三角函数图像三种变换
三角函数的图象变换与性质
三角函数的图象变换与性质三角函数是数学中非常重要的一类函数,包括正弦函数、余弦函数、正切函数等。
在数学的应用中,三角函数的图象变换与性质是非常重要的内容。
接下来,我将详细介绍三角函数的图象变换与性质,包括平移、伸缩、翻转等操作以及周期性、奇偶性等性质。
三角函数的图象变换主要包括平移、伸缩和翻转三种操作。
平移是指将函数图象沿横轴或纵轴方向移动一定的距离,可以通过改变函数中的自变量来实现平移。
伸缩是指将函数图象在横轴或纵轴方向上拉伸或压缩,可以通过改变自变量或函数值来实现伸缩。
翻转是指将函数图象关于条直线对称翻转,可以通过改变自变量或函数值的正负来实现翻转。
通过这三种变换操作,可以得到各种不同形态的三角函数图象。
正弦函数是最基本的三角函数之一,其图象为一条连续的波形,由平面直角坐标系中y轴上一点在单位圆上运动时的纵坐标所得。
正弦函数的周期为2π,并且其图象在[-π/2,π/2]处取得最大值1,在[-3π/2,-π/2]和[π/2,3π/2]取得最小值-1、正弦函数的图象关于y轴对称,并且具有奇函数的性质,即f(-x)=-f(x)。
余弦函数是正弦函数的平移变换,其图象为一条连续的波形,由平面直角坐标系中y轴上一点在单位圆上运动时的横坐标所得。
余弦函数的周期也是2π,并且其图象在[0,π/2]处取得最大值1,在[π/2,π]处取得最小值-1、余弦函数的图象关于x轴对称,并且具有偶函数的性质,即f(-x)=f(x)。
正切函数是正弦函数和余弦函数的商,其图象为一条连续的波形,由平面直角坐标系中y轴上一点在单位圆上运动时的纵坐标与横坐标的比值所得。
正切函数的周期为π,其图象在[-π/2,π/2]处为正无穷大,在[π/2,3π/2]处为负无穷大。
正切函数的图象关于原点对称,但不满足奇偶性。
除了正弦函数、余弦函数和正切函数,还有其他的三角函数,如余切函数、正割函数和余割函数等。
它们的图象可以通过适当的变换得到。
例如,余切函数是正切函数的倒数,而正割函数是余弦函数的倒数,余割函数是正弦函数的倒数。
13.3三角函数的图像及平移变换
三角函数的图像和变换一、图像对于sinx 、cosx 、tanx 、cotx 、我们都应把它们的图像性质给讨论一遍。
这里以sinx 为例,讨论如下:(1)定义域:x R ∈(2)值域:[]1,1-(3)特殊点:1,221,220,y x k y x k y x k πππππ==+=-=-==(4)周期:2T π=(5)单增:2,222k k ππππ⎛⎫-+⎪⎝⎭ 单减:32,222k k ππππ⎛⎫++⎪⎝⎭ (6)为奇函数(7)对称轴:2x k ππ=+(8)对称点:(),0k πcosx ,如下(1)定义域:R(2)值域:[-1,1](3)特殊点:()1,21,210,2y x k y x k y x k ππππ===-=+==+(4)周期:2T π=(5)单增:()2,2k k πππ-单减:()2,2k k πππ+(6)为偶函数(7)对称轴:x k π=(8)对称点:,02k ππ⎛⎫+⎪⎝⎭tanx 如下:(1)定义域:|,2x x k k z ππ⎧⎫≠+∈⎨⎬⎩⎭ (2)值域:R(3)特殊点:0,y x k π==(4)周期:T π=(5)单增:,22k k ππππ⎛⎫-+ ⎪⎝⎭ (6)为奇函数(7)对称轴:无(8)对称点:,02k π⎛⎫ ⎪⎝⎭二、三角函数的平移变换1()()w y f x y f wx ==→横()()A y f x y Af x ==→纵例1 -12sin 322sin 32sin 322222x x y x y y πππ⎛⎫⎛⎫⎛⎫=+=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭横倍右1 2sin 32sin 3x 1)22sin 3-12222x y x y y πππ⎛⎫⎛⎫⎛⎫⎛⎫=+=-+=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭右1(横倍 例2 将函数3sin 26y x π⎛⎫=- ⎪⎝⎭按照向量,16π⎛⎫-- ⎪⎝⎭移动后为(C ) A 3sin 212y x π⎛⎫=-- ⎪⎝⎭ B 3sin 212y x π⎛⎫=-+ ⎪⎝⎭ C 3sin 216y x π⎛⎫=+- ⎪⎝⎭ D 3sin 216y x π⎛⎫=++ ⎪⎝⎭解析:如下 ,因此左移6π,下移1 3sin 2166y x ππ⎛⎫⎛⎫⇒=+-- ⎪ ⎪⎝⎭⎝⎭,化简后选择C 例3 (天津)函数()sin (0,||)2y A wx w πϕϕ=+><的部分图像如图所示,则函数的表达式为(A )A 4sin 84y x ππ⎛⎫=-+ ⎪⎝⎭B 4sin 84y x ππ⎛⎫=- ⎪⎝⎭C 4sin 84y x ππ⎛⎫=-- ⎪⎝⎭D 4sin 84y x ππ⎛⎫=+ ⎪⎝⎭ 解析:(1)横向看周期:2168T w w ππ==⇒= (2)纵向看A44A A ⇒=⇒=±(3)再看特殊点注意,此时一定看最大值或最小值点,才能一步到位本题中最小值点为(2,-4),代入,则求得A=-4,选择A。
三角函数图像变换方法
三角函数图像变换方法是数学和工程领域中非常重要的概念,其应用范围广泛,包括但不限于信号处理、图像处理、机械振动分析等领域。
下面将详细介绍三角函数图像变换的原理、方法和应用。
一、三角函数图像变换的基本原理三角函数图像变换的核心是通过调整三角函数的参数(如振幅、频率、相位等),从而改变其图像的形状和位置。
具体来说,可以通过以下几种方式来实现三角函数图像的变换:1. 振幅变换:通过改变三角函数的振幅参数,可以改变图像在垂直方向上的大小。
振幅增加时,图像的高度增加;振幅减小时,图像的高度减小。
2. 频率变换:通过改变三角函数的频率参数,可以改变图像在水平方向上的周期性。
频率增加时,图像的周期减小,图像变得更密集;频率减小时,图像的周期增加,图像变得更稀疏。
3. 相位变换:通过改变三角函数的相位参数,可以改变图像在水平方向上的平移。
相位增加时,图像向右平移;相位减小时,图像向左平移。
二、三角函数图像变换的常见方法1. 振幅变换法:通过直接调整三角函数的振幅参数,实现图像在垂直方向上的大小变化。
例如,将正弦函数y=sin(x)的振幅扩大2倍,得到y=2sin(x)的图像,其高度变为原来的2倍。
2. 频率变换法:通过调整三角函数的频率参数,实现图像在水平方向上的周期性变化。
例如,将正弦函数y=sin(x)的频率增加2倍,得到y=sin(2x)的图像,其周期变为原来的1/2。
3. 相位变换法:通过调整三角函数的相位参数,实现图像在水平方向上的平移。
例如,将正弦函数y=sin(x)的相位增加π/2,得到y=sin(x+π/2)的图像,其向右平移π/2个单位。
此外,还可以结合使用上述方法,实现更复杂的图像变换。
例如,可以同时调整振幅、频率和相位参数,得到不同形状和位置的三角函数图像。
三、三角函数图像变换的应用三角函数图像变换在各个领域有着广泛的应用。
以下是一些典型的应用示例:1. 信号处理:在信号处理中,三角函数图像变换常用于分析信号的频率成分和相位关系。
三角函数的图像变换
cosθ = 邻边/斜边,在单位圆中表示为x坐标。
正切函数(tangent)
三角函数的周期性
tanθ = 对边/邻边,表示为正弦与余弦之比。
正弦、余弦函数周期为2π,正切函数周期为 π。
三角函数在各象限表现
第一象限
所有三角函数值均为正。
第三象限
正弦、余弦函数值为负,正切函数值为正。
第二象限
正弦函数值为正,余弦、正切函数值为负。
伸缩变换对正弦函数影响
横向伸缩
改变正弦函数图像的周期长度。缩小周期使得函数图像更加紧密,扩大周期则 使得函数图像更加稀疏。
纵向伸缩
改变正弦函数图像的振幅大小。增大振幅使得函数图像波动范围更大,减小振 幅则使得函数图像波动范围更小。
周期性与相位调整方法
周期性调整
通过改变正弦函数的周期来调整图像的疏密程度。可以通过调整函数中的系数来 实现周期的变化。
相位调整
通过改变正弦函数的相位来调整图像出现的位置。可以通过在函数中添加常数项 来实现相位的调整。同时,利用三角函数的和差化积公式,也可以实现相位的调 整。
03 余弦函数图像变换分析
余弦函数基本图像特征
波形图像
余弦函数图像呈现周期性波动,具有典型的波形 特征。
振幅和周期
余弦函数的振幅和周期是确定其图像形状和尺寸 的关键参数。
拓展:其他类型周期函数图像变换
锯齿波和方波
除了正弦波和余弦波外,还有其 他类型的周期函数如锯齿波和方 波等,它们的图像变换同样具有 实际应用价值。
周期函数的合成与分解
通过三角函数的线性组合可以合 成其他类型的周期函数;反之, 其他类型的周期函数也可以通过 傅里叶级数展开成三角函数的线 性组合。
三角函数图像的变换与特征
三角函数图像的变换与特征三角函数图像的变换是数学中一个重要的概念,它描述了三角函数图像相对于原始函数图像的位置、形状和特征的变化。
在本文中,我们将探讨三角函数的变换和它们的特征。
一、平移变换平移是指将函数图像沿着横轴或纵轴方向移动的操作。
对于三角函数而言,平移的规律如下:1. 正弦函数(Sine Function)的平移:a. 沿横轴平移:f(x) = sin(x - a),其中a为平移的距离,若a > 0,则向右平移;若a < 0,则向左平移。
b. 沿纵轴平移:f(x) = a + sin(x),其中a为平移的距离,若a > 0,则向上平移;若a < 0,则向下平移。
2. 余弦函数(Cosine Function)的平移:a. 沿横轴平移:f(x) = cos(x - a),其中a为平移的距离,若a > 0,则向右平移;若a < 0,则向左平移。
b. 沿纵轴平移:f(x) = a + cos(x),其中a为平移的距离,若a > 0,则向上平移;若a < 0,则向下平移。
二、伸缩变换伸缩是指对函数图像进行拉伸或压缩的操作。
对于三角函数而言,伸缩的规律如下:1. 正弦函数的伸缩:a. 沿横轴伸缩:f(x) = sin(kx),其中k为伸缩的系数,若k > 1,则图像水平方向收缩;若0 < k < 1,则图像水平方向拉伸。
b. 沿纵轴伸缩:f(x) = a * sin(x),其中a为伸缩的系数,若a > 1,则图像垂直方向收缩;若0 < a < 1,则图像垂直方向拉伸。
2. 余弦函数的伸缩:a. 沿横轴伸缩:f(x) = cos(kx),其中k为伸缩的系数,若k > 1,则图像水平方向收缩;若0 < k < 1,则图像水平方向拉伸。
b. 沿纵轴伸缩:f(x) = a * cos(x),其中a为伸缩的系数,若a > 1,则图像垂直方向收缩;若0 < a < 1,则图像垂直方向拉伸。
三角函数的图像及其变换
振幅变换
振幅变换
通过将三角函数中的系数乘以一 个常数,可以改变函数图像的形 状和大小。例如,将正弦函数 y=sin(x)变为y=2sin(x),图像的 高度变为原来的两倍。
总结词
振幅变换可以改变函数图像的大 小和形状,但不影响位置。
详细描述
振幅变换通常通过乘以一个常数来实 现。例如,对于正弦函数y=sin(x),乘 以2得到y=2sin(x),图像的高度变为 原来的两倍。同样地,对于余弦函数 y=cos(x),乘以2得到y=2cos(x),图 像的高度也变为原来的两倍。
与复数的联系
三角函数与复数之间有着密切的联系。例如,复数的三角形式就是由三角函数来表示的,这使得复数 的一些性质和运算可以通过三角函数来理解和实现。
此外,在复分析中,三角函数也起着重要的作用,如在求解某些复数域上的微分方程时,经常需要用 到三角函数。
谢谢
THANKS
应用
正切函数在解决实际问题和数学 问题中也有应用,例如在几何学 和三角学中的角度和长度计算。
02 三角函数的图像
CHAPTER
正弦函数的图像
01
正弦函数图像是周期函数,其基本周期为$2pi$,在$[0, 2pi]$ 区间内呈现波形。
02
正弦函数图像在$x$轴上的交点是$(frac{pi}{2} + kpi, 0)$,其
周期变换
总结词
详细描述
通过改变三角函数的周期,可以改变
函数图像的形状和位置。例如,将正 弦函数和余弦函数的周期从2π变为4π, 图像将变为原来的两倍长,但形状和
周期变换可以改变函数图像的长度, 但不影响形状和位置。
位置保持不变。
周期变换通常通过乘以一个常数来实现。例 如,将函数y=sin(x)变为y=sin(2x),周期 从2π变为π,图像长度减半。同样地,对于 余弦函数,将y=cos(x)变为y=cos(2x),周 期从2π变为π,图像长度也减半。
三角函数图像变换
三角函数图象的平移和伸缩函数s i n ()y A x k ωϕ=++的图象与函数s i n y x =的图象之间可以通过变化A k ωϕ,,,来相互转化.A ω,影响图象的形状,k ϕ,影响图象与x 轴交点的位置.由A 引起的变换称振幅变换,由ω引起的变换称周期变换,它们都是伸缩变换;由ϕ引起的变换称相位变换,由k 引起的变换称上下平移变换,它们都是平移变换.既可以将三角函数的图象先平移后伸缩也可以将其先伸缩后平移. 变换方法如下:先平移后伸缩sin y x =的图象ϕϕϕ<−−−−−−−→向左(>0)或向右(0)平移个单位长度得sin()y x ϕ=+的图象()ωωω−−−−−−−−−→横坐标伸长(0<<1)或缩短(>1)1到原来的纵坐标不变 得sin()y x ωϕ=+的图象()A A A >−−−−−−−−−→纵坐标伸长(1)或缩短(0<<1)为原来的倍横坐标不变 得sin()y A x ωϕ=+的图象(0)(0)k k k ><−−−−−−−→向上或向下平移个单位长度得sin()y A x kϕ=++的图象.先伸缩后平移sin y x =的图象(1)(01)A A A ><<−−−−−−−−−→纵坐标伸长或缩短为原来的倍(横坐标不变)得sin y A x=的图象(01)(1)1()ωωω<<>−−−−−−−−−→横坐标伸长或缩短到原来的纵坐标不变 得sin()y A x ω=的图象(0)(0)ϕϕϕω><−−−−−−−→向左或向右平移个单位得sin ()y A x x ωϕ=+的图象(0)(0)k k k ><−−−−−−−→向上或向下平移个单位长度得sin()y A x kωϕ=++的图象.例1 将sin y x =的图象怎样变换得到函数π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象. 解:(方法一)①把sin y x =的图象沿x 轴向左平移π4个单位长度,得πsin 4y x ⎛⎫=+ ⎪⎝⎭的图象;②将所得图象的横坐标缩小到原来的12,得πs i n24y x ⎛⎫=+ ⎪⎝⎭的图象;③将所得图象的纵坐标伸长到原来的2倍,得π2sin 24y x ⎛⎫=+⎪⎝⎭的图象;④最后把所得图象沿y 轴向上平移1个单位长度得到π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象.(方法二)①把sin y x =的图象的纵坐标伸长到原来的2倍,得2sin y x =的图象;②将所得图象的横坐标缩小到原来的12,得2s i n 2y x =的图象;③将所得图象沿x 轴向左平移π8个单位长度得π2s i n 28y x ⎛⎫=+ ⎪⎝⎭的图象;④最后把图象沿y 轴向上平移1个单位长度得到π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象. 说明:无论哪种变换都是针对字母x 而言的.由sin 2y x =的图象向左平移π8个单位长度得到的函数图象的解析式是πsin 28y x ⎛⎫=+⎪⎝⎭而不是πsin 28y x ⎛⎫=+ ⎪⎝⎭,把πsin 4y x ⎛⎫=+ ⎪⎝⎭的图象的横坐标缩小到原来的12,得到的函数图象的解析式是πsin 24y x ⎛⎫=+⎪⎝⎭而不是πsin 24y x ⎛⎫=+ ⎪⎝⎭. 对于复杂的变换,可引进参数求解.例2 将sin 2y x =的图象怎样变换得到函数πcos 24y x ⎛⎫=-⎪⎝⎭的图象.分析:应先通过诱导公式化为同名三角函数. 解:ππsin 2cos 2cos 222y x x x ⎛⎫⎛⎫==-=- ⎪ ⎪⎝⎭⎝⎭,在πcos 22y x ⎛⎫=-⎪⎝⎭中以x a -代x ,有ππcos 2()cos 2222y x a x a ⎡⎤⎛⎫=--=-- ⎪⎢⎥⎣⎦⎝⎭.根据题意,有ππ22224x a x --=-,得π8a =-.所以将sin 2y x =的图象向左平移π8个单位长度可得到函数πcos 24y x ⎛⎫=-⎪⎝⎭的图象.练习:1、选择题:已知函数)5sin(3π+=x y 的图象为C 。
三角函数图像变换顺序详解(全面)
《图象变换的顺序寻根》题根研究一、图象变换的四种类型从函数y = f (x)到函数y = A f ()+m,其间经过4种变换:1.纵向平移——m 变换2.纵向伸缩——A变换3.横向平移——变换4.横向伸缩——变换一般说来,这4种变换谁先谁后都没关系,都能达到目标,只是在不同的变换顺序中,“变换量”可不尽相同,解题的“风险性”也不一样.以下以y = sin x到y = A sin ()+m为例,讨论4种变换的顺序问题.【例1】函数的图象可由y = sin x的图象经过怎样的平移和伸缩变换而得到?【解法1】第1步,横向平移:将y = sin x向右平移,得第2步,横向伸缩:将的横坐标缩短倍,得第3步:纵向伸缩:将的纵坐标扩大3倍,得第4步:纵向平移:将向上平移1,得【解法2】第1步,横向伸缩:将y = sin x的横坐标缩短倍,得y = sin 2x第2步,横向平移:将y = sin 2x向右平移,得第3步,纵向平移:将向上平移,得第4步,纵向伸缩:将的纵坐标扩大3倍,得【说明】解法1的“变换量”(如右移)与参数值()对应,而解法2中有的变换量(如右移)与参数值()不对应,因此解法1的“可靠性”大,而解法2的“风险性”大.【质疑】对以上变换,提出如下疑问:(1)在两种不同的变换顺序中,为什么“伸缩量”不变,而“平移量”有变?(2)在横向平移和纵向平移中,为什么它们增减方向相反——如当<0时对应右移(增方向),而m < 0时对应下移(减方向)?(3)在横向伸缩和纵向伸缩中,为什么它们的缩扩方向相反——如|| > 1时对应着“缩”,而| A | >1时,对应着“扩”?【答疑】对于(2),(3)两道疑问的回答是:这是因为在函数表达式y = A f()+m 中x和y的地位在形式上“不平等”所至. 如果把函数式变为方程式(y+) = f (),则x、y在形式上就“地位平等”了.如将例1中的变成它们的变换“方向”就“统一”了.对于疑问(1):在不同的变换顺序中,为什么“伸缩量不变”,而“平移量有变”?这是因为在“一次”替代:x→中,平移是对x进行的.故先平移(x→)对后伸缩(→)没有影响;但先收缩(x→)对后平移(→)却存在着“平移”相关. 这就是为什么(在例1的解法2中)后平移时,有的原因.【说明】为了使得4种变换量与4个参数(A,,,m)对应,降低“解题风险”,在由sin x变到A sin () (> 0) 的途中,采用如下顺序:(1)横向平移:x→(2)横向伸缩:x+→(3)纵向伸缩:sin () →A sin ()(4)纵向平移:A sin () →A sin () + m这正是例1中解法1的顺序.二、正向变换与逆向变换如果把由sin x 到A sin ()+m的变换称作正向变换,那么反过来,由A sin ()+m到sin x变换则称逆向变换.显然,逆向变换的“顺序”是正向变换的“逆”.因为正向变换的一般顺序是:(1)横向平移,(2)横向伸缩,(3)纵向伸缩,(4)纵向平移.所以逆向变换的一般顺序则是:(1)纵向平移,(2)纵向伸缩,(3)横向伸缩,(4)横向平移.如将函数y= 2sin (2-) +1的图像下移1个单位得y=2sin (2x-),再将纵坐标缩小一半得y=sin(2 x-),再将横坐标扩大2倍得y=sin(x-),最后将图象左移得函数y= sin x.【例2】将y= f (x)·cos x的图象向右平移, 再向上平移1, 所得的函数为y=2sin2 x. 试求f (x)的表达式.【分析】这是图象变换的逆变换问题:已知函数的变换结果,求“原函数”. 我们考虑将“正向变换”的过程倒逆回去而得“逆向变换”的顺序.【解析】将y = 2sin2 x下移1个单位(与正向变换上移1个单位相反),得y = 2sin2 x-1,再将 2sin2x-1左移(与正向变换右移相反)得令f (x)·cos x = 2sin x cos x 得f (x) = 2sin x【说明】由此得原函数为y=f(x)cos x=2sin x cos x=sin2x. 正向变换为sin 2x→2sin2x,其逆变换为2sin2x→sin2x.因为2sin2x=1+sin(2 x-),所以下移1个单位得sin(2 x-),左移得sin2x.三、翻折变换使> 0平移变换x→是“对x而言”,由于x过于简单而易被忽略.强调一下,这里x的系数是+1. 千万不要误以为是由sin(- x)左移而得.其实,x或y的系数变 -1,也对应着两种不同的图象变换:由x→ - x对应着关于y 轴的对称变换,即沿y轴的翻折变换;由f (x) → - f (x)对应着关于x轴的对称变换,即沿x轴的翻折变换.【例3】求函数的单调减区间.【分析】先变换 -3x→3x,即沿y轴的翻折变换.【解析1】,转化为求g(x)=sin(3x-)的增区间令≤≤≤x ≤(f(x)减区间主解)又函数的f(x)周期为,故函数f(x)减区间的通解为≤x ≤【解析2】的减区间为≤≤即是≤x ≤【说明】从图象变换的角度看问题,比较解析1和解析2可知,求f(x)的减区间,实际上分两步进行:(1)先求得f(x)减区间的主解≤x ≤(2)再利用主解进行横向平移(的整数倍)即得f(x)减区间的通解.【思考】本解先将“正数化”,使>0是本解成功的关键. 否则,如果去解不等式组将会使你陷入歧途,不防试试!Welcome !!! 欢迎您的下载,资料仅供参考!。
三角函数图像的变换
三角函数图像的变换一.x y sin =图像的三种变换:①函数x y sin =的图象上所有点向左(右)平移ϕ个单位长度,得到函数()sin y x ϕ=+的图象;再将函数()sin y x ϕ=+的图象上所有点的横坐标伸长(缩短)到原来的1ω倍(纵坐标不变),得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y x ωϕ=A +的图象. ②数sin y x =的图象上所有点的横坐标伸长(缩短)到原来的1ω倍(纵坐标不变),得到函数sin y x ω=的图象;再将函数sin y x ω=的图象上所有点向左(右)平移ϕω个单位长度,得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y x ωϕ=A +的图象. 二.函数()()sin 0,0y x ωϕω=A +A >>的性质: ①振幅:A ;②周期:2πωT =;③频率:12f ωπ==T ;④相位:x ωϕ+;⑤初相:ϕ. 函数()sin y x ωϕ=A ++B ,当1x x =时,取得最小值为min y ;当2x x =时,取得最大值为max y ,则()max min 12y y A =-,()max min 12y y B =+,()21122x x x x T=-<.三.练习1.已知简谐运动()2sin()()32f x x ππϕϕ=+<的图象经过点(0,1),则该简谐运动的最小正周期T =_________;初相ϕ=__________.2.三角方程2sin(2π-x )=1的解集为_______________________. 3.函数),2,0)(sin(R x x A y ∈π<ϕ>ωϕ+ω=的部分图象如图所示,则函数表达式为______________________.{2,}3x x k k Z ππ=±∈ )48sin(4π+π-=x y第3题4.要得到函数sin y x =的图象,只需将函数cos y x π⎛⎫=- ⎪3⎝⎭的图象向右平移__________个单位.5.为了得到函数R x x y ∈+=),63sin(2π的图像,只需把函数2sin y x =,x R ∈的图像上所有的点①向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变);②向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变);③向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变); ④向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变).其中,正确的序号有_____③______. 6.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象向右平移__3π__个单位长度.7.若函数()2sin()f x x ωϕ=+,x ∈R (其中0ω>,2ϕπ<)的最小正周期是π,且(0)f =ω=______;ϕ=__________.8.下列函数: ①sin 6y x π⎛⎫=+⎪⎝⎭; ②sin 26y x π⎛⎫=-⎪⎝⎭; ③cos 43y x π⎛⎫=-⎪⎝⎭; ④cos 26y x π⎛⎫=-⎪⎝⎭. 其中函数图象的一部分如右图所示的序号有_____④_____. 9.函数y =sin(2x +3π)的图象关于点_______________对称. 10.求下列函数的单调减区间: (1)⎪⎭⎫⎝⎛+=62cos 2πx y (2)⎪⎭⎫ ⎝⎛+-=32sin 2πx y 11. 函数tan()2y x π=-(44x ππ-≤≤且0)x ≠的值域是___________________12. 7.如图,函数π2cos()(00)2y x x >ωθωθ=+∈R ,,≤≤的图象与y轴相交于点(0,且该函数的最小正周期为π.(1)求θ和ω的值;π6第8题(2)已知点π2A⎛⎫⎪⎝⎭,,点P是该函数图象上一点,点00()Q x y,是PA当y=ππ2x⎡⎤∈⎢⎥⎣⎦,时,求x的值.13.设函数)(),()2sin()(xfyxxf=<<-+=ϕπϕ图像的一条对称轴是直线8π=x.(Ⅰ)求ϕ;(Ⅱ)求函数)(xfy=的单调增区间;(Ⅲ)画出函数)(xfy=在区间],0[π上的图像第7题。
三角函数图形的变换
三角函数图形的变换1、正弦与余弦函数图象的变换2、由y =sin x 的图象变换出y =sin(ωx +ϕ)的图象一般有两个途径,只有区别开这两个途径,才能灵活进行图象变换。
利用图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现无论哪种变形,请切记每一个变换总是对字母x 而言,即图象变换要看“变量”起多大变化,而不是“角变化”多少。
途径一:先平移变换再周期变换(伸缩变换):先将y =sin x 的图象向左(ϕ>0)或向右(ϕ<0=平移|ϕ|个单位,再将图象上各点的横坐标变为原来的ω1倍(ω>0),便得y =sin(ωx +ϕ)的图象。
途径二:先周期变换(伸缩变换)再平移变换:先将y =sin x 的图象上各点的横坐标变为原来的ω1倍(ω>0),再沿x 轴向左(ϕ>0)或向右(ϕ<0=平移ωϕ||个单位,便得y =sin(ωx +ϕ)的图象。
作y =sin x (长度为2π的某闭区间)的图象 得y =sin(x +φ) 的图象得y =sin ωx 的图象 得y =sin(ωx +φ) 的图象 得y =sin(ωx +φ) 的图象 得y =Asin(ωx +φ)的图象,先在一个周期闭区间上再扩充到R 上沿x 轴平 移|φ|个单位 横坐标 伸长或缩短 横坐标伸 长或缩短沿x 轴平 移|ωϕ|个单位 纵坐标伸 长或缩短纵坐标伸 长或缩短【经典例题】图像变换一:左右平移1、把函数R x x y ∈=,sin 图像上所有的点向左平移4π个单位,所得函数的解析式为 _________2、把函数R x x y ∈=,cos 图像上所有的点向右平移5π个单位,所得函数的解析式为 _________图像变换二:纵向伸缩3、对于函数R x x y ∈=,s i n 3的图像是将R x x y ∈=,sin 的图像上所有点的______(“横”或”纵”)坐标______(伸长或缩短)为原来的______而得到的图像。
三角函数图像与变换
三角函数图像与变换一、引言三角函数是高中数学中的重要内容,它们在数学和物理等领域都有广泛的应用。
本文将从三角函数的图像出发,探讨其与变换的关系,并探讨它们在实际问题中的应用。
二、三角函数的基本图像1. 正弦函数的图像正弦函数是最基本的三角函数之一,它的图像呈现周期性的波动形态。
当自变量为0时,正弦函数的值为0;当自变量为90度(或π/2弧度)时,正弦函数的值为1;当自变量为180度(或π弧度)时,正弦函数的值为0;当自变量为270度(或3π/2弧度)时,正弦函数的值为-1;以此类推,正弦函数的图像在每个周期内都呈现出上升、下降、上升、下降的特点。
2. 余弦函数的图像余弦函数与正弦函数非常相似,它们的图像在形态上只有一个平移。
当自变量为0时,余弦函数的值为1;当自变量为90度(或π/2弧度)时,余弦函数的值为0;当自变量为180度(或π弧度)时,余弦函数的值为-1;当自变量为270度(或3π/2弧度)时,余弦函数的值为0;以此类推,余弦函数的图像也呈现出上升、下降、上升、下降的特点。
3. 正切函数的图像正切函数是另一个重要的三角函数,它的图像呈现出周期性的波动形态。
正切函数的图像在每个周期内都有一个渐进线,即在自变量接近90度(或π/2弧度)和270度(或3π/2弧度)时,函数值趋近于无穷大。
三、三角函数的变换1. 平移变换平移变换是指将函数的图像沿x轴或y轴方向移动一定的距离。
对于正弦函数和余弦函数,平移变换可以通过改变自变量的值来实现。
例如,将正弦函数的自变量增加π/4,可以使函数图像向左平移π/4个单位;将正弦函数的自变量减少π/4,可以使函数图像向右平移π/4个单位。
同样的,对于余弦函数,也可以通过改变自变量的值来实现平移变换。
2. 伸缩变换伸缩变换是指将函数的图像在x轴或y轴方向进行拉伸或压缩。
对于正弦函数和余弦函数,伸缩变换可以通过改变自变量的系数来实现。
例如,将正弦函数的自变量乘以2,可以使函数图像在x轴方向压缩一倍;将正弦函数的自变量除以2,可以使函数图像在x轴方向拉伸一倍。
三角函数的图像变换
三角函数b x A y ++=)sin(ϕω的图像变换三角函数的图像变换是历年来高考的重点内容,因此我们有必要对这一问题作一下研究。
下面就三角函数的图像变换的基本题型,做以详细讲析:一、 振幅变换由函数)(x f y =的图像变换为)(x Af y =的图像,其主要的方法是将)(x f y =图像上的各点的纵坐标变为原来的A 倍,即)()(A x Af y x f y =−−−−−−→−=倍纵坐标变为原来的。
例1、要得到)32sin(4π-=x y 的图像,只需将)32sin(π-=x y 的图像( )。
A 、 向上平移4个单位;B 、 将)32sin(π-=x y 图像上的各点的纵坐标变为原来的4倍; C 、 将)32sin(π-=x y 图像上的各点的纵坐标变为原来的4-倍; D 、 向下平移4个位单位。
分析:由题意可知,将)32sin(π-=x y 图像上的各点的纵坐标变为原来的4倍,就可以得到)32sin(4π-=x y 的图像。
故选B 。
二、 周期变换由函数)(x f y =的图像变换为)(x f y ω=的图像,其主要的方法是将)(x f y =图像上的各点的横坐标变为原来的ω1倍,即)()(1x f y x f y ωω=−−−−−−→−=倍横坐标变为原来的。
例2、如何由x y sin =的图像得到x y 2sin 2=的图像。
解:由x y sin =的图像上各点的纵坐标伸长到原来的2倍,得到x y sin 2=的图像,再将x y sin 2=的图像各点的横坐标压缩为原来的21倍,得到x y 2sin 2=的图像。
三、 相位变换(左右平移变换)由函数)(x f y =的图像变换为)(ϕ+=x f y 的图像,其主要的方法是将)(x f y =图像上所有点向左或向右平移ϕ个单位。
即)()(0)(ϕϕϕ+=−−−−−−→−=>x f y x f y 个单位向左平移 )()(0)(ϕϕϕ-=−−−−−−→−=>x f y x f y 个单位向右平移 例3、如何由)32sin(31π+=x y 的图像得到x y sin =的图像。
三角函数图像变换总结
三角函数图像变换总结三角函数是高中数学中非常重要的一个概念,它在几何、物理、工程等领域中有着广泛的应用。
在学习三角函数时,我们经常会接触到三角函数的图像变换。
图像变换是指通过对原始函数的一系列操作,得到一个新的函数的过程。
一、平移变换平移变换是指将函数的图像沿着横轴或纵轴方向平移一定的距离。
当我们将函数沿着横轴平移时,可以通过将自变量加上一个常数来实现。
例如,若将函数f(x)沿着横轴向右平移a个单位,则新函数为f(x-a)。
同样,当我们将函数沿着纵轴平移时,可以通过将因变量加上一个常数来实现。
二、伸缩变换伸缩变换是指通过改变函数的自变量或因变量的取值范围来改变函数的图像形状。
当我们将函数的自变量进行伸缩时,可以通过改变自变量的比例系数来实现。
例如,若将函数f(x)的自变量x进行伸缩,新函数为f(kx),其中k是一个正常数。
当k 大于1时,函数图像会水平压缩;当0<k<1时,函数图像会水平拉伸。
同样,我们可以将函数的因变量进行伸缩,通过改变因变量的比例系数来实现。
三、翻折变换翻折变换是指通过改变函数的自变量或因变量的正负号来改变函数的图像形状。
当我们将函数的自变量进行翻折时,可以通过将自变量取相反数来实现。
例如,若将函数f(x)的自变量进行翻折,新函数为f(-x)。
同样,我们可以将函数的因变量进行翻折,通过将因变量取相反数来实现。
四、迭加变换迭加变换是指将多个变换效果叠加在一起,从而得到一个新的函数的图像。
例如,我们可以将平移、伸缩和翻折等变换操作应用于原始函数,得到一个经过多次变换的新函数的图像。
通过迭加变换,我们可以获得更加丰富多样的函数图像。
总结起来,三角函数的图像变换是通过对函数的自变量和因变量进行平移、伸缩、翻折等操作来改变函数的图像形状。
通过合理地应用这些图像变换,我们可以更好地理解和应用三角函数,并在解决实际问题时提供便利。
因此,掌握三角函数的图像变换是非常重要的数学技能之一,也是我们在数学学习中需要重点关注和掌握的内容之一。
三角函数的像和变换
三角函数的像和变换三角函数是数学中的一类重要函数,包括正弦函数、余弦函数和正切函数等。
它们在几何、物理、工程等领域都有广泛的应用。
同时,通过对三角函数的变换,我们可以得到一系列新的函数及其性质。
本文将介绍三角函数的像和变换,并对其相关概念和性质进行说明。
一、三角函数的像1. 正弦函数(sin 函数)正弦函数是一个周期函数,它的取值范围在[-1, 1]之间。
当自变量为角度时,正弦函数的周期是360度(或2π弧度)。
我们可以通过绘制正弦函数的图像来更好地理解它的像。
下图是正弦函数的图像示例:(插入正弦函数的图像)2. 余弦函数(cos 函数)余弦函数也是一个周期函数,其取值范围同样在[-1, 1]之间。
余弦函数与正弦函数的图像类似,它们之间存在一种相位差。
当自变量为角度时,余弦函数的周期同样是360度(或2π弧度)。
下图是余弦函数的图像示例:(插入余弦函数的图像)3. 正切函数(tan 函数)正切函数的取值范围是整个实数集,即正负无穷。
正切函数也是一个周期函数,其周期为180度(或π弧度)。
当自变量的值接近90度(或π/2弧度)时,正切函数的值趋向于正无穷;接近270度(或3π/2弧度)时,正切函数的值趋向于负无穷。
下图是正切函数的图像示例:(插入正切函数的图像)二、三角函数的变换在三角函数的基础上,我们可以通过一系列的变换来得到新的函数。
1. 水平方向的变换(1)平移变换:平移变换可以将函数的图像沿横轴左右移动。
设原函数为f(x),平移后的函数为f(x - a),其中a表示平移的距离。
当a > 0时,图像向右平移;当a < 0时,图像向左平移。
(2)反射变换:反射变换可以将函数的图像关于纵轴或横轴进行翻转。
设原函数为f(x),反射后的函数为-f(x),关于横轴的反射变换表示为f(-x),关于纵轴的反射变换表示为-f(-x)。
2. 垂直方向的变换(1)竖直方向的平移:竖直方向的平移可以将函数的图像沿纵轴上下移动。
三角函数图像变换总结
三角函数图像变换总结三角函数是数学中的重要内容,它在数学、物理、工程等领域都有着广泛的应用。
三角函数的图像变换是三角函数研究中的一个重要内容,通过对三角函数图像的变换,可以更直观地理解三角函数的性质和特点。
本文将对三角函数图像的平移、垂直伸缩和水平伸缩等变换进行总结,希望能够帮助读者更好地理解三角函数图像的变换规律。
1. 平移变换。
平移是指将函数图像沿着坐标轴的方向进行平移。
对于三角函数图像而言,平移包括水平平移和垂直平移两种情况。
水平平移是指将函数图像沿着横坐标轴的方向进行平移,而垂直平移则是指将函数图像沿着纵坐标轴的方向进行平移。
对于三角函数y=sin(x)而言,将其图像沿着横坐标轴平移a个单位,则新的函数图像为y=sin(x-a);将其图像沿着纵坐标轴平移b个单位,则新的函数图像为y=sin(x)+b。
同样的规律也适用于三角函数y=cos(x)和y=tan(x)的图像平移变换。
2. 垂直伸缩变换。
垂直伸缩是指将函数图像沿着纵坐标轴的方向进行伸缩。
对于三角函数图像而言,垂直伸缩可以分为垂直方向的拉伸和压缩两种情况。
对于三角函数y=sin(x)而言,将其图像沿着纵坐标轴方向进行拉伸k倍,则新的函数图像为y=ksin(x);将其图像沿着纵坐标轴方向进行压缩k倍,则新的函数图像为y=(1/k)sin(x)。
同样的规律也适用于三角函数y=cos(x)和y=tan(x)的图像垂直伸缩变换。
3. 水平伸缩变换。
水平伸缩是指将函数图像沿着横坐标轴的方向进行伸缩。
对于三角函数图像而言,水平伸缩可以分为水平方向的拉伸和压缩两种情况。
对于三角函数y=sin(x)而言,将其图像沿着横坐标轴方向进行拉伸k倍,则新的函数图像为y=sin(kx);将其图像沿着横坐标轴方向进行压缩k倍,则新的函数图像为y=sin(x/k)。
同样的规律也适用于三角函数y=cos(x)和y=tan(x)的图像水平伸缩变换。
通过以上对三角函数图像变换的总结,我们可以发现三角函数图像的变换规律其实并不复杂。
三角函数图像变换3(xin)
)的图像, 只须将 y sin 2x的图像( 4
B、向右平移 8 个单位 D、向右平移 4 个单位
A
)
例4、 关于函数f ( x ) 4 sin( 2x )( x R ), 有下列命题: 3
①由f ( x1 ) f ( x 2 ) 0可得,x 1 x 2必是的整数倍; ② y f ( x )的表达式可改写为y 4 cos( 2x ); 6 ③ y f ( x )的图像关于( ,0 )对称; 6 ④ y f ( x )的图像关于直线x 对称; 6 其中正确的例题是:— — — — — —.
1、将函数y cos x的图象上每一个点的 横 坐标不变,
2 2 缩短到原来的 倍 ,可得到函数y cos x的图象. 纵 坐标 3 3
2 2、将函数y sin x图象上每一个点的横 坐标不变, 5 5 纵 坐标 伸长到原来的2 倍 ,可得到函数y sin x的图象.
例 1
A. y 2sin(4 x ) 1 3
,初相为
3
,
( A)
C. y 2sin(4 x ) 1 3
B. y 2sin(4 x ) 1 3
D. y 2sin(4 x ) 1 3
已知函数y 2 sin(2 x
3
)
①振幅是: 频率是: 初相是: ② 定义域是:
2
1
3
周期是 : 相位是:
π
2x 3
x k ( k Z ) 2 ③当x __________ 时,y max _______ ; 12 _____
[k
R
三角函数的图象PPT
交流电的电压和电流是时间的三角函数,用于产生和 传输电力。
波动
在声学、电磁学等领域,波的传播和变化可以用三角 函数来描述。
在工程中的应用
机械振动
在机械工程中,三角函数用于模 拟和分析各种振动现象,如桥梁 振动、汽车悬挂系统等。
控制系统
在航空、航天、化工等领域,控 制系统中的信号处理和反馈控制 算法常常用到三角函数。
信号处理
在通信、雷达、声呐等领域,信 号的调制和解调常常涉及到三角 函数的应用。
在数学其他分支中的应用
微积分
01
在微积分中,三角函数用于求解微分方程、积分方程等数学问
题。
线性代数
02
在矩阵运算和特征值求解中,三角函数也经常被用到。
复数分析
03
在复数分析中,三角函数用于表示复数的三角形式,以及处理
与之相关的数学问题。
三角函数的周期性
周期性定义
三角函数的周期性是指函数值按照一 定的规律重复出现的现象。对于正弦 和余弦函数,其周期为360度或2π弧 度。
周期计算
对于正弦和余弦函数,其周期T=2π; 对于正切函数,其周期T=π。
三角函数的奇偶性
奇偶性定义
三角函数的奇偶性是指函数值在原点两侧是否对称的现象。奇函数在对称轴两侧的值互为相反数,偶函数在对称 轴两侧的值相等。
横向伸缩变换
总结词
在x轴方向上伸缩函数的图像。
详细描述
对于函数y=sin(x),若图像在x轴方向上压缩为原来的k倍,则新的函数为y=sin(kx); 若图像在x轴方向上拉伸为原来的k倍,则新的函数为y=sin(kx)。
纵向伸缩变换
总结词
在y轴方向上伸缩函数的图像。
详细描述
三角函数图像的变换
三角函数图像的变换三角函数是一类重要的基础函数,包括正弦函数、余弦函数、正切函数等。
在数学中,我们经常遇到需要对三角函数进行图像变换的情况,比如平移、伸缩、翻转等。
本文将介绍三角函数图像的常见变换以及它们对函数图像的影响。
一、平移变换平移是指将函数图像沿着横轴或纵轴方向移动一段距离。
以正弦函数为例,设原函数为y=sin(x),将它沿横轴向右平移a个单位,新函数为y=sin(x-a)。
当a取正值时,函数图像向右平移;当a取负值时,函数图像向左平移。
平移变换后的图像与原图像形状相同,只是位置不同。
二、伸缩变换伸缩是指将函数图像进行横向或纵向的比例拉伸或压缩。
以正弦函数为例,设原函数为y=sin(x),将它沿横轴方向进行压缩b倍,新函数为y=sin(bx)。
当b大于1时,函数图像横向压缩;当0<b<1时,函数图像横向拉伸。
同样,沿纵轴方向进行伸缩也可得到相应的函数图像变换。
三、翻转变换翻转是指将函数图像沿着横轴或纵轴进行翻转,也称为镜像变换。
以正弦函数为例,设原函数为y=sin(x),将它沿横轴进行翻转,新函数为y=-sin(x)。
同样地,纵向翻转可得到相应的函数图像变换。
四、混合变换除了单一的平移、伸缩和翻转变换,我们还可以通过组合这些变换来得到更复杂的函数图像变换。
比如,可以将平移、伸缩和翻转变换相结合,得到更丰富多样的变换效果。
以上是对三角函数图像常见变换的简要介绍,下面我们将进一步讨论这些变换对函数图像的具体影响。
1.平移变换的影响:平移变换只改变了函数图像的位置,不改变其形状。
假设原函数图像位于坐标系上方,若平移后函数图像向右移动,则新函数图像将出现在原来的右侧;若平移后函数图像向左移动,则新函数图像将出现在原来的左侧。
平移变换对函数图像的垂直位置没有影响。
2.伸缩变换的影响:横向伸缩会拉伸或压缩函数图像。
当b大于1时,函数图像在x轴方向上被压缩,变得更加陡峭;当0<b<1时,函数图像在x轴方向上被拉伸,变得更加平缓。
三角函数图像变换规律
三角函数图像变换规律三角函数图像变换(TFI)是数学中一个重要的概念,它能够帮助人们更好地理解曲线、函数及它们之间的关系。
三角函数图像变换有助于理解一般函数的性质以及对特殊函数的特性和行为作出准确的预测。
本文旨在探讨三角函数图像变换的一些基本规律以及应用示例,为研究者进行更深入的探究奠定基础。
2、复平面及变换复平面是数学中的一个重要概念,可以用来描述复数的结构和特性。
复平面由实轴和虚轴组成,其中的点的坐标为(x, y),它们之间的距离可以用欧几里得距离来表示。
复平面上的三角函数变换指的是使用三角函数将原有的点变换到新的位置和形状,其原理可以用复数学来分析推导得出。
3、三角函数图像变换三角函数图像变换是指使用三角函数进行图像变换。
它包括改变图像尺寸大小、旋转图像等。
其基本规律是:一个复数可以通过三角函数变换将其变换为另一个复数,而另一个复数可以通过三角函数变换将其变换为第一个复数。
具体来说,对于一张图片,其复数坐标可以用三角函数变换来改变图片的大小。
具体的方法是:将图像中心(原点)放入复数坐标系,以图像原点为基准,使用三角函数变换来平移复数坐标,从而改变图像尺寸大小;同时,还可以使用三角函数来旋转图像,以得到不同的图像形态。
4、三角函数图像变换的应用三角函数图像变换在计算机图像处理和图像恢复方面都有广泛的应用。
在计算机图像处理方面,使用三角函数变换可以用于改变图像尺寸,实现图像膨胀和缩小;也可以实现图像旋转、倾斜等功能,从而使图像变换成不同的形态。
在图像恢复方面,三角函数图像变换可以用来改善图像质量,旋转图像,去除图像噪声,从而获得更清晰、更易于理解的图像。
5、总结三角函数图像变换是一种利用三角函数将图像变换为不同形状、尺寸大小的技术。
它的基本规律就是将源点的复数坐标变换为另一个复数的坐标,实现图像的角度旋转、尺寸膨胀缩小、景深变化等功能,具有广泛的应用前景。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)为了得到函数y
4sin(
x
5 )的图象,只要
5
把C上所有C的点
( A)横坐标伸长到原来的4 倍,纵坐标不变 3
(B)横坐标缩短到原来的3 倍,纵坐标不变 4
(C)纵坐标伸长到原来的4 倍,横坐标不变 3
(D)纵坐标缩短到原来的3 倍,横坐标不变 4
π 6
)
(四)总结归纳:
y=sinx
y=Asin(x+)
方法1:按先平移后变周期的顺序变换
y=sinx
向左>0 (向右<0) 平移||个单位
y=sin(x+)
横坐标缩短>1 (伸长0<<1)到原来的1/倍 y=sin(x+) 纵坐标不变
横坐标不变
y=Asin(x+)
纵坐标伸长A>1 (缩短0<A<1)到原来的A倍
(1)A
振幅
(2)T = 2π ω
周期
(3)f = 1 = ω T 2π
频率
(4)ωx +
相位
(5)
初相
二)尝试练习题
二、学习过程:
1、为了得到函数y cos(x 1)的图象,只需把函数? 3
y cos x图象上所有的点( D )(1月4题)
A. 向左平行移动 1 个单位 B. 向左平行移动 1 个单位
7
4、为了得到函数y=sin(x- p )的图象,只需 4
要把函数y=sin(x+ p )的图象上的所有点 D
4 A.向右平行移动 p 个单位?
2 B.向右平行移动 p 个单位
4 C.向左平行移动 p 个单位?
2 D.向左平行移动 p 个单位
4
5:如何按照下列指定的顺序,将一个函数的图象 变为下一个函数的图象.
(三)巩固练习:
2.把y sin(2x )的图象向右平移 个单位,
3
6
这时图象所表示的函数为D
A. y sin(2x ), B. y sin(2x )
2
6
C. y sin(2x 3), D. y sin 2x 2
(三)巩固练习:
3、怎样由y sin x的图象得到y 2sin(2x )
3
A.向左平移
3
B.向右平移
3
C.向左平移
6
D.向右平移
6
C. 向左平移π/ 6个单位 D. 向右平移π/6 个单位
补救过关
试用两种方法解答下题:
如何由 y sin x 图象变成 y 2sin(1 x )的图象?
36
2。三角变换一般技巧有
①切化弦, ②降次,
③变角,
④化单一函数,
⑤妙用1,
⑥分子分母同乘除,
二、基础训练:
3.要得到y sin( 2x )的图象,只要将y sin 2x的图象 ( )
D.纵坐标缩小到原来的 1 倍,横坐标不变 3
3、已知函数y=cos(x+ )的图象为C,为了得到
7
函数y=cos(x- )的图象只需把C上所有的点(? C )
7
A.向右平行移动 个单位长度?
7
B.向左平行移动 个单位长度?
7
C.向右平行移动 2 个单位长度?
7
D.向左平行移动 2 个单位长度
y sin x
所有点的横坐标
y
26
= sin
x
伸长为原来的2倍
2
途径一:
所有的点向右
y = sin( x - π )
平移多少个单位?
26
所有点的纵坐标 伸长为原来的2倍
y = 2sin( x - π ) 26
y sin x
所有的点向右 平移多少个单位?
y = sin(x - π ) 6
途径二:
伸长伸所所为长有有原为点点来原的的的来纵横多的坐坐少多标标倍少?倍?yy==si2ns(i2xn(-2x6π-)
5
(三)巩固练习:
1.选择题 :已知函数y 3sin( x )的图象为C.
(2)为了得到函数y 3sin(2x 5)的图象,只要
5
把C上所有B的点
( A)横坐标伸长到原来的2倍,纵坐标不变
(B)横坐标缩短到原来的1 倍,纵坐标不变 2
(C)纵坐标伸长到原来的2倍,横坐标不变
(D)纵坐标缩短到原来的1 倍,横坐标不变 2
y=sinx
y=Asin(x+)
方法2:按先变周期后平移顺序变换
横坐标缩短>1 (伸长0<<1)到原来的1/倍
y=sinx
y=sinx
纵坐标不变
向左>0 (向右<0) 平移||/个单位
y
sin
(x
)
sin(
x
)
横坐标不变
y=Asin(x+)
纵坐标伸长A>1 (缩短0<A<1)到原来的A倍
三、当堂检测:
①
y sin x
y sin(x ) ②
4
y sin(2x )
4
①____将___函____数___y_____s_i_n___x_的____图_ 象向左平4 个单位
把函数y sin(x )图象上所有点的横坐标
4 ②_____缩___短 ____到___原 ____来___的 ___12___倍___(纵坐标不变)
(三)巩固练习:
1.选择题 :已知函数y 3sin( x )的图象为C.
5 (1)为了得到函数y 3sin( x )的图象,只要
5
把C上所有C 的点
( A)向右平行移动 个单位长度.
5
(B)向左平行移动 个单位长度.
5
(C)向右平行移动2 个单位长度.
5
(D)向左平行移动2 个单位长度.
汗水
昌宁二中:数学组
2020年6月10日星期三
一、学习目标:
1、会求函数 y Asin(x ) ( A 0, 0)的三种变换的量
2.会根据正弦函数的三种变换来求余弦函 数和正切函数的三种变换.
)复习题
二、学习过程:
y = Asin(ωx +)(其中A > 0,ω > 0)在简谐
运动中的相关概念 :
C. 横坐标缩小原来的1/3倍 D.横坐标缩小到原来的1/3倍
C •3. 要得到函数 y=sin(x + π/3)的图象,只需将 y=sinx 图象( )
A. 向左平移π/6个单位 B. 向右平移π/6个单位
C. 向左平移π/3个单位 D. 向右平移π/3个单位
D •4. 要得到函数 y=sin(2x-π/3)的图象,只需将y=sin2x图象( ) A. 向左平移π/3 个单位 B. 向右平移π/3个单位
3
的图象 ?
(1)向左平移
函数y sin x
3
y sin(x )的图象
3
(2)横坐标缩短到原来的 1 2
y sin(2x+ )的图象
纵坐标不变
3
(3)纵坐标伸长到原来的2倍 y 2sin(2x )的图象
横坐标不变
3
选做题:
题:怎样由y = sinx的图象得到y = 2sin( x - π )的图象?
D •1. 要得到函数 y= 2 sin x 的图象,只需将 y= sinx 图象( )
A.横坐标扩大原来的两倍 B. 纵坐标扩大原来的两倍
C.横坐标扩大到原来的两倍 D. 纵坐标扩大到原来的两倍
D •2. 要得到函数 y=sin3x 的图象,只需将 y=sinx 图象( )
A. 横坐标扩大原来的3倍 B.横坐标扩大到原来的3倍
3
3
C. 向右平行移动 1 个单位 D. 向右平行移动 1 个单位
3
3
2、为了得到函数y=cos x 的图象,只需把函数y=cosx 3
图象上所有的点的 (A)? (5题)
A.横坐标伸长到原来的3倍,纵坐标不变?
B.横坐标缩小到原来的 1 倍,纵坐标不变? 3
C.纵坐标伸长到原来的3倍,横坐标不变?