利用夹逼准则求极限

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

利用夹逼准则求极限 The Standardization Office was revised on the afternoon of December 13, 2020

利用夹逼准则求极限

夹逼准则的使用方法:

定理1用夹逼准则求极限,就是将数列放大和缩小。要求放大和缩小后的极限容易求出,此时常将其放大到最大项的整数倍,缩小到最小项的整数倍,并且此时两者极限相等,即两者是等价无穷小,此时就可以得到原数列极限的值。 题型1夹逼准则常用于求若干项和的极限

推论1极限变化过程中最小项与最大项之比为1时可以使用夹逼准则求其极限。 证明:不妨设最小项为)(x α,最大项为)(x β,数列有n 项,则整数倍为n 倍, 由定理1可知.)()

(lim 1)()(lim

x x x n x n βαβα== 例1.求)21 (4)

12

1(

lim 2

2

2

n

n n n n ++

+++

+∞

→.

解:.11lim 22lim 22lim 2

121

lim

22

2222==++=++=++∞

→∞→∞→∞

→n n n n n n n n n n n n n

由推论1,.12

21 (4)

12

1212

2

2

2

2

→+≤

++

+++

+≤

+←

n n n

n n n n

n n

由夹逼准则可得所求极限为1.

例2.求).1

...2111(lim 222n

n n n n n n n +++++++++∞→

解:.11lim 1

1

1lim 2222=++++=++++∞→∞→n n n n n n n n n n n n 由推论1,.01

1...2111022222→++≤+++++++++≤++←n n n

n n n n n n n n n n n

由夹逼准则可得所求极限为0.

例3.求)....2211(lim 222

n

n n n

n n n n n +++++++++∞→ 解: 由推论1,

2

1112)1(...221112)1(2122222→++⋅+<+++++++++<++⋅+←n n n n n n n n n n n n n n n n n 由夹逼准则可得所求极限为2

1

.

由以上例题可以看出用夹逼准则求极限的关键在于对数列进行恰当的放缩

接下来的例题稍有难度,难处仍难在放缩的技巧

例4.求!

2lim n n

n ∞→.

解:).(4

2...322212!20放到第二项最大!n n n n ≤⨯⨯⨯⨯=<

且0!

4

lim =∞→n n .故由夹逼准则可知.0!2lim =∞→n n n 例5.求).1(lim

>∞

→ααn

n n

解:设),0(1>+=h h α则 从而,)1(202

h n n n

-<

<

α因为

,0)1(2

lim 2=-∞→h n n 由夹逼准则可知.0lim

=∞

→n

n n

α

例6.求.1

)

!sin(lim 3

2+∞→n n n n

解:由于,1

11)!sin(0333

232323

2n

n n n n n n n n n ==<+≤+≤

(三角函数有界性) 即33

231

1)!sin(1n

n n n n <+<-,而,01lim 1lim 33==-∞→∞→n n n n

由夹逼准则可知.01

)

!sin(lim 3

2=+∞→n n n n

例7.求.)321(lim 1

n

n n

n ++∞

解:原式.]1)3

2

()31[(3lim ]1)32()31[(3lim 1

1n n n n n n n n ++=++=∞→∞→

因为1)32()31(0<+

2

()31(1<++

两边同时乘以n 3得到133213+<++

n

n n

⨯<++<

当∞→n 时,.3lim 3133lim 3)33(lim 11

左边右边===⨯=⨯=⨯=∞

→∞

→∞

→n n n n

n

故由夹逼准则可得.3)321(lim 1=++∞

→n

n n

n 例8.求[].lim

x

x x ∞

解:由取整函数的性质可知[].1x x x ≤≤-

当,

0时>x [][];即111,1≤≤-≤≤-x x x x x x x x x 当,0时

x x x x x x x x 因为,1)1

1(lim =-∞→x

x 由夹逼准则可得[].1lim

=∞→x x x 例9.求).0,0(lim 0

>>⎥⎦

⎢⎣⎡+

→b x b x x αα 解由取整函数的性质可知)0(1≠≤⎥⎦⎤⎢⎣⎡≤-x x

b

x b x b ,

当0>x 时,各项乘以

α

x

得到α

αααb

x b x x b ≤⎥⎦⎤⎢⎣⎡<

- 因为,)(

lim 0

α

ααb

x b

x =-+→由夹逼准则可得.lim 0ααb x b x x =⎥⎦⎤⎢⎣⎡+→

相关文档
最新文档