⽣产及低成本制造要求、模块化可重组的先进装配技术,它具有⾃动化、数字化、集成化的特点,是当代飞机装配技术发展的⼀个新领域。
传统飞机装配是刚性、固定、基于⼿⼯化的,⽽柔性装配则向⾃动化、可移动、数字化的⽅向转变。
表1 为飞机传统装配⽅法与柔性装配⽅法的⽐较。
国外发展现状1数字化装配设计技术数字化装配设计技术的发展历程始于波⾳公司,在研制波⾳777的过程中,第⼀次实现了“⽆纸设计”,全⾯采⽤数字化技术,实现了三维数字化定义、三维数字化预装配和并⾏⼯程,建⽴了全机的数字样机,取消了全尺⼨实物样机,使⼯程设计⽔平和飞机研制效率得到了很⼤的提⾼,制造成本降低了30%~40%,产品开发周期缩短了40%~60%,⽤户交货期从18个⽉缩短到12个⽉。
⾃此,数字化装配设计技术在国外发达国家的航空企业得到了⼴泛和深⼊的应⽤。
2⼤部件柔性装配技术世界航空发达国家的飞机部件柔性装配技术, 已向由⾃动化装配⼯装、模块化加⼯单元、数字化定位和检测系统、复杂多轴数控系统和离线编程与仿真软件等组成的⾃动化装配系统发展。
飞机装配定位方法及其应用案例
一、飞机装配定位方法及其应用案例飞机装配过程一般是由零件先装配成比较简单的组合件和板件,然后逐渐地装配成比较复杂的锻件和部件,最后将部件对接成整架飞机。
机翼和机身具有不同的功能,故结构不同,所以要设计成两个单独的部件,发动机装在机身内,为便于更换,维护和修理,将机身分为前机身和后机身,鸵面相对于固定翼作相对运动,故划分为单独部件,某些零件设计有可卸件,以便维护,检查及装填用。
在装配过程中首要问题是要按图纸及设计要求确定零件,组合件之间的相对位置,即进行装配定位。
定位方法是完成在装配过程中定位零件、组合件的手段,包括基准件定位法、画线定位法、装配孔定位法和装配型架定位法四种常用的定位方法:1用基准零件定位待装配的零件、组合件以基准零件、组合件或者先装的零件、组合件来确定装配位置。
这种装配定位方法简便易行,装配开放,协调性好,在一般机械产品中大量使用。
基准零件一般是先定位或安装好的零件,零件要有足够的刚度及较高的准确度,在装配时一般没有修配或补充加工等工作。
在飞机制造中,液压、气动附件以及具有如(图1-1)所示,连接框和长行用的角片可以预先装在长行上,然后按角片确定框的纵向位置,或者在骨架装配时按框和长珩定位角片。
这种基准件定位法要求基准件位置准确、刚性强,多用于小零件和小组合件的定位,方法简单、方便。
图1-1 框、长桁用角片连接的结构示意图2、用画线定位即待装配的零件按画在零件上的线条确定装配位置,如(图1-2)所示,角材位置按腹板上划线定位。
这种定位方法准确度较低,一般用于刚性较大,无协调要求和位置准确度要求不高的零件定位;还有此方法工作效率不高,容易产生差错,所以在飞机研制阶段为了减少工艺装配数量,采用这种方法定位零件,在成批生产中作为一种辅助的定位方法图1-2 翼肋角材用画线定位示意图3、用装配孔定位即是把相互连接的零件、组合件分别按一定的协调手段,具体过程如下:装配以前,在各个零件的部分铆钉位置上(一般是每隔400mm左右钻一个装配孔,孔径比铆钉孔径小)预先按各自的钻孔样板分别钻出装配孔,装配时个零件之间的相对位置按这些装配孔设置。
柔性定位系统在飞机装配工装中的关键技术研究
柔性定位系统在飞机装配工装中的关键技术研究摘要:本文以面向飞机零件的柔性定位系统要求为研究对象,以其核心的零件插件为研究对象,采用自动控制技术、精密机械加工技术以及基于激光追踪的 OTS组装技术,通过机械系统、控制系统分析与加工调试等手段,形成一套能自动调整其位置姿态的灵活定位系统,从而达到提高零件加工精度的目的,为柔性工装的开发奠定技术基础。
关键词:柔性定位系统;自动控制;激光跟踪仪;装配工装随着航空工业数字化和自动化技术的大规模普及和航空工业对高品质、大批量生产的要求越来越高,传统机械式工装主要应用于飞机零件的定位、支承、压紧和保形等方面,其能确保零件间的相对位置关系。
传统的机械模具是由机械零部件组装而成,采用手工的方式来完成,具有一定的特殊性和局限性。
本项目针对航空工业中各种类型的柔性模具,研究其结构系统与关键构件,研究其模块化设计方法,并将其应用到航空装备模具中,可显著提高航空装备的装配精度,为我国航空制造业的高质量发展提供技术支持。
1.总方案设计1.1技术条件新型适用于飞机壁面型制品的定位,能够从“点”向“面”对多个工件进行定位。
它的定位部件在0-150毫米范围内移动,系统的重复定位精度要达到0.025毫米,位置精度要达到0.05毫米。
1.2机械结构该工装机械结构主要由机架、柔性夹板等部件构成(见图1)。
在确定产品型号的基础上,选择了符合飞机工作状况的垂直构架,车架由方形钢板焊接而成,既能满足结构要求,又能满足刚度要求;柔性卡板单元(见图2)是一种包括打球头、伺服马达、电动液压缸等弹性元件本体,可编程控制器,人机界面等控制装置。
选择5个灵活的单体,组成“一”字形的组合。
在该柔性胞体的末端装有一滚动头。
本模具选择两套灵活的卡板为单位,在制品的主要部位进行定位,从而完成了从“点”向“面”的定位。
1.3控制系统(1)电气结构电气结构该控制系统包括人机对话装置(HMI)、可编程控制器(PLC)以及伺服电动机。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
李维亮’ ,李西宁’ ,李卫平 ,王仲奇’ ,郭飞燕’ L l We i . 1 i a n g , L I Xi . n i n g 。 , L I We i . p i n g , WAN G Z h o n g . q - 1 ' GU O F e i . y a n ’
性 定义 与 管理 过 程 的计 划 - 执行一 检查- 处理循环 ,
达 到 了在 制 造 阶段 控 制关 键 特 性 并 使 之 稳 定 的 目 的 。文 献 [ 3 1 采 用 关 键 特性 的 方 法 表示 粗 粒 度 、非
完 备 的 产 品 信 息 ,以 支 持 在 概 要 工 艺 规 划 过 程 进 行产品的可生产性分析和关键工艺方案的制定 。
得 格 外 重要 。根据 文 献 [ 1 - 4 1 所描 述 的KC的概 念 ,
规 范) , 它 们 的 波 动 会 显 著 影 响 产 品 的 安 装 、 性
能 、使 用 寿命 和可 制造 性 。 全 面 采 用 基 于 关 键 特 性 的 飞 机 设 计 制 造 方 法 能 有 效 的 减 少 飞 机 总 体 研 制 和 制 造 时 间 ,保 证 零 部 件 装配 中 的 互换 协 调 , 同 时 减 少 返 工 ,提 高 飞
机 质量 。如 文 献 【 2 】 提 出 了基 于 并 行 工程 的关 键 特
作 者 认 为 装 配 型 架 关 键 特 性 是 指 在 飞 机 产 品装 配 过 程 中 , 装配 型 架 的 某 些 结 构 、外 形 、定 位 特 性 对 被 装配 产 品 的 质 量 影 响 最 严 重 的 几 何 特 性 ;在 飞 机 柔性 装配 型 架 中 还 包 括 自动 测 控 系统 控 制 机 械 随 动 定位 机 构 精 确 定 位 。 当 装配 型 架 关 键 特性 处 于 临 界 值 或 超 出临 界 值 时 必 须对 其 进 行控 制 ,
性 的 一 些 特 点 、识 别 和 控 制 方 法 进 行 了详 细 的 描 述。
动 是 引起 生 产 成 本 居高 不下 的 根 本 原 因 。所 谓 波 动 , 即 零部 件 的 特性 值 与 目标 值 的 偏 离 程 度 。 由 于 飞 机 产 品生 产 过 程 中 零部 件数 量 众 多 , 要 选 择
文献【 4 】 提 出 了关 键 装 配 特 性 的 概 念 ,并 根 据 基 准 传 递 链 分 析 装 配 过 程 中 的误 差 积 累路 线 ,针 对
否 则 会 严 重 影 响 产 品装 配 质 量 和 零 部 件 的互 换 协
调 ,甚 至产 品 的报 废 。 飞 机 装 配 型 架 关 键 特 性 具 有 一 般 关 键 特 性 的 特 点 , 同时 结 合 飞 机 柔 性 装 配 型 架 与数 字 化 测控 翩系 统 在 飞 机 装 配 中的 应 用 ,飞 机 装 配 型 架 关 键 特性 还 具有一 些独特 的 特点 : 1 )在 装 配 型 架设 计 阶段 ,根 据用 户 需 求 与被 装 配 产 品特 点 ,结 合 当前 企 业 拥 有 的 加 工 、制 造
铷I
甸 似
飞机柔性 装配 型架关键 特性的识别 与控制
- dent i 们ca t i on and cont r ol of ai r cr a f t f l e xi bl e ass em bl y ixt f ur e k e飞 机 质 量 影 响最 大 的关 键 特性 进 行控 制 。 关 键
特性 ( K e y c h a r a c t e r i s t i c ,K C)是指 材料 、零件 、
1 装配型架关键特性 的定义及特点
装 配 型 架 关 键 特性 是 保 证 飞 机 装 配 零 部 件 间
互 换 协 调 的 重 要 特 性 , 同时 装 配 型 架关 键 特性 也
装 配 体 、 装备 或 者 系 统 的 某些 属 性 或 特 征( 尺寸 、
是关 键 特 性 的 一 种 。尤 其 是 在 装 配 产 品样 本 很 少
的情 况 下 ,识 别 和 控 制 装 配 型 架 的关 键 特 性 就 显
( 1 . 西北工业大 学 机 电学 院,西 安 7 1 0 0 7 2 :2 . 中航工业西安航 空工业集 团公 司 ,西安 7 1 0 0 8 9 )
摘 要 : 根 据飞机柔性装配型架 的特点 ,本文提出 了装 配型架 关键 特性的概念 ,系统分析 了装 配型架关 键 特性 的识别和 控制方 法。装 配型架 关键特 性是对飞机 产品 的互换协 调有重 要影 响的特性 , 在 装配型 架安装和 装配 飞机产 品的过程 中利用 田 口损 失函数 法识别 关键特性 ,结合激 光实 时 测 量 ,根 据关键特 性的 可测量性 和可 向下传递 性对关键 特性 进行分解 和控制 。以某机 型壁板 预装配柔性工装子系统装 配壁板 为例 ,验证 了该方 法的有效性。 关键词 :飞机制造 ;柔性装配 ;关键特 性 ;激光测量 ;集成控制 中图分类号 :V 2 6 文献标 识码 :A 文章编号 :1 0 0 9 -0 1 3 4 ( 2 0 1 3 ) 0 3 ( 下) -O O l 9 -0 4
D o i : 1 0 . 3 9 6 9 / J . i s s n . 1 0 0 9 -0 1 3 4 . 2 0 1 3 . 0 3 ( 下) . o 7
0 引言
飞 机 产 品 在 制 造 过 程 中零 部 件 质 量 特 性 的 波
零 部 件 的 互换 协 调 。针 对 此 类 关 键 特 性 ,本 文 提 出装 配 型 架关 键 特 性 的 概 念 ,对 装 配 型 架 关 键 特