电网络理论节点撕裂法
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 T 1 T 1 YnVn A 1 Z A V J A Z A Y 1 1 n n 1 1 1 n J n
修正后保留网络方程
YnVn YnVn J n
被撕节点KCL方程
A 1I 1 A 2 I 2 J n
A T T A Vn A 1T 0 0 T A 1 T A 2
①
Vn V n
T Vb A Vn T T A 1 Vn A 1 Vn Vb 1 T V A V 2 n b 2
关联矩阵:
为分析方便,设β1支路中没有独立 源。这样假定实际上是将被撕裂支路的 独立源直接归入节点注入电流。
• 保留网络的节点电压方程:Leabharlann Baidu
YnVn J n
• 修正: 连为整体网络,补充的节点注入电流:
A 1 I 1
修正后保留网络方程:
YnVn A 1 I 1 J n
3.4 节点撕裂法
节点撕裂法的思路: 把部分节点先移走,与这些节点关联的 支路也全部移走 。 要求: 1)保留网络仍是连通的 2)有一个断点,这个断点和各子网络都 直接相连 3)断点为参考点
网络描述:
• 保留网络中节点电压、支路电流下标: • 被撕裂网络节点电压下标: β • 被撕裂网络中原来与保留网络节点关联 的支路电流下标: 1 • 只与被撕裂节点关联的支路电流下标: 2
被撕网络
Vb 1 Z 1 I 1 A 1 Vn A 1 Vn
T T
令
T 1 Z 1 Z 1 A 1 Yn A 1
I 1 Z
1 1
A 1 Vn Z
T
1 1
A 1 Yn J n
T
1
YnVn A 1 I 1 J n
Vn Vn V n
被撕裂支路电流:
I1 I I 2
0 0 Yb 1 0 0 Yb 2
0 A 2
Yb 支路导纳矩阵: Yb 0 0
A A 0
1 2
A 1 A 1
T
被撕网络 节点电压 方程
Yn 1Vn YnVn J n
Yn 1 Vn J n V Yn n J n
Yn 原网络方程 Y n 1
其中
I 1 Yb 1Vb 1 Yb 1 ( A 1Vn A V )
T T 1 n
I 2 Yb 2Vb 2 Yb 2 A 2Vn
T
T T A 1Yb 1 A 1Vn ( A 1Yb 1 A 1 A 2Yb 2 A 2 )Vn J n
修正后保留网络方程
YnVn YnVn J n
被撕节点KCL方程
A 1I 1 A 2 I 2 J n
A T T A Vn A 1T 0 0 T A 1 T A 2
①
Vn V n
T Vb A Vn T T A 1 Vn A 1 Vn Vb 1 T V A V 2 n b 2
关联矩阵:
为分析方便,设β1支路中没有独立 源。这样假定实际上是将被撕裂支路的 独立源直接归入节点注入电流。
• 保留网络的节点电压方程:Leabharlann Baidu
YnVn J n
• 修正: 连为整体网络,补充的节点注入电流:
A 1 I 1
修正后保留网络方程:
YnVn A 1 I 1 J n
3.4 节点撕裂法
节点撕裂法的思路: 把部分节点先移走,与这些节点关联的 支路也全部移走 。 要求: 1)保留网络仍是连通的 2)有一个断点,这个断点和各子网络都 直接相连 3)断点为参考点
网络描述:
• 保留网络中节点电压、支路电流下标: • 被撕裂网络节点电压下标: β • 被撕裂网络中原来与保留网络节点关联 的支路电流下标: 1 • 只与被撕裂节点关联的支路电流下标: 2
被撕网络
Vb 1 Z 1 I 1 A 1 Vn A 1 Vn
T T
令
T 1 Z 1 Z 1 A 1 Yn A 1
I 1 Z
1 1
A 1 Vn Z
T
1 1
A 1 Yn J n
T
1
YnVn A 1 I 1 J n
Vn Vn V n
被撕裂支路电流:
I1 I I 2
0 0 Yb 1 0 0 Yb 2
0 A 2
Yb 支路导纳矩阵: Yb 0 0
A A 0
1 2
A 1 A 1
T
被撕网络 节点电压 方程
Yn 1Vn YnVn J n
Yn 1 Vn J n V Yn n J n
Yn 原网络方程 Y n 1
其中
I 1 Yb 1Vb 1 Yb 1 ( A 1Vn A V )
T T 1 n
I 2 Yb 2Vb 2 Yb 2 A 2Vn
T
T T A 1Yb 1 A 1Vn ( A 1Yb 1 A 1 A 2Yb 2 A 2 )Vn J n