分析化学中的误差及分析数据的处理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分析化学中的误差及分析数据的处理
第二章分析化学中的误差及分析数据的处理
本章是分析化学中准确表达定量分析计算结果的基础,在分析化学课程中占有
重要的地位。本章应着重了解分析测定中误差产生的原因及误差分布、传递的规律
及特点,掌握分析数据的处理方法及分析结果的表示,掌握分析数据、分析方法可
靠性和准确程度的判断方法。
本章计划7学时。
第一节分析化学中的误差及其表示方法一. 误差的分类
1. 系统误差(systematic error )——可测误差(determinate error) (1)方
法误差:是分析方法本身所造成的;
如:反应不能定量完成;有副反应发生;滴定终点与化学计量点不一致;干扰组分
存在等。
(2)仪器误差:主要是仪器本身不够准确或未经校准引起的;
如:量器(容量平、滴定管等)和仪表刻度不准。 (3)试剂误差:由于试剂不纯和
蒸馏水中含有微量杂质所引起; (4)操作误差:主要指在正常操作情况下,由于分析
工作者掌握操作规程与控制条件不当所引起的。如滴定管读数总是偏高或偏低。
特性:重复出现、恒定不变(一定条件下)、单向性、大小可测出并校正,故有称为
可定误差。可以用对照试验、空白试验、校正仪器等办法加以校正。
2. 随机误差(random error)——不可测误差(indeterminate error)
产生原因与系统误差不同,它是由于某些偶然的因素所引起的。
如:测定时环境的温度、湿度和气压的微小波动,以其性能的微小变化等。
特性:有时正、有时负,有时大、有时小,难控制(方向大小不固定,似无规律)
但在消除系统误差后,在同样条件下进行多次测定,则可发现其分布也是服从一定规律(统计学正态分布),可用统计学方法来处理。二. 准确度与精密度
(一)准确度与误差(accuracy and error)
准确度:测量值(x)与真值(,)之间的符合程度。
它说明测定结果的可靠性,用误差值来量度:
绝对误差 = 个别测得值 - 真实值
E=x- , (1) a
但绝对误差不能完全地说明测定的准确度,即它没有与被测物质的质量联系起来。如果被称量物质的质量分别为1g和0.1g,称量的绝对误差同样是0.0001g,则其含义就不同了,故分析结果的准确度常用相对误差(RE%)表示: ,,x (2) ,,100%RE,
(RE%)反映了误差在真实值中所占的比例,用来比较在各种情况下测定结果的准确度比较合理。
(二)精密度与偏差(precision and deviation)
精密度:是在受控条件下多次测定结果的相互符合程度,表达了测定结果的重复性和再现性。用偏差表示:
1. 偏差
绝对偏差: (3) d,x,x
d 相对偏差: (4) RD%,,%
x
2. 平均偏差
当测定为无限多次,实际上〉30次时:
x,,,平均偏差 (5) 总体,,n
总体——研究对象的全体(测定次数为无限次)
样本——从总体中随机抽出的一小部分
当测定次数仅为有限次,在定量分析的实际测定中,测定次数一般较小,<20
次时:
xx,,平均偏差(样本) (6) MD,n
MD 相对平均偏差 (7) RMD,,%
x
用平均偏差表示精密度比较简单,但不足之处是在一系列测定中,小的偏差测定总次数总是占多数,而大的偏差的测定总是占少数。因此,在数理统计中,常用标准偏差表示精密度。
3. 标准偏差
(1)总体标准偏差
当测定次数大量时(>30次),测定的平均值接近真值此时标准偏差用 , 表示: n2x(,,),i,1i (8) ,,
n
(2)样本标准偏差
在实际测定中,测定次数有限,一般 n<30 ,此时,统计学中,用样本的标准偏差 S 来衡量分析数据的分散程度:
n2(x,x),i,1iS, (9)
n,1
式中(n-1)为自由度,它说明在 n 次测定中,只有(n-1)个可变偏差,引入(n-1),主要是为了校正以样本平均值代替总体平均值所引起的误差
22xxx(,)(,,),,ii即 (10) lim,,,nnn,1
而 S , ,
(3)样本的相对标准偏差——变异系数
S (11) RSD%,,%
x
(4)样本平均值的标准偏差
S
(12) S,xn
此式说明:平均值的标准偏差按测定次数的平方根成正比例减少 4. 准确度与精密度的关系
精密度高,不一定准确度高;
准确度高,一定要精密度好。
精密度是保证准确度的先决条件,精密度高的分析结果才有可能
获得高准确度;
准确度是反映系统误差和随机误差两者的综合指标。
第二节偶然误差的正态分布规律
一. 随机误差的正态分布
1. 正态分布
随机误差的规律服从正态分布规律,可用正态分布曲线(高斯分布的正态概率密度函数)表示:
2(,)x,1,22, (13) ()y,fx,e
,2,
式中:y —概率密度; ,—总体平均值;, —总体标准偏差。正态分布曲线依赖于, 和, 两个基本参数,曲线随, 和, 的不同而不同。为简便起见,使用一个新变数(u)来表达误差分布函数式:
,x, (14) u,
,
u的涵义是:偏差值(x-,)以标准偏差为单位来表示。变换后的函数式为: 12,u12, (15) ()y,u,e
2,
由此绘制的曲线称为“标准正态分布曲线” 。因为标准正态分布曲线横坐标是以, 为单位,所以对于不同的测定值 , 及, ,都是适用的。
图1:两组精密度不同的测定值的正态分布曲线图2:标准正态分布曲线
“标准正态分布曲线”清楚地反映了随机误差的分布性质: (1)集中趋势当x=, 时(u=0),
12,u112,y此时最大,说明测定值x集中在 y,e,,0.3989
,,22
, 附近,或者说,, 是最可信赖值。
(2)对称趋势曲线以 x=, 这一直线为对称轴,表明:
正负误差出现的概率相等。大误差出现的概率小,小误差出现的概率大;很大误差出现的概率极小。在无限多次测定时,误差的算术平均值极限为 0 。
(3)总概率曲线与横坐标从,, 到, , 在之间所包围的面积代表具有各种大小误差的测定值出现的概率的总和,其值为1(100%)
2u,1,,2 (16) P,edu,1,,,(),,,,,,u,2