三角形重心
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形重心
重心是三角形三边中线的交点,三线交一可用燕尾定理证明。证明过程又是塞瓦定理的特例。
已知:△ABC中,D为BC中点,E为AC中点,AD与BE交于O,CO延长线交AB 于F。
求证:F为AB中点。
证明:根据燕尾定理,S△AOB=S△AOC,又S△AOB=S△BOC,∴S△AOC=S△BO
C,再应用从中点得AF=BF,命题得证。
重心的几条性质及证明方法:
1、重心到顶点的距离与重心到对边中点的距离之比为2:1。
2、重心和三角形3个顶点组成的3个三角形面积相等。
证明方法:
在▲ABC内,三边为a,b,c,点O是该三角形的重心,AOA1、BOB1、COC1分别为a、b、c边上的中线根据重心性质知,OA1=1/3AA1,OB1=1/3BB1,OC1=1/3CC1过O,A分别作a边上高h1,h可知h1=1/3h 则,S(▲BOC)=1/2×h1a=1/2×1/3ha=1/3S(▲ABC);同理可证S(▲AOC)=1/3S(▲ABC),S(▲AOB)=1/3S(▲ABC) 所以,
S(▲BOC)=S(▲AOC)=S(▲AOB)
3、重心到三角形3个顶点距离的和最小。(等边三角形)
证明方法:
设三角形三个顶点为(x1,y1),(x2,y2),(x3,y3) 平面上任意一点为(x,y)则该点到三顶点距离和为:(x1-x)^2+(y1-y)^2+(x2-x)^2+(y2-y)^2+(x3-x)^2+(y3-y)^2
=3x^2-2x(x1+x2+x3)+3y^2-2y(y1+y2+y3)+x1^2+x2^2+x3^2+y1^2+y2^2+y3^2=3(x-1/3*(x1+x2 +x3))^2+3(y-1/3(y1+y2+y3))^2+x1^2+x2^2+x3^2+y1^2+y2^2+y3^2-1/3(x1+x2+x3)^2-1/3(y1+y 2+y3)^2
显然当x=(x1+x2+x3)/3,y=(y1+y2+y3)/3(重心坐标)时上式取得最小值
x1^2+x2^2+x3^2+y1^2+y2^2+y3^2-1/3(x1+x2+x3)^2-1/3(y1+y2+y3)^2 最终得出结论
4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为
((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空间直角坐标系——横坐标:(X1+X2+X3)/3 纵坐标:(Y1+Y2+Y3)/3 竖坐标:(z1+z2+z3)/3
5、三角形内到三边距离之积最大的点。
重心
三条中线定相交,交点位置真奇巧,
交点命名为“重心”,重心性质要明了,
重心分割中线段,数段之比听分晓;
长短之比二比一,灵活运用掌握好.