高效液相色谱法简介

合集下载

高效液相色谱简介.pptx

高效液相色谱简介.pptx
HPLC组成示例
第11页/共16页
高效液相色谱法的特点
高压:一般可以达到150~300kg/cm2高速:一般可以达到1~10mL/min高效:一般可以达到60000理论塔板/页
分类: 选择:
第13页/共16页
高效液相色谱的应用
第14页/共16页
THE END
THANK YOU
第15页/共16页
感谢您的观看!
第16页/共16页
第5页/共16页
色谱流出曲线示意图
第6页/共16页
有关术语 1)色谱流出曲线和色谱峰 2)基线 3)峰高 4)保留值(死时间、保留时间、调整保留时 间、死体积、保留体积、调整保留体积、相对保留值) 5)区域宽度(标准偏差σ,半峰宽W1/2,峰底宽度W)
第7页/共16页
样品所含组分的最少个数; 定性分析(保留值); 定量分析(峰高或面积); 分离效能(保留值及区域宽度); 两相选择的依据(峰间距离)论文内容
从色谱流出曲线中可以得出许多重要信息:
第8页/共16页
高效液相色谱(HPLC)流程示意图
第9页/共16页
HPLC组成图
第10页/共16页
第2页/共16页
第3页/共16页
第4页/共16页
分配系数 K和分配比k K=(溶质在固定相中的浓度)/(溶质在流动相中的浓度) =Cs / Cm K为每一溶质的特征值,仅为固定相和温度有关,与两相体积论文内容、柱管特性及仪器无关。 k=(组分在固定相中的质量)/(组分在流动相中的质量) =Ms / Mm两峰间的距离由组分在两相间的分配系数决定;峰宽由组分在色谱柱中传质和扩散行为决定。 两个理论(塔板理论和 速率理论)论文内容
1903年 Tswett创立色谱法(在碳酸钙上分离了叶绿素) 20世纪四五十年代 出现了纸色谱(PC)和薄层色谱法(TLC)1952年 James和Martin提出了气相色谱法(GC)20世纪60年代后期 液相色谱法得到了快速发展 论文内容

高效液相色谱简介及操作

高效液相色谱简介及操作

HPLC和经典液相色谱法的比较
3.高效液相色谱法的分类
• 通常将液相色谱法按分离机理分成吸附色谱法、分配色谱法、离子色 谱法和凝胶色谱法四大类。
4.如何阅读色谱图??
tR:保留时间;tM:死时间; :调整保留时间; W:峰宽
• 定性分析:在同一色谱系统中相同物质具 有相同的保留值 • 定量分析:组分含量与其响应值(峰高或 面积)成正比
2 色谱柱使用的注意事项
• 色谱柱在任何情况下不能碰撞、弯曲或强烈震动。 • 当分析柱长期不使用,应用适当有机溶剂保存(一般 为甲醇)。 • 每天工作结束后用适当的溶剂来清洗柱。
3 其他注意事项
• 未经提取净化的蛋白样品、血样、生物样品绝对禁 止直接进样分析。 • 要注意流动相的脱气。 • 避免使用高粘度的溶剂作为流动相。 • 使用新鲜配制的流动相,特别是水溶剂或缓冲液建 议不超过两天,最好每天更换。
(5)色谱柱平衡后,打开检测器(开灯) (6)测定样品 (7)清洗仪器
色谱柱及流路清洗 进样阀清洗 进样针清洗
四、主要注意事项
1 泵使用的注意事项

• •
• •
防止任何固体微粒进入泵体(用0.22 um或0.45 um 的微孔滤膜过滤) 流动相不应含有任何腐蚀性物质,含有缓冲盐的流 动相不应保留在泵内更不允许留在柱内。 泵工作时防止溶剂瓶内的流动相用完,否则空泵运 转一是会使大量空气进入柱内柱床崩塌、也会磨损柱塞、 密封圈,最终产生漏液。 输液泵的工作压力决不要超过规定的最高压力。 流动相应先脱气,以免在泵内产生气泡,影响流量 的稳定性和分析结果。
c. 荧光检测器 (FLD) 只适用于具有荧光的有机化合物(如多环芳烃、氨基 酸、胺类、维生素和某些蛋白质等)的测定。

《高效液相》课件

《高效液相》课件

蛋白质分离与纯化
蛋白质分离
高效液相色谱技术可以用于蛋白质的分离和纯化,通过不 同的分离模式和固定相选择,实现对蛋白质的快速分离和 纯化。
蛋白质性质分析
通过高效液相色谱技术可以对蛋白质的性质进行分析,如 蛋白质的分子量、等电点等,为蛋白质的结构和功能研究 提供有力支持。
蛋白质相互作用研究
高效液相色谱技术可以用于研究蛋白质之间的相互作用, 如蛋白质与配体、抑制剂等之间的相互作用,有助于深入 了解蛋白质的功能和作用机制。
原理
利用不同物质在固定相和流动相之间 的分配系数差异进行分离,通过检测 器进行检测,收集各个组分,达到分 析样品组分的目的。
发展历程
01
02
03
04
起源
20世纪初,俄国植物学家茨 维特发明了色谱法。
1940年代
气相色谱法(GC)出现,并 逐渐发展成熟。
1960年代
高效液相色谱法(HPLC)开 始发展,并逐渐取代气相色谱
02
高效液相色谱仪
仪器组成
进样器
将样品注入色谱柱,是 色谱仪的重要部件之一

色谱柱
用于分离样品中的各组 分,由固定相和流动相
组成。
检测器
检测色谱柱流出的组分 ,并将其转换为电信号

数据处理系统
用于采集、处理和显示 检测器输出的信号。
重要部件介绍
01
02
03
色谱柱填料
常用的填料有硅胶、氧化 铝、活性炭等,根据不同 分离需求选择合适的填料 。
《高效液相》ppt课件
目录
• 高效液相色谱法简介 • 高效液相色谱仪 • 高效液相色谱分离技术 • 高效液相色谱在生物医药领域的应用 • 高效液相色谱实验技术 • 高效液相色谱技术前沿与展望

高效液相色谱法简介

高效液相色谱法简介

高效液相色谱的特点
高压——压力可达150~300 kg/cm2。色谱
柱每米降压为75 kg/cm2以上。
高速——流速为0.1~10.0 mL/min。 高效——塔板数可达5000/米。在一根柱中
同时分离成份可达100种。
高灵敏度——紫外检测器灵敏度可达0.01ng。
同时消耗样品少。
第二节
塑料块 Teflon
1 cm
工作电极 (Pt, Au, 碳糊)
e.电导检测器
电导检测器主要用于离子色谱的检测。 原理: 根据待测物在一些介质中电离后所产 生的电导(电阻的倒数)变化来测量电离物质 的含量。 电导检测器的主要部件是电导池。其响应 受温度影响较大,因此需要将电导池置于恒温 箱中。另外,当 pH>7时,该检测器不够灵敏。 电导检测器不能用于梯度洗脱。
◆恒流泵
注射型泵------输出精确,无脉动,需更换溶剂而中断工作。
往复型泵------造价低廉,溶剂更换方便,但存在脉动。 (使用较多) 对流量变化敏感的检测器会有噪声 干扰,此时可连接一脉动阻尼器。
◆恒压泵--------压力恒定,但流量不恒定(现在已经较少使用)。
输液泵操作注意事项:
防止固体微粒进入泵体 流动相不应含有腐蚀性物质 防止溶剂瓶内的流动相被用完 不超过规定的最高压力 流动相一般应该先脱气
F=2.3QKI0εCl
Q为量子产率,K为荧光效率,ε为摩尔吸光系 数,l为光径长度。
F=KC
特点:选择性好,
专属型检测器,灵敏 度比紫外检测器高 (检测限10-10 g/ml) 对多环芳烃,维 生素 B 、黄曲霉素、 卟啉类化合物、农药 、药物、氨基酸、甾 类化合物等有响应;
c. 示差折光检测器

高效液相色谱法

高效液相色谱法

第八章高效液相色谱法(High Performance Liquid Chromatograph)第一节概述(Generalization)以高压液体为流动相的液相色谱分析法称高效液相色谱法(HPLC)。

HPLC是20世纪70年代初发展起来的一种新的色谱分离分析技术。

具有分离效能高、选择性好、灵敏度高、分析速度快、适用范围广(样品不需气化,只需制成溶液即可)的特点,适用于高沸点、热不稳定有机及生化试样的分离分析。

HPLC基本方法是用高压泵将具有一定极性的单一溶剂或不同比例的混合溶剂泵入装有填充剂的色谱柱,经进样阀注入的样品被流动相带入色谱柱内进行分离后依次进入检测器,由记录仪、或数据处理系统记录色谱信号再进行数据处理而得到分析结果。

高效液相色谱法按固定相不同可分为液-液色谱法和液-固色谱法;按色谱原理不同可分为分配色谱法(液-液色谱)和吸附色谱法(液-固色谱)等。

目前,化学键合相色谱应用最为广泛,它是在液-液色谱法的基础上发展起来的。

将固定液的官能团键合在载体上,形成的固定相称为化学键合相,具有固定液不易流失的特点,一般认为有分配与吸附两种功能,常以分配作用为主。

C18(ODS)是最常使用的化学键合相。

根据固定相与流动相极性的不同,液-液色谱法又可分为正相色谱法和反相色谱法,当流动相的极性小于固定相的极性时称正相色谱法,主要用于极性物质的分离分析;当流动相的极性大于固定相的极性时称反相色谱法,主要用于非极性物质或中等极性物质的分离分析。

《中国药典》中有50种中成药的定量分析采用HPLC法,在中药制剂分析中,大多采用反相键合相色谱法。

一、高效液相色谱法的特点目前经典LC主要用于制备,若用于分析则采用脱机或非连续检测。

经典LC填料缺陷,通常是填料粒度大、范围宽、不规则,不易填充均匀,扩散和传质阻力大,谱带展宽加大。

它存在致命弱点:速度慢、效率低和灵敏度低。

HPLC填料(高效固定相)颗粒细、直径范围窄、能承受高压。

高效液相色谱法的简介..

高效液相色谱法的简介..

3.操作条件差别
GC:加温操作
HPLC:室温;高压(液体粘度大,峰展宽小)
二. 高效液相色谱法的特点和应用
“三高” “一快” “一广” 高压 高柱效——n=104片/米,柱效高(远高于一般LC) 高灵敏度 分析速度快 应用范围广泛(可分析80%有机化合物)
三.各类高效液相色谱法

液-固吸附色谱 液-液分配色谱

3.1 液-固吸附色谱法
固定相为固体吸附剂,流动相为液体。

固定相:固体吸附剂为,如硅胶、氧化铝等,较常 使用的是5~10μm的硅胶吸附剂;
流动相:各种不同极性的一元或多元溶剂

分离机制:利用溶质分子占据固定相表面吸附活性 中心能力的差异,即物质吸附作用的不同来分离的。

适用于分离相对分子质量中等的油溶性试样,对具 有官能团的化合物和异构体有较高选择性
3.2 液-液分配色谱


固定相与流动相均为液体(互不相溶);
基本原理:组分在固定相和流动相上的分配; 流动相 :对于亲水性固定液,采用疏水性流动相,即 流动相的极性小于固定液的极性(正相色谱),反之, 流动相的极性大于固定液的极性(反相色谱)。正相 与反相的出峰顺序相反; 固定相:早期涂渍固定液,固定液流失较多,较少采 用;


离子交换色谱
离子色谱
排阻色谱
亲和色谱
高效液相色谱固定相和流动相 (-)固定相
1. 高效液相色谱固定相以承受高压能力来分类,可分为刚性固体和硬胶两 大类:
刚性固体:以二氧化硅为基质,可承受 7.O×108 ~ 1.O×109Pa 的高压,可 制成直径、形状、孔隙度不同的颗粒。如果在二氧化硅表面键合各种官 能团,就是键合固定相。 硬胶:主要用于离子交换和尺寸排阻色谱中,它由聚苯乙烯与二乙烯苯基 交联而成。可承受压力上限为3.5×108Pa。

高效液相色谱法

高效液相色谱法

4. 区域宽度
衡量色谱峰宽度的参数,三种
表示方法: ( 1 )标准偏差 ( ) :即 0.607 倍峰 高处色谱峰宽度的一半。 (2)半峰宽(Y1/2):色谱峰高一半 处的宽度 Y1/2 =2.354 。 (3)峰底宽(Wb):Wb=4 。
2. 相平衡参数
(1)分配系数( partition coefficient) K 组分在固定相和流动相间发生的吸附、脱附,或溶解、
流动相的选择:GC采用的流动相中为有限的几种“惰性”
气体,只起运载作用,对组分作用小;HPLC采用的流动相为
液体或各种液体的混合,可供选择的机会多。它除了起运载作
用外,还可与组分作用,并与固定相对组分的作用产生竞争, 即流动相对分离的贡献很大,可通过溶剂来控制和改进分离。
操作温度:GC需高温;HPLC通常在室温下进行。
试样一定时,K主要取决于固定相性质;
每个组份在各种固定相上的分配系数K不同; 选择适宜的固定相可改善分离效果; 试样中的各组分具有不同的K值是分离的基础; 某组分的K = 0时,即不被固定相保留,最先流出。
3.分配比 (partition radio)k
一定温度下,组分在两相间分配达到平衡时的质量比。
2. 按孔隙深度分
• 表面多孔型:以实心玻璃珠为基体,在基体表面 覆盖一层多孔活性材料(如 硅胶、氧化铝、离子交 换剂、分子筛、聚酰胺等)。表面多孔型固定相的 颗粒大(易装柱)、多孔层厚度小且孔浅(渗透性好, 出峰快);但交换容量小。适于常规分离分析。 • 全多孔型:全部由硅胶或氧化铝微粒聚集而成, 因颗粒极细,因而孔径小、传质快、 柱效高。特 别适于复杂混合物的分离。
(2)用体积表示的保 留值
保留体积(VR): VR = tR×qv qv为柱出口处的载气流量, 单位:m L / min。 死体积(VM): VM = tM ×qv

高效液相色谱法

高效液相色谱法

(2)化学键合固定相 ) B. 极性键合相 极性键合相指键合有机分子 中含某些极性基团,与空白硅胶相比, 中含某些极性基团,与空白硅胶相比,其极性 键合相表面能量分布均匀,是一种改性的硅胶, 键合相表面能量分布均匀,是一种改性的硅胶, 常用的极性键合相有氨基、氰基等。 常用的极性键合相有氨基、氰基等。氨基键合 相是分离糖类最常用的固定相,常用乙腈-水 相是分离糖类最常用的固定相,常用乙腈 水
二、液相色谱的流动相
1. 流动相特性
(mobile phases of LC) )
(2)化学键合固定相 )
化学键合固定相是应用最广的色谱法。 化学键合固定相是应用最广的色谱法。将固定液的官能团键
合在载体上形成的固定相称为化学键合相,其特点是不流失, 合在载体上形成的固定相称为化学键合相,其特点是不流失, 一般认为有分配与吸附两种功能。 一般认为有分配与吸附两种功能。 a. 硅氧碳键型: 硅氧碳键型: ≡Si—O—C b. 硅氧硅碳键型:≡Si—O—Si — C 硅氧硅碳键型: 稳定,耐水、耐光、耐有机溶剂,应用最广 稳定,耐水、耐光、耐有机溶剂, c. 硅碳键型: 硅碳键型: d. 硅氮键型: 硅氮键型: ≡Si—C ≡Si—N
4.6
高效液相色谱法
高效液相色谱法(high pressure Liquid 高效液相色谱法 chromatography,HPLC)是利用物质在两 , 是利用物质在两 相之间吸附或分配的微小差异达到分离的目的。 相之间吸附或分配的微小差异达到分离的目的。 当两相作相对移动时, 当两相作相对移动时,被测物质在两相之间做 反复多次的分配, 反复多次的分配,这样使原来微小的差异产生 了很大的分离效果,达到分离、 了很大的分离效果,达到分离、分析和测定一 些理化常数的目的。 些理化常数的目的。

高效液相色谱-电化学法_概述及解释说明

高效液相色谱-电化学法_概述及解释说明

高效液相色谱-电化学法概述及解释说明1. 引言1.1 概述高效液相色谱-电化学法(简称HPLC-EC)是一种常用的分析技术,利用高效液相色谱技术和电化学检测原理相结合,实现对样品中化合物的分离和定量分析。

此方法具有灵敏度高、选择性好、重复性好等优点,因而在环境科学、生物医药和食品安全等领域得到广泛应用。

1.2 文章结构本文共分五个部分进行阐述。

引言部分是对整篇文章的概述,介绍了HPLC-EC 技术的背景和研究意义。

第二部分将对HPLC技术和电化学法以及它们之间的结合进行简要介绍。

接下来一节将详细讨论HPLC-EC的实验原理与分析过程。

第四部分将探讨HPLC-EC在环境污染物、生物医药和食品安全领域中的应用案例。

最后一节是总结与展望,回顾整篇文章所提到的内容,并展望该技术在未来发展中可能取得的进展。

1.3 目的本文旨在全面介绍高效液相色谱-电化学法的相关知识,深入探讨其原理及其在环境科学、生物医药和食品安全领域的应用。

通过文章阐述,读者可以对HPLC-EC技术有一个全面的了解,并且了解到该技术在不同领域的实际应用和发展趋势。

2. 高效液相色谱-电化学法概述:2.1 高效液相色谱技术简介高效液相色谱(HPLC)是一种广泛应用于分析化学领域的分离技术。

它基于物质在溶剂流动下通过固定相的不同速率进行分离,可用于分析和检测各种化合物。

HPLC技术具有分离效果好、选择性强、重复性好等特点,因此被广泛应用于环境、生物医药和食品安全等领域的样品分析中。

2.2 电化学法简介电化学法是利用电极与溶液中存在的化学反应产生的电流或电势来检测或测定物质的一种方法。

根据所使用的电极类型和测量参数,常见的电化学方法包括极谱法、电化学滴定法、恒定电位法等。

这些方法可以实现对不同种类和浓度范围内的物质进行快速准确的检测和分析。

2.3 结合应用优势高效液相色谱-电化学法(HPLC-EC)是将HPLC技术与电化学方法相结合而形成的一种分析技术。

高效液相色谱法

高效液相色谱法

正相色谱:以极性物质做固定相,非极性物质作
流动相,即流动相的极性<固定相的极性。正相色 谱适用于极性化合物的分离,极性小的先出柱, 极性大的后出柱。(反之为反相色谱)
高效液相色谱仪
压力表 储液器 高压泵
进样器
梯度洗 提装置
色 谱 柱
记录仪 检测器
馏分收集器
一 高压输液系统 1.贮液器:1-2L的玻璃瓶,配有溶剂过滤器(Ni 合金),其孔径约2 m,可防止颗粒物进行 泵内。 2.脱气:超声波脱气或真空加热脱气。溶剂通 过脱气器中的脱气膜,相对分子量小的气 体透过膜从溶剂中除去。 3.高压泵: 对输液泵的要求:密封性好、输液流量稳 定无脉动、可调范围宽、耐腐蚀。
二 分离和进样系统 (一)进样系统 与GC相比,HPLC柱要短得多,因此由于柱 本身所产生的峰形展宽相对要小些。即, HPLC的展宽多因一些柱外因素引起。这些 因素包括:进样系统、连接管道及检测器 的死体积。进样装置包括两种。 1. 隔膜注射进样:使用微量注射器进样。装 置简单、死体积小。但进样量小且重现性 差。
2.化学发光检测器
是近年发展起来的高选择性、高灵敏度
(二)荧光检测器(FD) 早期的荧光检测器是具有滤光片的荧光 光度计,已基本淘汰。 目前使用的荧光检测器多是具有流通池 的荧光分光光度计(直角光路)。 检测限可达 1× 10-10g / ml ,比紫外检测 器灵敏,但只适用于能产生荧光或其衍生 物能发荧光的物质。
主要用于氨基酸、
多环芳烃、维生素、 甾体化合物、酶类、 黄曲霉素、卟啉类 化合物、农药等的 检测。
利用固定相与流动相之间对待分离组分子溶解
度的差异来实现分离。分配色谱的固定相一般 为液相的溶剂,依靠图布、键合、吸附等手段

高效液相色谱HPLC简介.ppt

高效液相色谱HPLC简介.ppt

种连续多次交换过程。它借溶质在两相间分配系数、亲和力、吸附力或分子大小不
同而引起的排阻作用的差别使不同溶质得以分离。
2
操作过程图示
3
色谱分离的机理
分离是一个 物理的过程。
固定相(Stationary Phase) 流动相(Mobile Phase) 样品 (溶解于流动相中的溶质)
4
项目 进样方式 流动相 分离原理 检测器
14
液-液分配色谱
固定相与流动相均为液体(互不相溶); 基本原理:组分在固定相和流动相上的分配; 流动相:对于亲水性固定液,采用疏水性流动相,即流动相的极性小于固定 液的极性(正相 normal phase),反之,流动相的极性大于固定液的极性 (反相 reverse phase)。正相与反相的出峰顺序相反; 固定相:早期涂渍固定液,固定液流失,较少采用; 化学键合固定相:将各种不同基团通过化学反应键合到硅胶(担体)表面的 游离羟基上。反相键合相色谱柱最常用的就是ODS柱,也就是C18柱。
15
液相色谱类型
• 正相色谱:固定相为极性,流动相为非极性。 • 反相色谱:固定相为非极性,流动相为极性。用的最多,约占60~70%。
16
色谱柱简介
• 正相柱------固定相通常为硅胶以及其他具有极性官能团胺基团,如(NH2) 和氰基团(CN)的键合相填料。 由于硅胶表面的硅羟基(SiOH)或其他极性基团极性较强,因此,分离 的次序是依据样品中各组分的极性大小,即极性较弱的组份最先被冲洗出色 谱柱。正相色谱使用的流动相极性相对比固定相低,如正已烷,氯仿,二氯 甲烷等。
9
检测器简介(二)
◆ 电导检测器(ECD) 原理:监测溶液的电导率变化的检测器。 特点:选择性检测器、测量时要求恒温、对流动相的组成变化有明显响应、 灵敏度低(10-3g)。适用于离子型化合物。

高效液相色谱法

高效液相色谱法

31
特点: 特点: 氰基键合相选择性与硅胶类似 键合相选择性与硅胶类似, ① 氰基键合相选择性与硅胶类似, 但极性更小。相同流动相, 但极性更小。相同流动相,组分保留 时间小于硅胶。 时间小于硅胶。 氨基键合相 主要用于糖类分析, ② 氨基键合相 主要用于糖类分析, 糖类分析专用柱 分析专用柱。 是糖类分析敏度: 紫外、荧光、电化学、 紫外、荧光、电化学、质谱等高灵敏 度检测器使用。 度检测器使用。 最小检测量: 最小检测量: 10-9 ~10-11 g 4. 高度自动化: 高度自动化: 采用色谱专家系统为核心的色谱智 能化和仿真优化技术, 能化和仿真优化技术,使 HPLC不仅能 不仅能 自动处理数据,绘图和打印分析结果, 自动处理数据,绘图和打印分析结果, 而且还可以自动控制色谱条件。 而且还可以自动控制色谱条件。
32
2. 流动相极性与容量因子的关系 流动相极性大,洗脱能力增加, 流动相极性大,洗脱能力增加, k 减小,tR 减小;反之, k 与 tR 均 减小, 减小;反之, 增加。 增加。 极性小的组分先出柱
33
四、正、反相色谱法 正相HPLC(normal phase HPLC) ( 正相 ) 固定相: 固定相:极性 常用:改性硅胶 硅胶、 常用:改性硅胶、氰基柱 流动相: 非极性(或弱极性) 流动相 非极性(或弱极性) 常用: 正己烷 常用: 流动相极性小于固定相极性
11
第二节 分离机制 一、液-固吸附色谱法 固吸附色谱法
(Liquid-Solid Chromatography)
(一)吸附机理 根据吸附剂对样品中各组分的吸 根据吸附剂对样品中各组分的吸 附能力差异而分离 而分离。 附能力差异而分离。 吸附过程是被分离组分的分子 与流动相分子争夺吸附剂表面活性 中心(active center)的结果。 的结果。 中心 的结果

高效液相色谱法的简介

高效液相色谱法的简介

高效液相色谱仪
色谱仪器的流程由液体流动相的输液系统、进样系统、分离
系统、检测系统、信号放大记录系统组成,其中高压泵、色 谱柱和检测系统是高效液相色谱的主要部件。
1.贮液罐 (滤棒,可滤去颗粒状物 质) 2.高压泵(输液泵) 3.进样装置 4.色谱柱——分离 5.检测器——分析 6.废液出口或组分收集 器 7.记录装置
3.根据分子结构选择 用红外光谱法,可预先简单地判断样品中存在什么 官能团。然后,确定采用什么方法合适。例如,酸、 碱化合物用离子交换色谱;脂肪族或芳香族用液– 液分配色谱、液–固吸附色谱;异构体用液–固吸附 色谱;同系物不同官能团及强氢键的用液–液分配 色谱
高效液相色谱分离方法的选择参考表
五.高效液相色谱仪
离子对色谱机理:离子对形成机理;离子交换机理;离 子相互作用机理;
例如离子对形成机理:固定相为非极性键合相,流动相为水溶液,组分离子 A-,加入一种反荷离子B+,B+离子由于静电引力与带负电的组分离子生成 离子对化合物A-B+。
A 水相
B 有机相
A B 有机相
由于离子对化合物A-B+具有疏水性,因而被非极性固定相(有机 相)提取。
高效液相色谱固定相和流动相
(-)固定相
1. 高效液相大类:
刚性固体:以二氧化硅为基质,可承受7.O×108~1.O×109Pa的高压,可 制成直径、形状、孔隙度不同的颗粒。如果在二氧化硅表面键合各种官 能团,就是键合固定相。
硬胶:主要用于离子交换和尺寸排阻色谱中,它由聚苯乙烯与二乙烯苯基 交联而成。可承受压力上限为3.5×108Pa。
流动相:对于亲水性固定液,采用疏水性流动相,即 流动相的极性小于固定液的极性(正相色谱),反之, 流动相的极性大于固定液的极性(反相色谱)。正相 与反相的出峰顺序相反;

高效液相色谱法HPLC

高效液相色谱法HPLC

VS
报告结果
整理分析数据,撰写分析报告,提供各组 分的浓度、纯度等相关信息,为科研或生 产提供决策依据。
THANKS FOR WATCHING
感谢您的观看
实验操作步骤
流动相的准备与平衡
根据实验要求配制流动相,通过泵以适宜的流速 通过色谱柱进行平衡。
洗脱与检测
流动相带着样品经过色谱柱洗脱,各个组分依次 流出并进入检测器进行检测。
ABCD
进样
将样品注入进样器,通过压力将样品送入色谱柱 进行分离。
数据处理与结果分析
对检测器输出的信号进行处理,得到各组分的峰 形和峰面积,进行定性和定量分析。
01
02
03
04
进样
将样品注入色谱柱。
分离
在流动相的带动下,样品中的 组分在色谱柱中进行分离。
检测
检测器对分离后的组分进行检 测,并记录信号。
数据处理
对采集到的数据进行处理、分 析和存储。
高效液相色谱仪的维护和保养
定期清洗色谱柱
使用适当的溶剂清洗色谱柱, 以去除残留物和杂质。
维护和检查检测器
定期检查检测器的性能和准确 性,确保其正常运行。
数据处理系统
用于采集、处理、分析和存储色谱数据,通常采用色谱工 作站。
高效液相色谱仪的操作流程
01
02
03
样品准备
将样品进行适当处理,以 便注入色谱柱。
流动相制备
根据实验要求,选择合适 的流动相,并进行过滤和 脱气处理。
系统平衡
在进样之前,确保色谱系 统达到平衡状态,以提高 分离效果。
高效液相色谱仪的操作流程
样品的预处理
分离
对于复杂样品,需要进行分离操 作以去除杂质或提取目标成分。 常用的分离方法包括离心、过滤、

高效液相色谱(HPLC)简介

高效液相色谱(HPLC)简介

2. 流动相类别
按流动相组成分:单组分和多组分;
按极性分:极性、弱极性、非极性;
按使用方式分:固定组成淋洗和梯度淋洗。
常用溶剂: 己烷、四氯化碳、甲苯、乙酸乙酯、乙醇、
乙腈、水。
采用二元或多元组合溶剂作为流动相可以灵活调节流动
相的极性或增加选择性,以改进分离或调整出峰时间。
3. 流动相选择
在选择溶剂时,溶剂的极性是选择的重要依据。
(1)尽量使用高纯度试剂作流动相,防止微量杂质长期累 积,损坏色谱柱和使检测器噪声增加。 (2)避免流动相与固定相发生作用而使柱效下降或损坏柱 子。如使固定液溶解流失,酸性溶剂破坏氧化铝固定相等。 (3)试样在流动相中应有适宜的溶解度,防止产生沉淀并 在柱中沉积。 (4)流动相同时还应满足检测器的要求。当使用紫外检测 器时,流动相不应有紫外吸收。
高效液相色谱(HPLC)简介

1, 液相色谱分析法的发展 2, 高效液相色谱的特点 3, 高效液相色谱仪简介 4, 液相色谱法介绍 5, 分析方法的选择 6, 实际分析操作过程

1、液相色谱分析法的发展
20世纪初: 俄国植物学家茨维特提出经典液 相色谱法。经典液相色谱法包括柱色 谱、薄层色谱、纸色谱。 20世纪60年代末: 随着色谱理论的发展、高效细微 固定相的开发、高压恒流泵及高灵敏 度检测器的应用,高效液相色谱法得 到了突破性的发展。
a. 紫外检测器
应用最广,对大部分有机 化合物有响应。 特点: 灵敏度高;
线性范围宽;
流通池可做得很小(1mm × 10mm ,容积 8μL); 对流动相的流速和温度变化不敏感; 波长可选,易于操作; 可用于梯度洗脱。
b. 光电二极管阵列检测器
紫外检测器的重要进展;

中国药典版--高效液相色谱法

中国药典版--高效液相色谱法

色谱条件与系统适用性试验
按各品种项下的要求对仪器进行适用 性试验,即用规定的对照品对仪器进 行试验和调整,应达到规定的要求; 或规定分析状态下色谱柱的最小理论 板数、分离度、重复性和拖尾因子。
(1) 色谱柱的理论板数
色谱柱的理论板数(n) 在选定的条件下,注入 供试品溶液或各品种项下规定的内标物质溶液, 记录色谱图,量出供试品主成分或内标物质峰 的保留时间tR(以分钟或长度计,下同,但应 取相同单位)和半高峰宽(Wh/2),按 n=5.54(tR/Wh/2)<2>计算色谱柱的理论板数, 如果测得理论板数低于各品种项下规定的最小 理论板数,应改变色谱柱的某些条件(如柱长, 载体性能,色谱柱充填的优劣等),使理论板 数达到要求。
(3) 拖尾因子
为保证测量精度,特别当采用峰高 法测量时,应检查待测峰的拖尾因子 (T)是否符合各品种项下的规定,或不同 浓度进样的校正因子误差是否符合要 求。除另有规定外, (T) 应在0.95~ 1.05之间。
四重复性
取各品种下的对照溶液,连续进样5次, 除令有规定外,其峰面积测量值相对 标准偏差应不大于2.0%。也可按照规 定 配制相当于80%、100%和120%的 对照品溶液,加入规定量的内标溶液, 配成三种不同浓度的溶液,分别注样3 次,计算平均校正因子,其相对标准偏 差应不大于2.0%。
对氨基酸分离,用经典色谱法,柱长约 170cm,柱径0.9cm,流动相速度为 30cm3·h-1,需用20多小时才能分离出20 种氨基酸;而用高效液相色谱法,只需lh 之内即可完成。又如用25cm×0.46cm的 Lichrosorb-ODS(5μ)的柱,采用梯度洗 脱,可在不到0.5h内分离出尿中104个组
3.测定法
定量测定时,可根据样品的具体情 况采用峰面积法或峰高法。但用归一 法或内标法测定杂质总量时,须采用 峰面积法。

《仪器分析》4-高效液相色谱法

《仪器分析》4-高效液相色谱法
精选课件
(4) 示差折光检测器: 是一种中等灵敏度(10–6 g/mL)的通用型检测器。
是利用纯流动相和含有待测组分的流动相之间折射率的 差别进行检测的。
可分为三类:反射式;折射式(偏振式)和干涉式。常 用前两种。
优点:灵敏度适宜,操作简便是一种通用型的检测器; 缺点:对温度变化敏感,不能用于梯度洗脱。 应用范围:聚合物、糖。还用于分析以紫外检测和荧光
精选课件
药典中的液相色谱检测器
精选课件
常用的检测器:
(1) 紫外光度检测器:是一种选择性浓度检测器,仅 对那些在紫外波长有吸收的物质有响应。
作用原理:基于待测试样对特定波长的紫外光有选择 性的吸收,试样浓度与吸光度的关系服从比尔定律。
结构:
1-低压汞灯 2-透镜 3-遮光板 4-测量池 5-参比池 6-紫外滤光片 7-双紫外光敏电阻
精选课件
⑶ 色谱柱 GC柱很长,特别是毛细管柱可长至几十米至上百米,柱效
很高(理论塔板数N = 104~106)。HPLC柱较短,一般为15~25 cm,柱效(理论塔板数N = 103~104),低于GC柱。 ⑷ 检测器
与GC相比,HPLC检测器种类较多。 ⑸ 制备色谱
GC难以制备样品,因为进样量小,难以收集或被破坏。 HPLC可进行制备,即制备色谱。
精选课件
2. 进样系统
在高效液相色谱中,常用的进样方式: 高压阀进样:优点是能用于高压,适于大体积进样,重现性
好;缺点是进样阀进样时需排掉一部分试样,不同的进样 量需用不同的定量管,同时峰的扩展也比注射进样大。 微量注射器进样:也可由微量注射器注入取样环少量样品, 即采用较大体积取样环而进少量试样,进样量由注射器控 制,试样不充满取样环,只填充一部分体积。

名词解释高效液相色谱法

名词解释高效液相色谱法

名词解释高效液相色谱法
高效液相色谱法(HPLC,High Performance Liquid Chromatography)是一种分离分析技术,通常用于分离混合物中的化合物,特别是在有机分析中广泛应用。

它基于液体流动相和固定相之间不同的亲和力,通过样品在固定相上的分配和吸附作用,实现对混合物中各组分的分离和检测。

高效液相色谱法的基本原理是将一个复杂的混合物通过样品进样器注入色谱柱,在柱内通过流动相的不断输送,样品中的各组分根据其在固定相上的亲和力不同,以不同的速率通过色谱柱,并最终通过检测器进行检测。

该技术具有高效、快速、灵敏、选择性好等特点,可以用于对有机物、无机物、生物大分子等的定性和定量分析。

在实际应用中,高效液相色谱法广泛应用于药物分析、环境监测、食品检测、化学合成过程控制等领域。

高效液相色谱法(HPLC)简介

高效液相色谱法(HPLC)简介

高效液相色谱法分离过程
主要在于固定相的性质、形状及粒度,其次 差别: 是检测手段和输液设备。
经典液相色谱 固定相: 粒度:60~600μm(多孔) 柱长:10~200cm(d=10~50mm) n 约为 2~50/m
流动相:靠重力输送
经典液相色谱无在线检测器
缺点:
①粒度范围宽、不规则,不易填充均匀,扩散和传质阻 力大。 ②无检测设备,分析速度慢、效率低。 只能作为分离手段
(3)不能完全替代气相色谱
(4)不适于分析受压分解、变性的具有生物活性的
Hale Waihona Puke 生化样品。高效液相色谱法与其他分析方法一样,
不是尽善尽美的。
第二节 高效液相色谱法的基本理论
一、高效液相色谱参数 1.定性参数 tR 、 t 0 、 t’ R t’R= tR- t0 2.柱效参数 σ、 W1/2 、W W=4 σ 或 w=1.699W1/2 n=( tR / σ)2 H=L/n
四、高效液相色谱法的应用范围和局限性
1.应用范围 高效液相色谱法适于分析高沸点、受热不稳定易 分解、分子量大、不同极性的有机化合物;生物活性 物质和多种天然产物;合成和天然高分子化合物。 涉及石油化工产品、食品、药品、生物化工产品 及环境污染物。约占全部有机物的80%。 2.方法的局限性
(1)使用多种溶剂为流动相,成本高,污染环境 (2)缺少通用检测器
美国药典委员会(USPC)成立于1820年,至今近200 年。出版发行了25版药典。 75年(19版)将HPLC载入药典 20版-62项;21版-363项;22版-871项;23版-1188项; 24版-含量测定法:1386项 鉴别:519项 杂质检查:206项
如今:在评价世界各国药典水平时,HPLC法成为 反映各国药典先进性的重要指标之一。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几个概念
色谱柱:进行色谱分离用的细长管。
固定相:管内保持固定、起分离作用的填充物。 流动相:流经固定相的空隙或表面的冲洗剂。
9
§1-4
高效液相色谱法的特点

高压
液相色谱以液体作为流动相(称为载液), 液体流经色谱柱时,受到的阻力较大,为了能 迅速地通过色谱柱,必须对载液施加高压。在 现代液体色谱中供液压力和进样压力都很高, 一般可达到 150 ~ 300kg / cm2 ,甚至可达 700k /cm2以上。
29
§5-2
定量分析
HPLC色谱定量的基本方法有内标 法、外标法等。 外标法———标准曲线法 是一种简便、快速的 绝对 定量方 法(归一化法则是 相对 定量方法)。 首先用欲测组分的标准样品绘制标 准工作曲线。
30
具体作法是:
用标准样品配制成不同浓度的标 准系列,在与欲测组分相同的色谱条 件下,等体积准确量进样,测量各峰 的峰面积或峰高,用峰面积或峰高对 样品浓度绘制标准工作曲线,此标准 工作曲线应是通过原点的直线。若标 准工作曲线不通过原点,说明测定方 法存在系统误差。标准工作曲线的斜 率即为绝对校正因子。
式中:
﹙ 2﹚
Wt1/2 -------------半峰宽
例如,从图 2-3 ,测得 tR=105mm 、 Wt1/2 =4mm , 求得 N=3789 ,若此柱长为 250mm, 折成每米的理论 塔板数约为15200.
25
§2-3
分离度及影响因素
一 分离度(分辨率)
研究色谱中有关分离问题时,首先就 是要能定量地确定相邻两峰的分离程度。 从图 8-3 可以看出,为了获得较好的分 离,就必须使最大峰值之间的距离增加, 峰宽减小。
32
高效液相色谱, 特别适用于分离沸点 高和热稳定性差的物 质,目前已广泛用于 化工、食品、医药、 生化、卫生、环境保 护和高能化合物等生 产和科研工作中。
33
34
35
36
37
38
紫杉醇的分析
39
40
农药的分析
41
42
13
14
样 品 吸 收 度 测 定 — 吸 收 池 示 图
15
紫外检测器工作原理
16
17
定量环进样
装样
(LOAD)
开始分析
进样阀
淋洗液
(INJECT)
淋洗液
废液 废液 样品
样品
至分离柱 样品 环
至分离柱
18
液相色谱动画演示
19
二、色谱图(chromatogram)
试样中各组分经色谱柱分离后,按先后次序 经过检测器时,检测器就将流动相中各组分浓度 变化转变为相应的电信号,由记录仪所记录下的 信号——时间曲线或信号——流动相体积曲线, 称为色谱流出曲线,或色的柱色谱
4
三组分混合物的分离
5
在C18柱中,三组分混合物流出色谱 柱的顺序为:萘,联二苯、蒽。
当试样混合物进入色谱柱后,就在固定相和流 动相之间不断地进行分配平衡。不同的化合物,分 子结构不同,存在理化性质的差异,所以在两相中 存在的浓度也各不相同。固定相中存在量多的化合 物,冲洗出柱子的时间就长,反之则短。这与分配 系数有关:
1. 基线 : 在操作条件下,仅有纯流动相进入 检测器时的流出曲线。
20
2. 色谱峰: 当组分随流动相进入检测 器时,其响应信号大小随时间变化所形 成的峰形曲线。正常的色谱峰呈正态分 布。
3.峰高与峰面积
峰高:色谱峰顶点与峰底之间的垂直距 离称为峰高(peak height)。用h表示。 峰面积:峰与峰底之间的面积称为峰面 积(peak area),用A表示。
10
二 高速
高效液相色谱所需的分析时间较之经 典液体色谱快得多,一般可达l—10mL/ min, 个别可高达100mL/min以上,这 已近似于气相色谱的流速。
三 高效
气相色谱的分离效能很高,高效液相 色谱的柱效则更高,一般约可达 60000理 论塔板/米;
11
四 高灵敏度
紫外检测器的最小检测量可达毫微克 数量级 (10-9 g) ;荧光检测器的灵敏度可达 10-11g。高效液相色谱的高灵敏度还表现在 所需试样很少;微升数量级的样品就足以 进行全分析。
H=L/n 式中n为理论塔板数。
23
色谱柱的分离效率(简称柱效), 可定量地用理论塔板数N来表示。 理论塔板数一N还与柱长有关,当 比较两不同长度的色谱柱的柱效时, 应当比较它们在相同柱长下的V值。
24
可用半峰高处的峰宽 ( 半峰宽)和保留时间 的关系来表示理论塔板数N,这时关系式为: N=5.54 ( tR / Wt1/2 ) 2
21
§ 2- 1
一、保留时间(tR)
保留值
从进样开始到柱后出现样品的浓度极大 值所需的时间为保留时间,用tR表示。
22
§2-2 色谱柱的分离效率及柱效能的评价 一、塔板理论
塔板理论认为,一根柱子可以分为n段, 在每段内组分在两相间很快达到平衡,把每 一段称为一块理论塔板。设柱长为L,理论塔 板高度为H,则
12
§1-5 高效液相色谱流程和设备
高效液相色谱仪一般可分为5个主要部分: 高压输液系统,进样系统,分离系统和检测系 统。此外还配有辅助装置:如梯度淋洗,自动 进样及数据处理等。其工作过程如下: 首先高压泵将贮液器中流动相溶剂经过进 样器送入色谱柱,然后从控制器的出口流出。 当注入欲分离的样品时,流经进样器贮液器的 流动相将样品同时带入色谱柱进行分离,然后 依先后顺序进入检测器,记录仪将检测器送出 的信号记录下来,由此得到液相色谱图。
K
= 化合物在固定相中的浓度C固
化合物在流动相中的浓度C流
K值小,先流出柱子,K值大的,保留作用强,后 流出柱子。
6
7
键合相-反相色谱
8
§1. 概 述 : 色谱法:(chromatography)
以试样组分在固定相和流动相间的溶解、 吸附、分配、离子交换或其他亲和作用的差 异为依据而建立起来的各种分离分析方法称 色谱法。
主讲:郑萍 高级工程师, 执业药师
化学化工学院
1
液相色谱分析是在经典的液体柱色 谱基础上,引入了气相色谱的理论;在 技术上采用了高压泵、高效固定相和高 灵敏度检测器,实现了分析速度快、分 离效率高和操作自动化,这种柱色谱技 术被称做高效液相色谱法。
2
色谱分离
淋洗液
慢 中等 快
Temporal course
26
27
一般用 Rs 来定量表达相邻两峰的分离 程度,所以Rs是色谱中两个组分分离好坏 程度的标志。要求RS>1.5
tR1 -tR2 Rs = ———————— 1/2(W1+W2)
式中 tR1、tR2 分别为两组分的保留时间, W1 、W2为色谱峰的峰底宽度 .
28
§5 高效液相色谱的定性和定量分析
31
目前已普及于几乎所有重要的分析学科 领域和许多科研生产部门,高效液相色谱能 较理想地分离和分析与生物医学有关的大分 子和离子型物质,易变质的天然产物,各种 高分子化合物和不稳定化合物。
例如:蛋白质、核酸、氨基酸、多糖、颜
料极性类脂肪化合物、药物、染料、表面 活性剂、农药、甾族化合物、多环芳烃、 合成聚合物、瞟吟、维生素、除锈剂、防 老剂等等。
§5-1
定性分析
在液相色谱中保留值定性的方法主要是用 直接与已知标准物对照的方法。当未知峰的 保留值(t R′或V R ′ )与某一已知标准 物完全相同时,则未知峰可能与此已知标准 物是同一物质,特别是在改变色谱柱或改变 洗脱液的组成时,未知峰的保留值与已知标 准物的保留值仍能完全相同,则可以基本上 认定未知峰与标准物是同一物质。
相关文档
最新文档