1-1质点振动学
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
dξ ( t ) ′ ′ ′ v (t ) = = ω0 A(t )sin(ω0t 0 ) δ A(t )cos(ω0t 0 ) dt
E= 1 1 ′ ′ ′ KA2 ( t ) cos 2 ( ω0 t 0 ) + M ω0 2 A2 (t ) sin 2 (ω0 t 0 ) 2 2 1 ′ ′ ′ + M δ 2 A2 (t ) cos 2 (ω 0 t 0 ) + M δ A2 (t ) sin(ω 0 t 0 ) cos(ω0 t 0 ) 2
阻力一般是速度的函数, 阻力一般是速度的函数,在速度不大时可认为取 如下线性关系
dξ fr = Rm dt
这里 Rm 称为阻力系数,或称力阻,是一个正 称为阻力系数,或称力阻, 常数, 常数,“-”表明阻力总与系统的运动方向相 显然,其单位是N.s/m 反。显然,其单位是
1. 衰减振动动力学方程
We obtain
Fa ξF = = 2 M ω + jRmω + K Fa K jω Rm + j ( M ω ) ω
Fa jFa -j(θ0 + π ) 2 e ; ξF = = jω Z m ω Z m Z m = Rm + j ( M ω K
Xm θ 0 =arctan Rm
Fa jω t d ξ 2 e + ω0 ξ = 2 dt M
2
ω ≠ ω0
Fa ξ (t ) = A cos(ω0t 0 ) + cos ωt 2 2 M (ω0 ω )
Initial conditions
ξ (t ) t =0 = 0
dξ v= dt =0
t =0
Fa A cos + =0 2 2 M (ω0 ω ) Aω0 2 sin 0 = 0
sin( 2 t ) Fa t ω0 ω ξ (t ) = ω0 ω sin t M (ω0 + ω ) 2 2 t Fa t sin ωt ω → ω0 2M ω
ω0 ω
2. In a damping of the oscillations,the differential equation for the motion becomes
对简单振子, 对简单振子,其动力学方程可写为如下形式
dξ dξ M 2 + Rm + Kξ = 0 dt dt
2
或写成 其中
dξ dξ 2 + 2δ + ω0 ξ = 0 2 dt dt
2
R δ= m 2M
K 称为衰减系数 衰减系数, 称为衰减系数, ω0 = M
2. 衰减振动的一般规律
设解为复指数形式
其中 j = 1, 为虚数单位
为简便一般省略Re 如 ξ=A cos(ωt + )=Re[Ae j(ωt + ) ] 为简便一般省略 简谐振动一般解可表示为(上式线性组合) 简谐振动一般解可表示为(上式线性组合)
ξ=Ae
jω0t
+ Be
- jω0t
缺点是不直观,但可以将结果还原(取实部或虚部) 缺点是不直观,但可以将结果还原(取实部或虚部)
2 m
Zm = Zm e
K
jθ0
Z m = R + (ω M
1
ω
)2
And phase angle θ 0 = tg
K Mω ω Xm 1 = tg Rm Rm
Then the general solution of the equation
ξ = ξ0e
and
δ t
cos(ω ′t 0 ) + ξ a cos(ωt θ )
1 E (t ) = T
∫
T
0
1 1 2 Edt KA (t ) Mv 2 (t ) 2 2
可见, 可见,质点振动系统的平均能量将近似地随 时间作指数衰减。 时间作指数衰减。 要维持一个阻尼系统的振动, 要维持一个阻尼系统的振动,必须不断地给 系统补充能量。 系统补充能量。衰减快慢与阻力系数与系统地质 量有关,对于一个振动系统, 量有关,对于一个振动系统,希望衰减快些还是 慢些,视具体情况而定。如一些电声器件, 慢些,视具体情况而定。如一些电声器件,如扬 声器,如果衰减时间过长,电信号终止了, 声器,如果衰减时间过长,电信号终止了,系统 还在振动,会造成所谓地瞬态失真, 还在振动,会造成所谓地瞬态失真,这对于高保 真音响不利。 真音响不利。
A = ξ a cos 0 ,
B 0 = arctan A B = ξ a sin 0
三要素:振幅,频率, 三要素:振幅,频率,相位
ξ
a v
a
ξ
v
ω0t
3 固有频率与周期
1 f0 = 2π K ; OR M 1 f0 = 2π 1 , MCm 1 Cm = (力顺) K
1 T= f0
角频率
ω = 2π f 0
d ξ dξ jωt M 2 + Rm + K ξ = Fa e dt dt
2
(1-3)
Fa jωt d 2ξ dξ 2 + 2δ + ω0 ξ = e 2 dt dt M
Rm δ = 2M
ω0 = M K
ξ (t ) = ξ1 (t ) + ξ 2 (t )
ξ1 (t ) = A0 e δ t cos(t )
θ =θ 0 + π
2
Fa ξa = ξ F = , ω Zm
The ξ0, 0 is determined by initial conditions
The dimensions of mechanical impedance are the same as those of mechanical resistance and are expressed in the same units, N.s/m, often defined as mechanical ohms.(力欧姆 力欧姆) 力欧姆 It is to be emphasized that , although the mechanical ohm is analogous to the electrical ohm, these two quantities do not have the same units. The electrical ohm has the dimensions of voltage divided by current; The mechanical ohm has the dimensions of force divided by speed.
ξ = A cos(ω0 0 )
(1.5)
(1.4)
2 质点振动速度与加速度
dξ v= = v a sin (ω0t 0 + π ) dt 2 d ξ a = 2 = ω0 2 A cos (ω0t 0 )
dt
v a = ω0ξ a , ξ a与0 由初始条件决定
ξ a= A + B ,
2 2
1.3 FORCED OSCILLATIONS
1 . A simple oscillator, when driven by an externally applied force F, the differential equation for the motion becomes:
d x m = F Kx 2 dt
e
δτ
1 = e
2M τ = = δ Rm
1
很小时, 当 Rm 很小时,
1δ2 2 2 δ = ω 1 ′ ω0 = ω0 δ = ω0 1 ω + 0 2 0 2 ω0
2
δ 2 ω0 2 当
′ ω0 ≈ ω0 或 f 0′ ≈ f 0
说明当阻力系数很小时, 说明当阻力系数很小时,固有频率的变化也 很小。一般说来,阻力系数较小时, 很小。一般说来,阻力系数较小时,固有频 率变化虽然不大,但振幅的衰减可很快。 率变化虽然不大,但振幅的衰减可很快。
ξ =e
方程得
jγ t
γ 为待定常数,并将上式代入动力学 为待定常数,
(γ + 2 jδγ + ω0 )e
2 2
jγ t
=0
若对任意时间成立, 若对任意时间成立,则必满足
方程根为
γ = jδ ± δ 2 + ω0 2
衰减方程的一般解为 ,假定 δ 2 ≥ ω0 2 假定
ξ =e
δ t
( Ae
′ jω 0 t
jθ 0
ω
) = Rm + jX m = Z m e
Zm is called the complex mechanical impedance ,Rm
is called the mechanical resistance ;Xm is called the mechanical reactance The mechanical impedance Has magnitude
For A≠0,φ0 = 0
Fa A= M (ω0 2 ω 2 )
Fa ξ (t ) = i cos ωt cos ω0t ) 2 2 ( M (ω0 ω ) 2 Fa ω0 ω ω0 + ω = t isin t isin 2 2 M (ω0 ω ) 2 2
This special pattern of motion is known as the beating phenomenon. Sound waves of slightly different frequencies will also give rise to beats .
4 振动能量
Ep = ∫
ξ
0
1 1 K ξ dξ = K ξ 2 2 2
1 Ek = Mv 2 2 1 1 2 E = E p + Ek = Mv + K ξ 2 2 2
E = E p + Ek = 1 1 2 M ω0 ξ a 2 sin 2 (ω0t 0 ) + K ξ a 2 cos 2 (ω0t 0 ) 2 2 1 1 2 = Mv a = K ξ a2 2 2
2
If F=Facosωt, and it will be advantageous to replace the real driving force Facosωt by its equivalent complex driving force f=Fa exp(jωt )we can write in the form:
1-2 质点的衰减振动
当质点在媒质中振动时,会受到媒质 的阻尼作用,这种阻尼作用可能是振动物 体与周围媒质之间的粘滞摩擦的效果;也 可能是振动物体向周围媒质辐射声波的效 果。前者使振动能逐渐转化为热能;后者 振动能逐渐转化为声能,虽然热能和声能 形式不同,但都是能量耗散的因素,使系 统的振幅不断衰减。
When
δ << ω 0
δ t
≈ω0
ξ1 (t ) = A0 e
cos(ω0 )
jωt
Assume a solution of the form
ξ 2 (t ) = ξ F e
2
And substitute into equation to obtain
( M ω + jRmω + K )ξ F = Fa
FUNDAMENTALS OF ACOUSTICS
Particles Vibrating Systems
1-1 质点的简谐振动
K
O
ξ
x
M
1 动力学方程及振动方程
d 2ξ M = Kξ 2 dt (1 .2 )
d 2ξ 2 + ωo ξ = o 2 dt
(1.3)
ω02 = K M
ξ = A1 cos ω0t + A2 sin ω0t
5 多弹簧串连和并联系统的振动
n个弹簧
串联等效弹性系数
百度文库
K1 , K 2 , K 3 , K n
1 1 1 1 = + + + K e K1 K1 K1
并联等效弹性系数
K e = K1 + K 2 + + K n
弹簧质量对系统固有频率的影响(自学内容) 弹簧质量对系统固有频率的影响(自学内容)
+ Be
′ jω 0 t
)
′ ω0 = ω 2 δ 2
依据三角函数与复指数关系, 依据三角函数与复指数关系,上式可写为
ξ = ξ 0e
δ t
′ cos(ω 0 t )
A( t ) = ξ 0 e δ t 其中
表明了振幅随时间衰减
这与无阻尼自由振动的情况不同, 这与无阻尼自由振动的情况不同,阻尼振动的 振幅随时间指数衰减。 振幅随时间指数衰减。 衰减模量 定义:振幅衰减到初始值的 定义:振幅衰减到初始值的1/e时所经历时间 时所经历时间
振幅衰减振动图
X(t)
A(t ) = ξ 0 e δ t
′ ξ (t ) = A(t ) cos(ω0t )
t
2π T= ′ ω0
3. 衰减振动的能量
1 1 2 E = Kx ( t ) + Mv 2 ( t ) 2 2
′ ′ ξ ( t ) = ξ 0e δ t cos (ω0t 0 ) = A ( t ) cos (ω0t 0 )
6 振动问题的复数表示
讨论振动或波动问题时,为简化数学处理, 讨论振动或波动问题时,为简化数学处理,常用复 数形式来表示振动或波动问题的解。已知(Euler方程 方程) 数形式来表示振动或波动问题的解。已知 方程
e jωt = cos ωt + j sin ωt e
- jωt
= cos ωt j sin ωt
E= 1 1 ′ ′ ′ KA2 ( t ) cos 2 ( ω0 t 0 ) + M ω0 2 A2 (t ) sin 2 (ω0 t 0 ) 2 2 1 ′ ′ ′ + M δ 2 A2 (t ) cos 2 (ω 0 t 0 ) + M δ A2 (t ) sin(ω 0 t 0 ) cos(ω0 t 0 ) 2
阻力一般是速度的函数, 阻力一般是速度的函数,在速度不大时可认为取 如下线性关系
dξ fr = Rm dt
这里 Rm 称为阻力系数,或称力阻,是一个正 称为阻力系数,或称力阻, 常数, 常数,“-”表明阻力总与系统的运动方向相 显然,其单位是N.s/m 反。显然,其单位是
1. 衰减振动动力学方程
We obtain
Fa ξF = = 2 M ω + jRmω + K Fa K jω Rm + j ( M ω ) ω
Fa jFa -j(θ0 + π ) 2 e ; ξF = = jω Z m ω Z m Z m = Rm + j ( M ω K
Xm θ 0 =arctan Rm
Fa jω t d ξ 2 e + ω0 ξ = 2 dt M
2
ω ≠ ω0
Fa ξ (t ) = A cos(ω0t 0 ) + cos ωt 2 2 M (ω0 ω )
Initial conditions
ξ (t ) t =0 = 0
dξ v= dt =0
t =0
Fa A cos + =0 2 2 M (ω0 ω ) Aω0 2 sin 0 = 0
sin( 2 t ) Fa t ω0 ω ξ (t ) = ω0 ω sin t M (ω0 + ω ) 2 2 t Fa t sin ωt ω → ω0 2M ω
ω0 ω
2. In a damping of the oscillations,the differential equation for the motion becomes
对简单振子, 对简单振子,其动力学方程可写为如下形式
dξ dξ M 2 + Rm + Kξ = 0 dt dt
2
或写成 其中
dξ dξ 2 + 2δ + ω0 ξ = 0 2 dt dt
2
R δ= m 2M
K 称为衰减系数 衰减系数, 称为衰减系数, ω0 = M
2. 衰减振动的一般规律
设解为复指数形式
其中 j = 1, 为虚数单位
为简便一般省略Re 如 ξ=A cos(ωt + )=Re[Ae j(ωt + ) ] 为简便一般省略 简谐振动一般解可表示为(上式线性组合) 简谐振动一般解可表示为(上式线性组合)
ξ=Ae
jω0t
+ Be
- jω0t
缺点是不直观,但可以将结果还原(取实部或虚部) 缺点是不直观,但可以将结果还原(取实部或虚部)
2 m
Zm = Zm e
K
jθ0
Z m = R + (ω M
1
ω
)2
And phase angle θ 0 = tg
K Mω ω Xm 1 = tg Rm Rm
Then the general solution of the equation
ξ = ξ0e
and
δ t
cos(ω ′t 0 ) + ξ a cos(ωt θ )
1 E (t ) = T
∫
T
0
1 1 2 Edt KA (t ) Mv 2 (t ) 2 2
可见, 可见,质点振动系统的平均能量将近似地随 时间作指数衰减。 时间作指数衰减。 要维持一个阻尼系统的振动, 要维持一个阻尼系统的振动,必须不断地给 系统补充能量。 系统补充能量。衰减快慢与阻力系数与系统地质 量有关,对于一个振动系统, 量有关,对于一个振动系统,希望衰减快些还是 慢些,视具体情况而定。如一些电声器件, 慢些,视具体情况而定。如一些电声器件,如扬 声器,如果衰减时间过长,电信号终止了, 声器,如果衰减时间过长,电信号终止了,系统 还在振动,会造成所谓地瞬态失真, 还在振动,会造成所谓地瞬态失真,这对于高保 真音响不利。 真音响不利。
A = ξ a cos 0 ,
B 0 = arctan A B = ξ a sin 0
三要素:振幅,频率, 三要素:振幅,频率,相位
ξ
a v
a
ξ
v
ω0t
3 固有频率与周期
1 f0 = 2π K ; OR M 1 f0 = 2π 1 , MCm 1 Cm = (力顺) K
1 T= f0
角频率
ω = 2π f 0
d ξ dξ jωt M 2 + Rm + K ξ = Fa e dt dt
2
(1-3)
Fa jωt d 2ξ dξ 2 + 2δ + ω0 ξ = e 2 dt dt M
Rm δ = 2M
ω0 = M K
ξ (t ) = ξ1 (t ) + ξ 2 (t )
ξ1 (t ) = A0 e δ t cos(t )
θ =θ 0 + π
2
Fa ξa = ξ F = , ω Zm
The ξ0, 0 is determined by initial conditions
The dimensions of mechanical impedance are the same as those of mechanical resistance and are expressed in the same units, N.s/m, often defined as mechanical ohms.(力欧姆 力欧姆) 力欧姆 It is to be emphasized that , although the mechanical ohm is analogous to the electrical ohm, these two quantities do not have the same units. The electrical ohm has the dimensions of voltage divided by current; The mechanical ohm has the dimensions of force divided by speed.
ξ = A cos(ω0 0 )
(1.5)
(1.4)
2 质点振动速度与加速度
dξ v= = v a sin (ω0t 0 + π ) dt 2 d ξ a = 2 = ω0 2 A cos (ω0t 0 )
dt
v a = ω0ξ a , ξ a与0 由初始条件决定
ξ a= A + B ,
2 2
1.3 FORCED OSCILLATIONS
1 . A simple oscillator, when driven by an externally applied force F, the differential equation for the motion becomes:
d x m = F Kx 2 dt
e
δτ
1 = e
2M τ = = δ Rm
1
很小时, 当 Rm 很小时,
1δ2 2 2 δ = ω 1 ′ ω0 = ω0 δ = ω0 1 ω + 0 2 0 2 ω0
2
δ 2 ω0 2 当
′ ω0 ≈ ω0 或 f 0′ ≈ f 0
说明当阻力系数很小时, 说明当阻力系数很小时,固有频率的变化也 很小。一般说来,阻力系数较小时, 很小。一般说来,阻力系数较小时,固有频 率变化虽然不大,但振幅的衰减可很快。 率变化虽然不大,但振幅的衰减可很快。
ξ =e
方程得
jγ t
γ 为待定常数,并将上式代入动力学 为待定常数,
(γ + 2 jδγ + ω0 )e
2 2
jγ t
=0
若对任意时间成立, 若对任意时间成立,则必满足
方程根为
γ = jδ ± δ 2 + ω0 2
衰减方程的一般解为 ,假定 δ 2 ≥ ω0 2 假定
ξ =e
δ t
( Ae
′ jω 0 t
jθ 0
ω
) = Rm + jX m = Z m e
Zm is called the complex mechanical impedance ,Rm
is called the mechanical resistance ;Xm is called the mechanical reactance The mechanical impedance Has magnitude
For A≠0,φ0 = 0
Fa A= M (ω0 2 ω 2 )
Fa ξ (t ) = i cos ωt cos ω0t ) 2 2 ( M (ω0 ω ) 2 Fa ω0 ω ω0 + ω = t isin t isin 2 2 M (ω0 ω ) 2 2
This special pattern of motion is known as the beating phenomenon. Sound waves of slightly different frequencies will also give rise to beats .
4 振动能量
Ep = ∫
ξ
0
1 1 K ξ dξ = K ξ 2 2 2
1 Ek = Mv 2 2 1 1 2 E = E p + Ek = Mv + K ξ 2 2 2
E = E p + Ek = 1 1 2 M ω0 ξ a 2 sin 2 (ω0t 0 ) + K ξ a 2 cos 2 (ω0t 0 ) 2 2 1 1 2 = Mv a = K ξ a2 2 2
2
If F=Facosωt, and it will be advantageous to replace the real driving force Facosωt by its equivalent complex driving force f=Fa exp(jωt )we can write in the form:
1-2 质点的衰减振动
当质点在媒质中振动时,会受到媒质 的阻尼作用,这种阻尼作用可能是振动物 体与周围媒质之间的粘滞摩擦的效果;也 可能是振动物体向周围媒质辐射声波的效 果。前者使振动能逐渐转化为热能;后者 振动能逐渐转化为声能,虽然热能和声能 形式不同,但都是能量耗散的因素,使系 统的振幅不断衰减。
When
δ << ω 0
δ t
≈ω0
ξ1 (t ) = A0 e
cos(ω0 )
jωt
Assume a solution of the form
ξ 2 (t ) = ξ F e
2
And substitute into equation to obtain
( M ω + jRmω + K )ξ F = Fa
FUNDAMENTALS OF ACOUSTICS
Particles Vibrating Systems
1-1 质点的简谐振动
K
O
ξ
x
M
1 动力学方程及振动方程
d 2ξ M = Kξ 2 dt (1 .2 )
d 2ξ 2 + ωo ξ = o 2 dt
(1.3)
ω02 = K M
ξ = A1 cos ω0t + A2 sin ω0t
5 多弹簧串连和并联系统的振动
n个弹簧
串联等效弹性系数
百度文库
K1 , K 2 , K 3 , K n
1 1 1 1 = + + + K e K1 K1 K1
并联等效弹性系数
K e = K1 + K 2 + + K n
弹簧质量对系统固有频率的影响(自学内容) 弹簧质量对系统固有频率的影响(自学内容)
+ Be
′ jω 0 t
)
′ ω0 = ω 2 δ 2
依据三角函数与复指数关系, 依据三角函数与复指数关系,上式可写为
ξ = ξ 0e
δ t
′ cos(ω 0 t )
A( t ) = ξ 0 e δ t 其中
表明了振幅随时间衰减
这与无阻尼自由振动的情况不同, 这与无阻尼自由振动的情况不同,阻尼振动的 振幅随时间指数衰减。 振幅随时间指数衰减。 衰减模量 定义:振幅衰减到初始值的 定义:振幅衰减到初始值的1/e时所经历时间 时所经历时间
振幅衰减振动图
X(t)
A(t ) = ξ 0 e δ t
′ ξ (t ) = A(t ) cos(ω0t )
t
2π T= ′ ω0
3. 衰减振动的能量
1 1 2 E = Kx ( t ) + Mv 2 ( t ) 2 2
′ ′ ξ ( t ) = ξ 0e δ t cos (ω0t 0 ) = A ( t ) cos (ω0t 0 )
6 振动问题的复数表示
讨论振动或波动问题时,为简化数学处理, 讨论振动或波动问题时,为简化数学处理,常用复 数形式来表示振动或波动问题的解。已知(Euler方程 方程) 数形式来表示振动或波动问题的解。已知 方程
e jωt = cos ωt + j sin ωt e
- jωt
= cos ωt j sin ωt