高一平面解析几何初步复习讲义
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011元旦假期数学作业
高一平面解析几何初步复习讲义
1.掌握两条直线平行和垂直的条件,掌握两条直线所成的角和点到直线的距离公式,能够根. 2.掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程的概念.
第1课时 直线的方程
1.倾斜角:对于一条与x 轴相交的直线,把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角α叫做直线的倾斜角.当直线和x 轴平行或重合时,规定直线的倾斜角为0°.倾斜角的范围为________.
斜率:当直线的倾斜角α≠90°时,该直线的斜率即k =tanα;当直线的倾斜角等于90°时,直线的斜率不存在.
2.过两点P 1(x 1,y 1),P 2(x 2,y 2)(x 1≠x 2)的直线的斜率公式 .若x 1=x 2,则直线的斜率不存在,此时直线的倾斜角为90°. 3
例1. 已知直线(2m 2+m -3)x +(m 2
-m)y =4m -1.① 当m = 时,直线的倾斜角为45°.②当m = 时,直线在x 轴上的截距为1.③ 当m = 时,直线在y 轴上的截距为-2
3.④
当m = 时,直线与x 轴平行.⑤当m = 时,直线过原点.
变式训练1.(1)直线3y – 3 x +2=0的倾斜角是 ( ) A .30° B.60° C.120° D.150° (2)设直线的斜率k=2,P 1(3,5),P 2(x 2,7),P (-1,y 3)是直线上的三点,则x 2,y 3依次是 ( )
A .-3,4
B .2,-3
C .4,-3
D .4,3
(3)直线l 1与l 2关于x 轴对称,l 1的斜率是-7 ,则l 2的斜率是 ( )
A .7
B .-77
C .77
D .-7 (4)直线l 经过两点(1,-2),(-3,4),则该直线的方程是 . 例2. 已知三点A (1,-1),B (3,3),C (4,5). 求证:A 、B 、C 三点在同一条直线上.
变式训练2. 设a ,b ,c 是互不相等的三个实数,如果A (a ,a 3)、B (b ,b 3)、C (c ,c 3
)在同一直线上,求证:a+b+c=0.
例3. 已知实数x,y 满足y=x 2
-2x+2 (-1≤x≤1).
试求:2
3
++x y 的最大值与最小值.
典型例题
变式训练3. 若实数x,y 满足等式(x-2)2+y 2
=3,那么x
y
的最大值为 ( ) A.2
1
B.
3
3 C.
2
3
D.3
例4. 已知定点P(6, 4)与直线l 1:y =4x ,过点P 的直线l 与l 1交于第一象限的Q 点,与x 轴正半轴交于点M .求使△OQM 面积最小的直线l 的方程.
变式训练4.直线l 过点M(2,1),且分别交x 轴y 轴的正半轴于点A 、B ,O 为坐标原点. (1)当△AOB 的面积最小时,求直线l 的方程; (2)当MB MA 取最小值时,求直线l 的方程.
1.直线方程是表述直线上任意一点M 的坐标x 与y 之间的关系式,由斜率公式可导出直线方程的五种形式.这五种形式各有特点又相互联系,解题时具体选取哪一种形式,要根据直线的特点而定.
2.待定系数法是解析几何中常用的思想方法之一,用此方法求直线方程,要注意所设方程的适用范围.如:点斜式、斜截式中首先要存在斜率,截距式中横纵截距存在且不为0,两点式的横纵坐标不能相同等(变形后除处).
3.在解析几何中,设点而不求,往往是简化计算量的一个重要方法.
4.在运用待定数法设出直线的斜率时,就是一种默认斜率存在,若有不存在的情况时,就会出现解题漏洞,此时就要补救:较好的方法是看图,数形结合来找差距.
小结归纳
第2课时直线与直线的位置关系
(一)平面内两条直线的位置关系有三种________.
1.当直线不平行坐标轴时,直线与直线的位置关系可根据下表判定
2
(二)点到直线的距离、直线与直线的距离
1.P(x0,y0)到直线Ax+By+C=0 的距离为______________.
2.直线l1∥l2,且其方程分别为:l1:Ax+By+C1=0 l2:Ax+By+C2=0,则l1与l2的距离为.
(三)两条直线的交角公式
若直线l1的斜率为k1,l2的斜率为k2,则
1.直线l1到l2的角θ满足.
2.直线l1与l2所成的角(简称夹角)θ满足.
(四)两条直线的交点:两条直线的交点的个数取决于这两条直线的方程组成的方程组的解的个数.
(五)五种常用的直线系方程.
① 过两直线l1和l2交点的直线系方程为A1x+B1y+C1+ (A2x+B2y+C2)=0(不含l2).
② 与直线y=kx+b平行的直线系方程为y=kx+m (m≠b).
③ 过定点(x0, y0)的直线系方程为y-y0=k(x-x0)及x=x0.
④ 与Ax+By+C=0平行的直线系方程设为Ax+By+m=0 (m≠C).
⑤ 与Ax+By+C=0垂直的直线系方程设为Bx-Ay+C1=0 (AB≠0).
例1. 已知直线l1:ax+2y+6=0和直线l2:x+(a-1)y+a2-1=0,
(1)试判断l1与l2是否平行;
(2)l1⊥l2时,求a的值.
变式训练1.若直线l 1:ax+4y-20=0,l 2:x+ay-b=0,当a 、b 满足什么条件时,直线l 1与l 2分别相交?平行?垂直?重合?
例2. 直线y =2x 是△ABC 中∠C 的平分线所在的直线,若A 、B 坐标分别为A(-4,2)、B(3,1),求点C 的坐标并判断△ABC 的形状.
例3. 设点A(-3,5)和B(2,15),在直线l :3x -4y +4=0上找一点p ,使PB PA 为最小,并求出这个最小值.
变式训练3:已知过点A (1,1)且斜率为-m(m>0)的直线l 与x 、y 轴分别交于P 、Q 两点,过P 、Q 作直线2x +y =0的垂线,垂足分别为R 、S ,求四边形PRSQ 的面积的最小值.
1.处理两直线位置关系的有关问题时,要注意其满足的条件.如两直线垂直时,有两直线斜率都存在和斜率为O 与斜率不存在的两种直线垂直.
2.注意数形结合,依据条件画出图形,充分利用平面图形的性质和图形的直观性,有助于问题的解决.
3.利用直线系方程可少走弯路,使一些问题得到简捷的解法.
4.解决对称问题中,若是成中心点对称的,关键是运用中点公式,而对于轴对称问题,一般是转化为求对称点,其关键抓住两点:一是对称点的连线与对称轴垂直;二是两对称点的中点在对称轴上,如例4
第3课时 圆的方程
1. 圆心为C(a 、b),半径为r 的圆的标准方程为_________________.