被控对象特性

合集下载

自动化仪表与过程控制

自动化仪表与过程控制

被控对象的数学模型一、填空题(本大题共1小题,总计1分)1.滞后时间又叫时滞,它是从输入产生变化的瞬间起,到它所引起的输出量开始变化的瞬间为止的___生变化的瞬间起,到它所引起的输出量开始变化的瞬间为止的___二、选择题(本大题共31小题,总计62分)1.当对象受到阶跃输入作用后,被控变量如果保持初始速度变化,达到新的稳态之所需的时间称为()。

(A)时间常数 (B)滞后时间(C)振荡周期 (D)过渡时间2.被控对象可以存放物料量或能量的能力称为对象的()。

(A)负荷 (B)容量 (C)时间常数 (D)惯性3.被控对象在受到输入作用后,被控变量不能立即而迅速的变化,这种现象称为()。

(A)滞后现象 (B)滞后时间 (C)容量滞后 (D)传递滞后4.被控对象的传递滞后 ,输出变量的变化落后于输入变量变化的时间称为()。

(A)滞后时间 (B)传递滞后 (C)滞后现象 (D)过渡滞后5.被控对象的传递滞后也称为()。

(A)容量滞后 (B)纯滞后(C)过渡滞后 (D)系统滞后6.一个具有容量滞后对象的反应曲如图所示,被控对象的容量滞后是()秒。

12s20s50s(A)12 (B)20 (C)8 (D)507.操作变量的选择时干扰通道的放大系数尽可能小些,时间常数尽可能大些,干扰作用点尽量靠近( ),加大对象干扰通道的容量滞后,使干扰对被控变量的影响减小。

(A) 调节阀(B) 被控对象(C)测量点(D) 采样点8.干扰通道的( )要尽可能大些。

(A) 放大系数(B) 时间常数(C)微分时间 (D) 滞后时间9.测量元件安装位置不当,会产生( )。

它的存在将引起最大偏差增大,过渡时间延长,控制质量变差。

(A) 放大系数(B) 时间常数(C) 纯滞后(D) 滞后时间10.测量元件安装位置不当,会产生纯滞后。

它的存在将引起最大偏差( ),过渡时间延长,控制质量变差。

(A) 减少(B) 增大(C)变化 (D) 不一定11.减少由于测量变送单元引起的纯滞后,可以选取惰性小的测量元件,减小时间常数。

第三讲2-对象特性

第三讲2-对象特性

控制系统的性能指标
(1)以阶跃响应曲线形式表示的质量指标 1. 最大偏差A(或超调量σ) 对一个定值控制系统来说,最大偏 最大偏差A(或超调量 或超调量σ) 对一个定值控制系统来说, 差是指过渡过程中被控变量第一个波的峰值与给定值的差, 差是指过渡过程中被控变量第一个波的峰值与给定值的差,如 图l-10(a)中的A;在随动控制系统中,通常采用另一个指标—— 10(a)中的A 在随动控制系统中,通常采用另一个指标—— 超调量σ 超调量σ σ=(( y(t)-y(∞))/Y(∞))×100% )/Y(∞))×100% (1-1) 2. 衰减比n 是过渡过程曲线上同方向的相邻两个波峰之比,即 衰减比n 是过渡过程曲线上同方向的相邻两个波峰之比, B1:B2, 一般用n:1表示。 般用n 表示。 3. 回复时间ts 也称过渡时间,是指被控变量从过渡状态回复 回复时间ts 也称过渡时间, 到新的平衡状态的时间间隔,即整个过渡过程所经历的时间, 到新的平衡状态的时间间隔,即整个过渡过程所经历的时间, 如图中的ts。 如图中的ts。 4. 余差e(∞) 是指过渡过程终了时,被控变量新的稳态值与设 余差e 是指过渡过程终了时, 定值之差。 定值之差。 5. 振荡周期T 过渡过程的第一个波峰与相邻的第二个同向波 振荡周期T 峰之间的时间间隔称为振蔼周期 。
工业装备测控技术
第三讲第三讲-2 过程装备控制基础 被控对象特性
2. 过程装备控制基础
设计一个控制系统的步骤: 设计一个控制系统的步骤: 1、对被控对象作全面的了解(线性、非线性); 、对被控对象作全面的了解(线性、非线性) 2、确定控制方案(简单控制系统、复杂控制系统); 、确定控制方案(简单控制系统、复杂控制系统) 3、控制系统设计 4、控制系统安装 5、调节器参数的整定(确定P、I、D参数); 、调节器参数的整定(确定P 参数) 6、系统的投运。 以后的章节主要对“简单控制系统” 以后的章节主要对“简单控制系统”及其各个 环节进行一些讨论。 环节进行一些讨论。 所谓简单控制系统是指单输入所谓简单控制系统是指单输入-单输出的线性 控制系统,这是控制系统的基本形式, 控制系统,这是控制系统的基本形式,也是应用最 广泛的形式。 广泛的形式。

第2章 被控对象的特性

第2章 被控对象的特性

10
举例
一个对象如果可以用一个一阶微分方程式来描 述其特性(通常称一阶对象),则可表示为
a1yt a0 yt xt
(2-2)
或表示成 Tyt yt Kxt
(2-3)
式中
T a1 , K 1
a0
a0
上式中的系数与对象的特性有关,一般需要通过对象 的内部机理分析或大量的实验数据处理得到。
2020年7月10日星期五 2时9分7秒
衡。 水槽 对象
例如水槽对象
稳定时Q1=Q2,h保持稳定。如Q1突 然增加,h逐渐增加,由于h↑,Q2随液 体静压强↑而↑,Q1与Q2的差值逐渐减小, h↑减慢,最后Q1与Q2重新相等, h又自 行稳定在新的高度h/上.
有自衡的对象有利于控制。除部分反 应器、锅炉汽包、泵排液对象之外,大 多数有自衡性质。
湖北大学化学化工学院 杨世芳
8
(2)参量模型
当数学模型是采用数学方程式来描述时,称为参量模 型。对象的参量模型可以用描述对象输入、输出关系的微 分方程式、偏微分方程式、状态方程、差分方程等形式来 表示。
2020年7月10日星期五 2时9分5秒
湖北大学化学化工学院 杨世芳
9
对于线性的集中参数对象
通常可用常系数线性微分方程式来描述方程式来描述
当数学模型是采用曲线或数据表格等来表示时,称为 非参量模型。非参量模型可以通过记录实验结果来得到, 有时也可以通过计算来得到。
特点
形象、清晰,比较容易看出其定性的特征
缺点 直接利用它们来进行系统的分析和设计往往比较困难
表达形式 对象在一定形式输入作用下的输出曲线或数据来表示
2020年7月10日星期五 2时9分5秒
自动控制系统是由被控对象、测量变送装置、控

自动控制基础知识总结(环工 给排水专业)

自动控制基础知识总结(环工 给排水专业)

第一章自动控制基本知识1.任何自动化系统都是由被控对象和自动化装置两大部分组成。

2.被控对象是指需要控制的设备、机器或生产过程。

3.自动化装置指实现自动化的工具。

包括:测量元件及变送器,控制器,执行器,定值器,辅助装置(如电源,稳压装置)。

4.自动检测是实现生产过程自动化的首要基础。

5.在自动控制系统中,需要控制工艺参数的生产设备叫被控对象,简称对象。

6.测量元件与变送器在自动控制系统中起着获取信息的作用。

7.控制器:接收测量元件与变送器的信号,根据被控对象的数学模型及控制所要达到的要求,按照一定的控制规律进行运算,并输出相应的信号给执行器。

8.执行器:接收来自控制器的信号,改变操纵变量的大小或符号,从而实现对生产的控制,在过程控制系统中,常用的有电动、气动执行器。

9.定值器:将被控变量的给定值转换成统一信号的装置,以便使给定值送入控制器和测量信号进行比较。

10.在自动控制系统中,被控对象中需要控制的那个参数叫做被控变量。

被控变量要求保持的那个规定值称为给定值(亦称设定值),烦恼影响被控变量偏离给定值的各种因素称为干扰。

11.方框图具有单向传递性。

c(t)是被控对象的被控变量,z(t)是被控对象的测量值,r(t)是被控对象的希望值即给定值,e(t)是给定值与测量值的偏差,e(t)=r(t)-z(t).12.方框图的优点:只要依照信号的流向,便可将表示各元件或设备的方框连接起来,很容易组成整个系统。

与纯抽象的数学表达式相比,它还能比较直观、形象地表示出组成系统的各个部分间的相互作用关系及其在系统中所起的作用。

与物理系统相比,它能更容易地体现系统运动的因果关系。

13.反馈:把系统的输出信号又返回输入端的做法。

14.把被控变量不随时间而变化的平衡状态称为系统的静态,而把被控变量随时间而变化的不平衡状态称为系统的动态、15.平衡是暂时的、相对的、有条件的;不平衡是普遍的、绝对的、无条件的。

16.过度过程:自动控制系统在动态过程中被控变量是不断变化的,这种随时间而变化的过程,称为自动控制系统的过度过程,也就是系统由一个平衡状态过渡到另一个平衡状态的过程,或者说是自动控制系统的控制作用不断克服干扰的全过程。

过程装备控制技术及应用习题及参考答案

过程装备控制技术及应用习题及参考答案

过程装备控制技术及应用习题及参考答案第一章控制系统的基本概念1.什么叫生产过程自动化?生产过程自动化主要包含了哪些内容?答:利用自动化装置来管理生产过程的方法称为生产过程自动化。

主要包含:①自动检测系统②信号联锁系统③自动操纵系统④自动控制系统。

2.自动控制系统主要由哪几个环节组成?自动控制系统常用的术语有哪些?答:一个自动控制系统主要有两大部分组成:一部分是起控制作用的全套自动控制装置,包括测量仪表,变送器,控制仪表以及执行器等;另一部分是自动控制装置控制下的生产设备,即被控对象。

自动控制系统常用的术语有:被控变量y——被控对象内要求保持设定数值的工艺参数,即需要控制的工艺参数,如锅炉汽包的水位,反应温度;给定值(或设定值)y s——对应于生产过程中被控变量的期望值;测量值y m——由检测原件得到的被控变量的实际值;操纵变量(或控制变量)m——受控于调节阀,用以克服干扰影响,具体实现控制作用的变量称为操纵变量,是调节阀的输出信号;干扰f——引起被控变量偏离给定值的,除操纵变量以外的各种因素;偏差信号(e)——被控变量的实际值与给定值之差,即e=y m - y s控制信号u——控制器将偏差按一定规律计算得到的量。

3.什么是自动控制系统的方框图?它与工艺流程图有什么不同?答:自动控制系统的方框图上是由传递方块、信号线(带有箭头的线段)、综合点、分支点构成的表示控制系统组成和作用的图形。

其中每一个分块代表系统中的一个组成部分,方块内填入表示其自身特性的数学表达式;方块间用带有箭头的线段表示相互间的关系及信号的流向。

采用方块图可直观地显示出系统中各组成部分以及它们之间的相互影响和信号的联系,以便对系统特性进行分析和研究。

而工艺流程图则是以形象的图形、符号、代号,表示出工艺过程选用的化工设备、管路、附件和仪表自控等的排列及连接,借以表达在一个化工生产中物料和能量的变化过程,即原料→成品全过程中物料和能量发生的变化及其流向。

被控对象动态特性总结

被控对象动态特性总结
第十二章 被控对象动态特性
本章重点:了解对象特性及描述方法、描述对象特性的参数等内容 。
给定值 偏差
Sv
+ -
Dev
Pv
测量值
操纵值
控制器
调节阀
Mv
干扰 D
操纵变量 被控对象
q
测量变送器
被控变量 y
被控对象是指自动控制系统中所要控制的工艺生产设备。
生产过程中常见的被控对象有各类传热设备,如换热器、加热炉、 锅炉;流体输送设备,如泵、压缩机、管道;传质设备,如精馏塔;以 及反应器等。
第一节 对象特性及描述方法
二 对象特性的描述方法 建立对象数学模型的基本方法有机理法和测试法。
(一)机理法
用机理法建模就是根据生产过程的内在机理,写出各种有关的平衡方程 如:物料平衡方程、能量平衡方程、动量平衡方程、相平衡方程等,推 导出代表对象动态特性的微分方程。
对复杂对象的机理法建模需要进行合理的假设与简化。
温度对象的时间常数T比较大。
第二节 描述对象特性的参数
由前面的推导过程知: T AR2 ,A为储槽的截面积,代表其容量大 小,R2为阀的阻力系数,即时间常数与对象的液容与液阻有关,也是由
对象本身的特性决定的。
因此,时间常数T反映了对象容量滞后的大小。
生产过程中有各种各样的对象,大部分可用放大系数K与时间常数T描
态值时,相应输出变化就大,则反应就灵敏。
由于K与输出变化过程无关,而只与过程的稳态值有关,故它是表征对
象静态特性的一个特性参数。
放大系数K的大小是由对象本身的特性确定的。
第二节 描述对象特性的参数 Q1 B
dh T dt h KQ1
0
h
(a)

过程装备控制技术及应用答案

过程装备控制技术及应用答案

过程装备控制技术及应用试题一、选择题(每题2分,共20分)1、闭环控制系统是根据___________信号进行控制的。

A、被控量B、偏差C、扰动D、给定值2、DDZ-Ⅲ型仪表采用国际标准信号,现场传输信号是(4~20mADC ),控制联络信号为1~5VDC。

(A)0~10mADC;(B)4~20mADC;(C)1~5VDC;(D)1~10VDC。

3、对于PID调节器( I的作用是消除静态偏差、D的作用是减小动态偏差)。

(A)I的作用是减小动态偏差、D的作用是消除静态偏差;(B)I的作用是消除静态偏差、D的作用是消除动态偏差;(C)I的作用是消除动态偏差、D的作用是减小静态偏差;(D)I的作用是消除静态偏差、D的作用是减小动态偏差。

4、因为( 微分动作)对于干扰的反应是很灵敏的。

因此,它常用于温度的调节,一般不能用于压力、流量、液位的调节。

(A)比例动作;(B)积分动作;(C)微分动作;(D)比例积分。

5、调节系统中用临界比例带法整定参数的具体方法是( 先将Ti置最大,TD置最小,δP 置较大) 。

(A)先将Ti置最大,TD置最小,δP置较大;(B)先将Ti置最小,TD置最大,δP置较大;(C)先将Ti置最小,TD置最小,δP置较小;(D)先将Ti置最小,TD置最小,δP置较大。

6、调节对象在动态特性测试中,应用最多的一种典型输入信号是(阶跃函数)。

(A)阶跃函数;(B)加速度函数;(C)正弦函数;(D)指数函数。

7、霍尔压力变送器是利用霍尔效应把压力作用下的弹性元件位移信号转换成( 电动势)信号,来反应压力的变化。

(A)电流;(B)相位;(C)电动势;(D)以上都是8、要使PID调节器为比例规律,其积分时间Ti和微分时间TD应设置为( ∞、0 )。

(A)∞、∞;(B)∞、0;(C)0、0;(D)0、∞9、动态偏差是指调节过程中( 被调量与给定值)之间的最大偏差。

(A)被调量与调节量;(B)调节量与给定值;(C)被调量与给定值;(D)以上都不是10、需要知道对象的动态特性,才能进行参数整定的工程方法是___________。

第2章 被控对象的特性

第2章 被控对象的特性

将式(2-13)和式(2-14)代入式(2-15)式(2-16)
中得
A1dh1/dt=Qi-h1/R1
(2-17)
A2dh2/dt=h1/R1- h2/R2
(2-18)
将式(2-17)与式(2-18)相加,并整理后得
d h1
dt
1 (Q Ai
1
A2
dh2
dt
h2 ) R2
(2-19)
将式(2-18)求导,得
2
(T
1
T
)
2
dh
dt
2
h
2
KQ
i
(2-22)
上式为一个二阶常系数微分方程式。式中 T1,T2 分别为两个水槽的时间常数, K为整个对象的放大系 数。
三、纯滞后对象的数学模型及特性 在连续化生产中,有的被控对象或过程,在输
入变量发生变化后,输出变量并不立刻随之变化, 而是要隔上一段时间后才产生响应。我们把具有这 种特性的对象称为纯滞后对象。
s
i
Q Q VQ
0
s
0
将这些变量代入式(2-1)中,就可得到
A dVh VQ VQ
dt
i
o
(2-2)
在上式中,还不能清楚地看出h与Qi的关系。因为 式中有QO的存在,为此,必须将QO从式中消除。由工 艺设备的特性可知,QO与h 的关系是非线性的。考虑 到h和QO的变化量相对较小,可以近似认为QO与h 成正 比,与出水阀的阻力系数R 成反比,其具体关系式如
(1)对象输出的变化特点 对式(2-9)求导,可得h在t时刻变化速度,即
e dVh KVQ t /T
dt
T
当t=0时,得h的初始变化速度
(2-10)

控制对象的动态特性及其传递函数的求取(两点法、切线法)资料

控制对象的动态特性及其传递函数的求取(两点法、切线法)资料
a
容量迟延时间τC
多容有自平衡对象可用下列传递函 数表示:
2.无自平衡能力多容对象
自平衡单容对象
无平衡单容对象
无自平衡能力多容对象
μ
Kμ Q0 _
1 h1 1
F1 S
R1
Q1
1 h2
F2 S
自平衡单容对象
无平衡单容对象
阶跃响应
特征参数
多容无自平衡能力的对象的动态特性 可用两组参数描述:
Ta、 和 、
积分时间越大,被调量(输出)的变 化越慢,输出对输入的反应越慢
特征参数
(2)飞升速度ε

dh dt
t0
K

1
0 F Ta
传递函数可以写作:
H(s) 1

(s) S Ta S
积分环节

0
t0 h
0
t
特征参数
(3)自平衡率ρ
∵在无自平衡能力单容对象中其流出侧阻力Rs=∞
∴其自平衡率为:
单容被控对象的动态特性
单容被控对象:
是指只有一个贮存物质或能量的容积。这 种对象用一阶微分方程式来描述。单容被控对 象可分为有自平衡单容对象和无自平衡单容对 象两大类 。
1.有自平衡的单容对象
μ 1 k
Q1
h
F
2
Rs
Q2
说明:
1. 被控对象受到扰动后平衡被破坏, 不需外来的调节作用,而依靠被调 量自身变化使对象重新恢复平衡的 特性,称为对象的自平衡特性。
a
控制阀 中间阀 流出阀
特征参数
多容有自平衡能力的对象的动态特性
可用两组三个参数描述即 :
容积迟延时间τC 、时间常数TC及放大系数K

第2章 控制对象的动态特性

第2章 控制对象的动态特性

1
dh dt t 0
dh ( )max / 0 dt K 0 T K 0 0 T

能源与动力工程学院
小 结
综上所述,有自平衡能力的单容被控对象的动态特 性可以用两组4个参数描述,它们之间的关系为:
K 0 1 K 时间常数:T= dh dt t 0 h 1 放大系数:K 0 0 1 自平衡率:= h = K dh K dt 飞升速度:= max 0 T
h t
K 0 F
t
(2-4)
能源与动力工程学院 2、特征参数 (1)飞升速度ε 飞升速度是指在单位阶跃扰动作用下,被控对象输出端被控量 的最大变化速度,根据定义可得:
dh K dt t 0 1 0 F Ta
(2)自平衡率ρ
因此飞升时间越大,被控量的变 化速度和系统的反应时间越慢。
t T
能源与动力工程学院
由上式可知,在t=0时水位h的变化速度最快,代入可得:
K 0 h dh dt t 0 T T
在t=0时水位h的变化速度等于图中响应曲线起始点切线 的斜率,因此当被控对象的输入端控制量产生阶跃变化后,输 出的被控量保持初始速度达到稳态值所需的时间即为时间常数 T。 当t=3T时:
系统的输入量为输出量为主水槽水位h能源与动力工程学院1阶跃响应有自平衡双容水槽被控对象阶跃响应曲线能源与动力工程学院有自平衡双容水槽被控对象方框图2传递函数前置水槽主水槽25有自平衡双容水槽被控对象传递函数两个一阶惯性的串联双容对象放大系数前置水槽时间常数主水槽时间常数标准化
能源与动力工程学院
第二章 热工对象动态特性
1、阶跃响应与传递函数

王福利过程控制系统课后题答案

王福利过程控制系统课后题答案

王福利过程控制系统课后题答案1、什么是对象特性?为什么研究对象特性对象的输入变量和输出变量之间的定量关系;它使人们能更深刻的认识自动控制的本质,从而能采取有效措施提高控制质量。

2、何为对象的数学模型?静态数学模型与动态数学模型有哪些区别?在输入(控制输入与扰动输入)作用下,其状态和输出(被控参数)变化的数学表达式;前者是在输入变量与输出变量达到平衡状态时建立的数学表达式,后者是在输出变量和状态变量在输入变量影响下建立的数学表达式。

3、建立对象的数学模型有什么重要意义?1设计过程控制系统与整定控制参数;2指导生产工艺与其设备的设计与操作;3对被控过程进行仿真研究;4培训运行操作人员;5工业过程的故障检测与诊断。

4、建立数学模型的方法:机理建模和实验建模5、为什么不同的过程特性与工艺要求需设计不同的控制方案?怎样理解被控过程特性是过程控制系统设计的基础?过程控制系统的过程设计正确与否,直接影响到系统能否正常投入运行,因此要求过程控制设计人员必须根据生产过程的特点,工艺特性和生产操作的规律,正确运用控制理论,设计一个正确合理的控制方案;过程控制系统的设计首先要根据工艺要求和控制目标确定系统变量,进一步根据被控过程特性用恰当的数学关系式,即所谓的数学模型来描述被控过程的变量之间的关系,只有掌握了被控过程的数学模型才能深入的分析过程的特性和选择正确的控制方案。

6。

什么叫单回路系统?控制方案设计包括哪些内容?怎样理解方案设计是系统设计的核心?只有一个闭环回路的简单控制系统叫单回路控制系统;过程控制系统设计包括系统的方案设计,工程设计,工程安装和仪表调校,调节器参数整定四个主要内容;控制方案是系统设计得核心,若控制方案不正确,则无论如何选用何种先进的过程控制仪表或计算机系统,无论其安装如何细心,都不可能是系统在工业生产过程中发挥良好的控制作用,甚至系统不能运行。

7。

什么是直接参数与间接参数?他们有何关系选择被控参数应遵循哪些基本原则?直接参数,直接反应生产过程中产品质量和产量又以直接测量的参数间接参数,间接反映产品质量和产量又与直接参数有着单值函数关系,有足够大的测量灵敏度的参数间接参数必须与直接参数有单值函数关系被控参数的选择原则:1)直接参数法2)间接参数法3)被控变量必须具备足够的灵敏度和变化数值4)被控变量的选择必须考虑到工艺过程的合理性,经济性,以与国内外仪表生产的现状。

第二章之1被控对象的特性

第二章之1被控对象的特性

这种应用对象输入输出的实测数据来决定其模型的方法,通常称为系统辨识。其主要特 点是把被研究的对象视为一个黑箱子,不管其内部机理如何,完全从外部特性上来测试和描 述对象的动态特性。有时,为进一步分析对象特性,可对这些数据或曲线进行处理,使其转 化为描述对象特性的解析表达式。
混合建模——将机理建模与实验建模结合起来,称为混合建模。
h ( t ) / h2 ( t )
单容
响应曲线比较
· 纯滞后一阶对象 在工业过程中常有一些输送物料的中 间过程,如图所示,qi为操纵变量, 但需要经过导流槽才送入水箱。如果 把水箱入口的进料量记为qf,并设: 导流槽长度l,流体平均速度v,流体 流经导流槽所需的时间τ,所以当qi 发生改变以后,经过时间以后qf才 有变化:
d h2 dt
h2 K q i
( T1 A1 R1 T 2 A 2 R 2 K R 2 )
典型的传递函数
H 2 (s) Qi ( s )

K T1T 2 s (T1 T 2 ) s 1
2

K (T1 s 1)(T 2 s 1)
t T2
典型的阶跃响应函数 h 2 ( t ) K a [1
q f (t ) q i (t )
qi
qf
l/v
A, h
q0
对于qf与h来说,根据前面的推导,可知 : d h (t )
T dt h (t ) K qi (t )
s
T
d h (t ) dt
h (t ) K q f (t )
传递函数为: T sH ( s ) H ( s ) K e
典型的微分方程 典型的传递函数 典型的阶跃响应函数

03对象特性

03对象特性
➢ 1.阶跃反应曲线法 ➢ 2.矩形脉冲法 ➢ 3.矩形脉冲波法 ➢ 4.正弦信号法
➢ 1.阶跃反应曲线法:
➢ 突然开大进水阀,引进一阶跃 干扰作用。
➢ 特点:方法简单,但幅度不宜过 大,以免影响工艺参数,一般 取额定值的5-10%。
输 入 量
0 t0
时间 t
1.阶跃反应曲线法
➢ 2.矩形脉冲法:
Q12
)
Q2
h2 R2

dh2 dt
1 A
(Q12
Q2 )

Q12
A dh2 dt
Q2

Q2
将③④代入⑥并求导得:

d 2h2 dt 2
1 (1 AR
• dh1 dt
1 R2

dh2 ) dt

将⑧代入⑨并整Biblioteka 得:A R1 A R2d 2h2 dt 2
(AR1
AR2)ddht2
h2
R 2 Q1
1
Q1≠Q2
Q1
(Q1-Q2)dt=Adh
Q2 不变
h
Q2
dh
1 A
Q1dt
1
h A Q1dt
1
二.机理建模
Q1
➢ 3.二阶对象:
h1
R1
Q12
物料平衡: h2→Q1(t)
(Q1-Q12)dt=Adh1 ①
h2
R2
(Q12-Q2)dt=Adh2 ②
Q12
h1 R1
dh1 1
dt A

(Q1
输 入 量
0 t0 t1
t2 时间 t
3.矩形脉冲波法
➢ 4.频率特性法(正弦信号):

过程控制系统 复习总结!

过程控制系统  复习总结!

过程控制系统知识点总结)一、概论1、过程控制概念:五大参数。

过程控制的定义:工业中的过程控制是指以温度、压力、流量、液位和成分等工艺参数作为被控变量的自动控制。

2、简单控制系统框图。

控制仪表的定义:接收检测仪表的测量信号,控制生产过程正常进行的仪表。

主要包括:控制器、变送器、运算器、执行器等,以及新型控制仪表及装置。

控制仪表的作用:对检测仪表的信号进行运算、处理,发出控制信号,对生产过程进行控制。

3、能将控制流程图(工程图、工程设计图册)转化成控制系统框图。

4、DDZ -Ⅲ型仪表的电压信号制,电流信号制。

QDZ-Ⅲ型仪表的信号制。

它们之间联用要采用电气转换器。

5、电信号的传输方式,各自特点。

电压传输特点:1). 某台仪表故障时基本不影响其它仪表; 2). 有公共接地点;3). 传输过程有电压损耗,故电压信号不适宜远传。

电流信号的特点:1).某台仪表出故障时,影响其他仪表;2).无公共地点。

若要实现仪表各自的接地点,则应在仪表输入、输出端采取直流隔离措施。

6、变送器有四线制和二线制之分。

区别。

1、四线制:电源与信号分别传送,对电流信号的零点及元件的功耗无严格要求。

2、两线制:节省电缆及安装费用,有利于防爆。

活零点,两条线既是信号线又是电源线。

7、本安防爆系统的2个条件。

1、在危险场所使用本质安全型防爆仪表。

2、在控制室仪表与危险场所仪表之间设置安全栅,以限制流入危险场所的能量。

第一个字母:参数类型 T ——温度(Temperature ) P ——压力(Pressure ) L ——物位(Level ) F ——流量(Flow ) W ——重量(Weight ) 第二个字母:功能符号 T ——变送器(transmitter ) C ——控制器(Controller ) I ——指示器(Indicator ) R ——记录仪(Recorder ) A ——报警器(Alarm )加热炉8、安全栅的作用、种类。

放大系数和时间常数意义

放大系数和时间常数意义

时间常数和放大系数1、什么是被控对象特性?什么是被控对象的数学模型?研究被控对象特性有什么重要意义?答被控对象特性是指被控对象输入与输出之间的关系。

即当被控对象的输入量发生变化时,对象的输出量是如何变化、变化的快慢程度以及最终变化的数值等。

对象的输入量有控制作用和扰动作用,输出量是被控变量。

因此,讨论对象特性就要分别讨论控制作用通过控制通道对被控变量的影响,和扰动作用通过扰动通道对被控变量的影响。

定量地表达对象输入输出关系的数学表达式,称为该对象的数学模型。

在生产过程中,存在着各种各样的被控对象。

这些对象的特性各不相同。

有的较易操作,工艺变量能够控制得比较平稳;有的却很难操作,工艺变量容易产生大幅度波动,只要稍不谨慎就会越出工艺允许的范围,轻则影响生产,重则造成事故。

只有充分了解和熟悉对象特性,才能使工艺生产在最佳状态下运行。

因此,在控制系统设计时,首先必须充分了解被控对象的特性,掌握它们的内在规律,才能选择合适的被控变量、操纵变量,合适的测量元件和控制器,选择合理的控制器参数,设计合乎工艺要求的控制系统。

特别在设计新型的控制系统时,例如前馈控制、解耦控制、自适应控制、计算机最优控制等,更需要考虑被控对象特性。

2、简述建立对象的数学模型两种主要方法。

答一是机理分析法。

机理分析法是通过对对象内部运动机理的分析,根据对象中物理或化学变化的规律(比如三大守恒定律等),在忽略一些次要因素或做出一些近似处理后推导出的对象特性方程。

通过这种方法得到的数学模型称之为机理模型,它们的表现形式往往是微分方程或代数方程。

二是实验测取法。

实验测取法是在所要研究的对象上,人为施加一定的输入作用,然后,用仪器测取并记录表征对象特性的物理量随时间变化的规律,即得到一系列实验数据或实验曲线。

然后对这些数据或曲线进行必要的数据处理,求取对象的特性参数,进而得到对象的数学模型。

3、描述简单对象特性的参数有哪些?各有何物理意义?答描述对象特性的参数分别是放大系数K、时间常数T、滞后时间。

2.1被控对象特性

2.1被控对象特性

自衡与无自衡对象举例
(四)放大系数和时间常数
△ 1 Q1
任何时候水箱水位的变化速度为
hc 2 Q2
dhc Q1 - Q2 Q1 - Q2 dt S S 体积流量 Q1 Q2
若控制阀1的开度开大Δl0,则流入量Q1的 变 化 量 ΔQ1 与 Δl0 成 正 比 , 则 ΔQ1=q1=Kl.Δl0
2.1 被控对象特性
2.1.1被控对象特性定义
被控对象特性是指被控过程的输入变量 (操纵变量或干扰变量)发生变化时,其 输出变量(被控变量)随时间的变化规律。
控制通道定义
所谓通道是输入变量对输出变量的作用途径,被控变量受到操纵变量和干扰变量 的共同作用影响。因此其特性分为被控变量随操纵变量的变化规律和随干扰变量 的变化规律。
(二)对象的阻力
凡是运动着的物体都要受到阻力的作用,电荷在导体中运动要受到 电阻的阻力,导弹飞行要受到空气的阻力,流体在管道中流动要遇 到管壁的阻力,汽车行驶要受到地面的摩擦阻力。所以,被控对象 也总是存在或大或小的阻力,这是其结构性质所决定的。
(三)对象的自衡
1 Q1 Q1
hc 2 Q2 (a)自衡对象 (b)无自衡的对象 Q2
单容水箱对象特性的实验测试
单容水箱的数学模型可用一阶惯性环节来近似描述,且用下述方法求取 对象的特征参数。
单容水箱液位开环控制结构图
设水箱的进水量为Q1,出水量为Q2,水箱的液面高度为h,出水阀V2固 定于某一开度值。根据物料动态平衡的关系,求得:
R 2C
在零初始条件下,对上式求拉氏变换,得:
G( s) H ( s) R2 K Q1( s) R 2CS 1 TS 1 2 -1
hc K0l 0

现代控制原理第二章课后答案

现代控制原理第二章课后答案

第二章被控对象的数学模型第一章自动控制系统基本概念1.简述被控对象、被控变量、操纵变量、扰动(干扰)量、设定(给定)值和偏差的含义?答:自动控制系统中常用的几个术语其含义是:被控对象自动控制系统中,工艺参数需要控制的生产过程、设备或机器等。

被控变量被控对象内要求保持设定数值的工艺参数。

操纵变量受控制器操纵的,用以克服干扰的影响,使被控变量保持设定值的物料量或能量。

扰动量:除操纵变量外,作用于被控对象并引起被控变量变化的因素。

设定值:被控变量的预定值。

偏差:被控变量的设定值与实际值之差。

2.自动控制系统按其基本结构形式可分为几类?其中闭环控制系统中按设定值的不同形式又可分为几种?简述每种形式的基本含义。

答:自动控制系统按其基本结构形式可分为闭环自动控制系统和开环自动控制系统。

闭环自动控制是指控制器与被控对象之间既有倾向控制又有反向联系的自动控制。

如图1—1(a)即是一个闭环自动控制。

图中控制器接受检测元件及变送器送来的测量信号,并与设定值相比较得到偏差信号,再根据偏差的大小和方向,调整蒸汽阀门的开度,改变蒸汽流量,使热物科出口温度回到设定值上。

从图l—1(b)所示的控制系统方块图可以清楚看出,操纵变量(蒸汽流量)通过被控对象去影响被控变量,而被控变量又通过自动控制装置去影响操纵变量。

从信号传递关系上看,构成了一个闭合回路。

在闭环控制系统中,按照没定值的不同形式又可分为:(1)定值控制系统定值控制系统是指设定值恒定不变的控制系统。

定值控制系统的作用是克服扰动对被控变量的影响,使被控变量最终回到设定值或其附近。

以后无特殊说明控制系统均指定值控制系统而言。

(2)随动控制系统随动控制系统的设定值是不断变化的。

随动控制系统的作用是使被控变量能够尽快地、准确无误地跟踪设定值的变化而变化。

(a)(b)图1-1闭环自动控制基本结构(3)程序控制系统程序控制系统的设定值也是变化的,但它是一个已知的时间函数,即设定值按一定的时间程序变化。

自动控制原理闭环系统知识点总结

自动控制原理闭环系统知识点总结

自动控制原理闭环系统知识点总结一、引言自动控制是现代科学技术的重要组成部分,而闭环系统作为自动控制的基础之一,在工程实践中具有广泛的应用。

本文将对闭环系统的相关知识点进行总结和归纳,旨在帮助读者更好地理解和应用闭环系统。

二、闭环系统的定义与组成闭环系统又称反馈控制系统,是指通过测量被控对象的输出信号,并与期望值进行比较,将比较结果反馈给控制器,根据反馈信息进行调节,从而使被控对象的输出信号接近期望值的一种控制系统。

闭环系统主要由被控对象、传感器、控制器和执行器等组成。

1. 被控对象:闭环系统中需要被控制的物理或数学模型,可以是机械装置、电子电路或工业过程等。

2. 传感器:用于检测和测量被控对象的输出信号,并将其转化为电信号输入到控制器。

常见的传感器有温度传感器、压力传感器等。

3. 控制器:根据传感器测量的反馈信息和期望值,采取相应的控制策略,输出控制信号,调节被控对象的行为。

控制器可以是模拟控制器或数字控制器。

4. 执行器:接收控制器输出的控制信号,并转化为物理效应,对被控对象进行调节。

执行器可以是马达、电动机或阀门等。

三、闭环控制的基本原理闭环控制系统的基本原理是通过比较被控对象的输出信号与期望值的差异,将差异作为反馈信息反馈给控制器,控制器对被控对象进行调节。

闭环控制系统的基本流程如下:1. 传感器测量被控对象的输出信号,将信号转化为电信号。

2. 控制器接收传感器的测量信号,并与期望值进行比较,计算出控制信号。

3. 执行器接收控制信号,并对被控对象进行相应的调节。

4. 传感器再次测量被控对象的输出信号,并将测量结果反馈给控制器。

5. 控制器根据反馈信息与期望值的比较结果,调整控制信号,进一步改变执行器对被控对象的调节。

四、闭环系统的优势闭环控制系统相比于开环控制系统具有以下优势:1. 鲁棒性强:闭环系统通过反馈信息不断对被控对象进行调节,可以有效地抵抗外界干扰和系统参数变化,提高系统的稳定性和鲁棒性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

控制通道放大系数定义是
K0 C l 0
C∞——被控变量以起始稳态为基准的最后稳态值;Δ l0 输入
时间常数
时间常数,阶跃扰动后,被控量以初始变化速度达到新的稳态值所需时间。
l
△l0 K△l0 0.632K△l0
K△l0
hc hc(∞)
a
TB A
hc t
hc(∞)
a
hc(0) O
hc(0)
T
t
t0
(Tf 1
Tf
2)
dy(t) dt
y(t)
Kf
f
(t)
有纯滞后
Tf 1Tf 2
d 2 yt
dt 2
(Tf 1
T
f
2
)
dy(t dt
)
y(t)
Kf
f
(t
)
Tc1,Tc2 ,Tf 1,Tf 2 , Kc , K f q(t), f (t), y(t)
控制通道、扰动通道的时间常数和放大系数 为操纵变量扰动变量被控变量
t
e T =0,所以 hc|t K0l0
如果把对象看成一个环节,它的输入信号是控制阀门1的开度Δlc,而液位 hc的变化Δhc看作对象的输出,则在稳定状态时,一定输入就对应着一定 的输出,被控变量(水位hc)的最终值就为
hc K0l0
△l0
K0 △l0
K0
放大系数的定义 输入量
t
确定时间常数 h从扰动前的零值变化到63.2%所需的时间就是T
(五) 对象的滞后:输出与输入不同步 传递滞后
l
1
t
hc
h(∞)
a
a
2
τn
τ0
t
(a) (b)
控制阀等的安装位置与对象本身之间总有一段距离,输入量 (或输出量)的改变和信息的传递均需要时间。
过渡滞后
T1 Q1
A
T2
Q1 (a)
hA (b)
2.1.3 被控对象的特性
(一) 对象的容积
对象的容积是指对象能够存放物质或能量的能力。 例如,用一只打气筒分别给自行车胎和汽车胎充气,各打十次后发现, 自行车轮胎已经充足气,而汽车轮胎却无鼓胀的表现,说明两者相比, 汽车轮胎的容积大。
对象的容积越大,对扰动的反应越慢,被控变量的变化也越迟缓,这 时相应的控制系统比较容易控制,即对所用的控制器要求可以较简单。
控制通道响应曲线:当被控作用q(t)做阶跃变化(扰动d(t)不变)时被控变量的时间 特性y(t)。 扰动通道响应曲线:当扰动d(t)做阶跃变化(控制作用q(t) 不变)时被控变量的时 间特性y(t)。
常见的被控对象响应曲线的类型如图
有自衡的非振荡过程
有自衡的振荡过程
无自衡的非振荡过程
2.1.2被控对象特性的数学模型
数学模型:表示具体过程的输入、输出关系的数学方程式。 其形式有:微分方程式、偏微分方程式、状态方程等。
准确用数学公式描述一个对象的输入输出的关系非常难 但对于简单的被控对象人们一般往往用一阶或二阶微分方程来描述
一阶微分方程
一阶被控过程控制通道的动态方程为: 有纯滞后
Tc
dyt
dt
y(t)
Kcq(t)
T SR2
T——对象的时间常数

K0 KlR 2 K0——对象的控制通道放大系数
可写成下列形式
T dhc hc K0l0 dt
这是水箱在阶跃扰动下的微分方程,特解(t=0)是
t
hc K0l0(1 e T )
水位hc随时间t变化的曲线
水箱受到阶跃扰动后,要达到新的平衡点,从理论上讲需要无限长的时间, 若把t=∞代入,则
Tc
dyt
dt
y(t)
Kcq(t
)
一阶被控干扰控制通道的动态方程为:
Tf
dyt
dt
y(t)
Kf
f
(t)
有纯滞后
Tf
dyt
dt
y(t)
Kf
f
(t
)
Tc ,Tf , Kc , K f q(t), f (t), y(t)
分别为控制通道、扰动通道的时间常数和放大系数; 分别为操纵变量,扰动变量,被控变量。
综上所述,我们一定要认真研究被控对象的特性,特别要注意减 少滞后时间,从工艺角度出发,改革工艺,缩短或减少那些不必要 的管线,对控制阀的安装和检测点的设置,都应选取靠近控制对象 的有利地点。
Q2 (b)无自衡的对象
自衡与无自衡对象举例
(四)放大系数和时间常数
△1
任何时候水箱水位的变化速度为
Q1 hc
2
Q2
dhc Q1 - Q2 Q1 - Q2
dt
S
S
体积流量 Q1 Q2
令ΔQ1=q1,ΔQ2=q2
dhc q1 - q2 dt S
若控制阀1的开度开大Δl0,则流入量Q1的 变 化 量 ΔQ1 与 Δl0 成 正 比 , 则 ΔQ1=q1=Kl.Δl0
控制通道定义
所谓通道是输入变量对输出变量的作用途径,被控变量受到操纵变量和干扰变量 的共同作用影响。因此其特性分为被控变量随操纵变量的变化规律和随干扰变量 的变化规律。
干扰变量 d
操纵变量 q
被控对象 干扰通道
控制通道
被控变量 +y
+
图中:控制通道:操纵变量q(t)对被控变量y(t)的作用途径; 扰动通道:扰动变量d(t)对被控变量y(t)的作用途径。
二阶微分方程
二阶被控过程控制通道的动态方程为:
Tc1Tc 2
d 2 yt
dt 2
(Tc1
Tc2 )
dy(t) dt
y(t)
Kcq(t)
有纯滞后
Tc1Tc 2
d 2 yt
dt 2
(Tc1
Tc2 )
dy(t) dt
y(t)
Kcq(t
)
二阶被控干扰控制通道的动态方程为:
Tf 1Tf 2
d 2 yt
dt 2
B
Q2
τ0
T
hB
(c)
t
t t
0
τ0
τn
T等效
t
由于过程情况比较复杂,从理论上定量地求取放大系数K,时间 常数T,滞后时间的数值是不可能的。
即使有时候由于某些意想不到的因素,不能十分精确地测定其数 值,但是所得到的结果对定性分析控制系统的控制质量也是很有参 考价值的。
实践和理论都证明,值的大小可以反映对象控制的难易程度,无 论被控变量是压力,温度,流量或液位。一般说来,当数值很小时, 这种对象比较容易控制,当数值增大时,被控量就容易振荡,对象 变得很难控制。
(二)对象的阻力
凡是运动着的物体都要受到阻力的作用,电荷在导体中运动要受到 电阻的阻力,导弹飞行要受到空气的阻力,流体在管道中流动要遇 到管壁的阻力,汽车行驶要受到地面的摩擦阻力。所以,被控对象 也总是存在或大或小的阻力,这是其结构性质所决定的。
(三)对象的自衡
1
Q1
Q1
hc (a)自衡对象
2 Q2
Kl——阀门的比例系数
流出量的变化量ΔQ2与水位的变化量ΔH成正比,与流出阀门2的阻力R2
成反比,即
H Q2
R2
即 q2 hc R2
假定水位变化不大,则R2可近似认为是一个常数
dhc
q1 - q2
Kll 0
-
hc R2
dt S
S
S dhc Kll0 - hc
dt
R2
R2 dhc hc KlR2l0 dt
相关文档
最新文档