模拟电子技术运算放大器电路ppt课件

合集下载

集成运算放大器电路-模拟电子电路-PPT精选全文完整版

集成运算放大器电路-模拟电子电路-PPT精选全文完整版

第4章 集成运算放大器电路
4―3―2差动放大器的工作原理及性能分析 基本差动放大器如图4―12所示。它由两个性能参
数完全相同的共射放大电路组成,通过两管射极连接 并经公共电阻RE将它们耦合在一起,所以也称为射极 耦合差动放大器。
I UE (UEE ) UEE 0.7
RE
RE
第4章 集成运算放大器电路
IC2
R1 R2
Ir
(4―7) (4―8)
第4章 集成运算放大器电路
可见,IC2与Ir成比例关系,其比值由R1和R2确定。 参考电流Ir现在应按下式计算:
UCC
Ir
UCC U BE1 Rr R1
UCC Rr R1
(4―9)
Ir
Rr
IC2
IB1
V1

UBE1 -
IE1
R1
IB2 +
UBE2 - R2
(4―11)
Ir
IC1
IB3
IC1
IC3
IC1 IC2,
IC3
3 1 3
IE3
IE3
IC2
IC1
1
IC2
2
若三管特性相同,则β1=β2=β3=β,求解以上各
式可得
IC3
(1 2ຫໍສະໝຸດ 222)Ir
(4―12)
第4章 集成运算放大器电路
利用交流等效电路可求出威尔逊电流源的动态内阻
Ro为
Ro 2 rce
4―2 电流源电路
电流源对提高集成运放的性能起着极为重要的作 用。一方面它为各级电路提供稳定的直流偏置电流, 另一方面可作为有源负载,提高单级放大器的增益。 下面我们从晶体管实现恒流的原理入手,介绍集成运 放中常用的电流源电路。

模电课件放大器基础PPT课件

模电课件放大器基础PPT课件

VGSQ
RG2VDD RG1 RG2
I DQ RS
I DQ
COXW
2l
(VGSQ
VGS(th) )2
VDSQ VDD IDQ (RD RS )
VDD
RG1
ID
RD
G
T
S
RG2
RS
▪ 电路特点: 分压偏置电路不仅适用于三极管,同时适用
于各种类型的场效应管。
第9页/共69页
(2)自偏置电路 ▪ Q点估算:
+
vi Ri
vS-
-
+
Ro
+ RL vo
-vot
-
Avt
vot vi
vo vi
vot vo
Av (1
Ro ) RL
RO越小,RL对Av影响越小。
源电压增益:
Avs
vo vs
vo vi
vi vs
Av
Ri Rs Ri
Ri越大,RS对Avs影响越小。
第25页/共69页
➢电流放大器
电流增益: 短路电流增益:
谐振放大器 (放大高频载波信号)
▪ 按信号强弱分: 小信号放大器 (线性放大器) 大信号放大器 (非线性放大器)
▪ 按电路结构分: 直流放大器 (多用于集成电路) 交流放大器 (多用于分立元件电路)
第2页/共69页
放大器组成框图
具有正向受控作用的半导体器件是 整个电路的核心











ii
RS
+ vS -
+
vi
Ri

iS

模拟电子技术第二章PPT课件

模拟电子技术第二章PPT课件
电路特征:集成运放处于开环或仅引入正反馈
1) 净输入电流为0
2) uP> uN时, uO=+UOM uP< uN时, uO=-UOM
17.09.2020
6
2.3 理想运放组成的基本运算电路
2.3.1 比例运算电路
1. 反相输入
iN=iP=0,
+
_
uN=uP=0--虚地
在节点N:iF
iR
uI R
uOiFRf RRf uI
17.09.2020
7
1) 电路的输入电阻为多少? Ri = R 2) 3) R’=?为什么? R’= R// Rf,为了静态平衡 3) 4) 若要Ri=100kΩ,比例系数为-100,
R1=? Rf=?
Rf太大,噪声大。如何利 用相对小的电阻获得-100的 比例系数?
找参考资料寻找答案
17.09.2020
u O u O 1 u O 2 u O 3 R R 1 fu I1 R R f 2u I2 R R f 3u I3
17.09.2020
12
2. 同相求和 设 R1∥ R2∥ R3∥ R4= R∥ Rf
利用叠加原理求解:
令uI2= uI3=0,求uI1单独作 用时的输出电压
uO 1(1R R f)R 1R 2R ∥ 2∥ R 3R ∥ 3∥ R 4R 4uI1
8
2. 同相输入
uN uP uI
uO
(1
Rf R
) u N
uO
(1
Rf R
) u I
1) 输入电阻为多少? ∞
2) 电阻R’=?为什么? R’= R// Rf,为了静态平衡
3) 共模抑制比KCMR≠∞时会影响运算精度吗?为什 么?

模电运算放大器课件

模电运算放大器课件
• 性能要求:运算放大器的带宽应该足够宽,以保证在所需频率范围内输出电压 的幅度和相位稳定,不出现失真和变形。同时,在设计运算放大器电路时,需 要根据实际需求选择合适的带宽和频率响应指标,以达到最佳的性能和稳定性 。
CHAPTER 04
运算放大器的应用电路
加法电路和减法电路
加法电路
描述:加法电路利用运算放大器实现多个输入信号的加法运算。
输入阻抗和输出阻抗
定义
输入阻抗是指运算放大器输入端呈现的阻抗,输出阻抗是指运算放大器输出端呈现的阻抗 。
影响因素
输入阻抗和输出阻抗受到运算放大器内部电路结构、晶体管参数、电源电压等多种因素的 影响。
性能要求
运算放大器的输入阻抗应该足够高,以减少对信号源的负载效应;输出阻抗应该足够低, 以保证输出信号能够传输到后续电路中,不受信号损失和失真影响。
噪声抑制技术
降低运算放大器的噪声可以提高其稳定性。通过采用低噪声器件、优化布局布线、降低电源电压等方法 ,可以有效降低运算放大器的噪声水平,从而提高其稳定性。
CHAPTER 06
运算放大器的选择与使用注意事项
不同类型运算放大器的选择
低噪声运算放大器
在需要极低噪声的应用场景下, 如音频信号处理,应选择低噪声
电源滤波
在电源设计中,应采用适当的滤波措施,减小电 源噪声对放大器性能的影响。
电源电压选择
根据运算放大器的规格书,选择合适的电源电压 ,避免过高或过低的电压导致放大器工作异常。
使用运算放大器的布线与PCB设计注意事项
01
02
03
04
布线对称
为了减小差分输入电压的误差 ,运算放大器的输入布线应尽
可能对称。
以上内容可以为模电运算放大器课件 的学习者提供全面且深入的知识,帮 助了解运算放大器的基本原理、分类 及应用。

模拟电子技术模电之运算放大器课件

模拟电子技术模电之运算放大器课件

(该电路也称为加法电路) 若 R1 R2 R3 则有 - vo vi1 vi 2
2.4.4 积分电路和微分电路
1. 积分电路
根据“虚短”, vP vN 0 得据 “ 虚 断 ” , i 0 根 i 得
因此
vI i2 i1 R
电容器被充电,其充电电流为 i 2 设电容器C的初始电压为零,则
2.3.2 反相放大电路
1. 基本电路
(a)电路图
(b)由虚短引出虚地vn≈0 图2.3.5 反相放大电路
虚地是反相放大电路闭环状态下的重要特征
2.3.2 反相放大电路
2. 几项技术指标的近似计算 (1)电压增益Av
根据虚短和虚断的概念有
vn≈ vp= 0 , ii=0 所以 i1=i2

v i vn vn vo R1 R2 vo R2 Av (可作为公式直接使用) vi R1
4. 几项技术指标的近似计算 (2)输入电阻Ri
输入电阻定义 v Ri i ii 根据虚短和虚断有
vi=vp,ii = ip≈0 所以 Ri v i ii
(3)输出电阻Ro
理想运放
Ro→0
2.3.1 同相放大电路
5. 电压跟随器 根据虚短和虚断有 vo=vn≈ vp= vi
vo Av 1 vi
根据虚短和虚断的概念有
vp≈vn, ip=-in=0
所以
R1 vi vp vn vo R1 R2 vo R1 R2 R2 闭环电压增益(可作为公式直 Av 1 vi R1 R1 接使用)
Av为正值,且大于等于1 仅与R有关,与运放本身无关
2.3.1 同相放大电路
3. 若V-< vO <V+ 则 (vP-vN)0 4. 输入电阻ri的阻值很高 使 iP≈ 0、iN≈ 0 5. 输出电阻很小, ro ≈ 0

模拟电子技术教学课件-集成运算放大器的应用全

模拟电子技术教学课件-集成运算放大器的应用全

4.1.8 有有源源滤波低器通——滤常用波的器有源滤波器
通频带内的电压放大倍数:
电路的传输函数:
当电路频率为
性能良好的低通滤波器通带内的幅频 特性曲线比较平坦,阻带内的电压放 大倍数基本为0。其幅频特性如:
2021/7/25
通带
阻带
0
ω0
4.1.8 有有源源滤波高器通——滤常用波的器有源滤波器
根据“虚短”可得:
0
t
式中的RFC1为电路的时间常数
2021/7/25
微分电路举例
已知微分运算电路的输入量, ui =-sin ωtV,求 uo 。
ui
0
t
uo
2021/7/25
0
t
90°
4.1.7 积分运算电路 V-= V+= “地”电位“0”
V-
因为
V+
所以
将i1代入uo表达式:
实现了输出对输入的积分。式中的R1CF为电路的时间常数。
cc 4.集成运放能处理________。
a.交流信号 b.直流信号 c.交流信号和直流信号
5.由理想运放构成的线性应用电路,其电路放大倍数与运放本
b 身的参数________。 b a.有关 b.无关 c.有无关系不确定
2021/7/25
2021/7/25
4.1.8 有源滤波器
滤波器的概念
使有用频率信号通过而 同时抑制或衰减无用频 率信号的的电子装置。
由虚断可得: 数值代入后整理可得: 通频带内的电压放大倍数:
2021/7/25
4.1.8 有有源源滤波高器通——滤常用波的器有源滤波器
通频带内的电压放大倍数: 传输函数为:
电路的特性频率为: 当输入信号的频率f等于通带截止频率f0时:

模拟电子线路(模电)运放运算电路ppt课件

模拟电子线路(模电)运放运算电路ppt课件
设集成运放开环增益Ad为50万倍,二极管导通电压为0.7 V,则VD1
ud = u- - u+ = u A u do1 u A o d 150 0 .7 140 V1.4uV
上式说明, 折算到运放输入端,仅1.4μV就可使二极管VD1 导通。同理,使VD2 导通的电压也降到这个数量级。显然, 这样的精密整流电路可对微弱输入信号电压进行整流。
辅助调零实质上是在输入端额外引入一个与失调作用相反的直流电位以此来抵消失调的影引到了反相输入端调节电位器触点便可改变加至反相端的辅助直流电位从而使得当输入信号为零时输出电压u消除自激问题运放在工作时容易产生自激振荡
集成运放运算电路
1 比例运算电路 2 加法与减法电路 3 积分与微分电路 4 对数与指数电路 5 基本应用电路
2、差动减法器 叠加定理
ui1作用
uo1
Rf R1
ui1
ui2作用
uo2(1R R1f )R' RR ' 2ui2
综合:
uoR R 1 fui1(1R R 1 f)R' RR ' 2ui2
uo
Rf R1
( u i1
ui2 )
Rf R1
(u i2
ui1 )
若Rf R' R1 R2
例 设计运算电路。要求实现y=2X1+5X2+X3的运算。
+
▪ vI >0时 vO <0 D1、D2✓ vO=0
▪ vI <0时 vO >0 D1✓、D2
vI
R1
vO= -(R2 / R1)vI
RL vo
-A +
vo
-
传输特性 vO
输入正弦波 vI vO

《模拟电子技术》课件第6章 集成运算放大电路

《模拟电子技术》课件第6章 集成运算放大电路

IE2
IE1Re1 Re2
VT Re2
ln
IE1 IE2
§6.2 电流源电路
IR R
IC1
T1
IE1 Re1
IB1 IB2
VCC
I C 2=IO
T2
IE2 Re2
当值足够大时
IR IC1 IE 1 IO IC2 IE 2
IO
IR
Re1 Re2
VT Re2
ln
IR IO
IO
IR
Re1 Re2
四、微电流源
R c + vo R c
VCC
Rs
+
vi1
T1 RL T2
Rs
+
vi2
Re
VEE
2、差模信号和共模信号的概念
vid = vi1 vi2 差模信号
vic
=
1 2
(vi1
vi2 )
共模信号
Avd
=
vod vid
差模电压增益
其中vod ——差模信号产生的输出
Avc
=
voc vic
共模电压增益
总输出电压
IE3
IC2
IC1
1
IC2
2
IC 1
2 IC1 β
IO
1
IR 2
2
2
IR
IC1
T1
R IB3
T3
IE3
IB1 IB2
V CC IO= IC2 = IC1
T2
IR R
IC1
IB3
T1 I B1
VCC
IO
T3
IE3 IC2
T2 IB2
三、比例电流源

模拟电子技术PPT课件

模拟电子技术PPT课件
处理模拟信号的电子电路称为模拟电路。
1.4 放大电路模型
信号的放大是最基本的模拟信号处理 功能。
这里研究的是线性放大,即放大电路 输出信号中包含的信息与输入信号完全相 同。输出波形的任何变形,都被认为是产 生了失真。
1、放大电路的符号及模拟信号放大
• 电压放大模型
• 电流放大模型
• 互阻放大模型
电压增益
+ Vs

Ri ——输入电阻
+
+
+
Vi
Ri
AVOVi
Vo RL



Ro ——输出电阻
由输出回路得 则电压增益为
Vo AV
AVVVoOi ViRAoVROLRRLo RLRL
由此可见 RL
AV 即负载的大小会影响增益的大小
要想减小负载的影响,则希望 Ro RL 理想情况 Ro 0
(考虑改变放大电路的参数)
由输入回路得
Ii
Is
Rs Rs Ri
要想减小对信号源的衰减,则希望…?
Ri Rs
理想 Ri 0
3. 互阻放大模型(自学) 4. 互导放大模型(自学) 5. 隔离放大电路模型
Ro
+
+
+
Vi
Ri
AV Vi
Vo

–O

输入输出回路没有公共端
1.5 放大电路的主要性能指标
放大电路的性能指标是衡量它的品质优劣 的标准,并决定其适用范围。
Vs 0
另一方法
+ Vs=0

放大电路
IT
+ VT

Vo AVOVi

模电集成运算放大器课件

模电集成运算放大器课件

增益,确保电路稳定性和滤波效果。
应用场景
03
音频信号处理、通信系统等。
CHAPTER 05
集成运算放大器非线性应用及信号 处理功能扩展
电压比较器原理及应用举例
电压比较器原理
利用集成运算放大器的开环放大特性,实现输入信号与参考电压的比较,输出 高低电平表示比较结果。
应用举例
过零比较器、滞回比较器等,用于检测输入信号是否超过阈值、实现信号整形 等。
现状
目前,集成运算放大器已经形成了多 种系列和规格,适应了不同领域的需 求。随着科技的进步,其性能和质量 也在不断提高。
应用领域与前景展望
应用领域
广泛应用于通信、仪器仪表、自动控制、医疗电子、消费电 子等领域。例如,在通信系统中用于放大信号、滤除噪声; 在仪器仪表中用于信号调理、数据采集;在自动控制系统中 用于信号比较、调节等。
设计要点
选择合适的电阻和电容值,确 定积分或微分时间常数,确保 电路稳定性和精度。
应用场景
信号处理、控制系统等。
有源滤波器设计
设计思路
01
利用运算放大器和电阻、电容等元件组成滤波器电路,对输入
信号进行滤波处理,输出特定频率范围的信号。
设计要点
02
选择合适的滤波器类型和元件参数,确定滤波器的截止频率和
模电集成运算放大器课 件
CONTENTS 目录
• 集成运算放大器概述 • 集成运算放大器基本原理 • 集成运算放大器电路分析方法 • 集成运算放大器典型应用电路设计实

CONTENTS 目录
• 集成运算放大器非线性应用及信号处 理功能扩展
• 集成运算放大器选型、使用注意事项 及故障排查方法
CHAPTER 01

华南理工大学 模拟电子技术基础 5集成运算放大器单元电路PPT

华南理工大学 模拟电子技术基础 5集成运算放大器单元电路PPT

VCC
Rc
Rc
uC1
+
uC2
iC1
RL uO
iC2
+ uI
Rb +
uI1 -
iB1
V1
iE1 iEE
-
V2
e
iE2 Re
Rb iB2
uI2 -+
VEE
Aud1
Uod1 Uid
Uod1 2Uid1
RL
2(Rb rbe )
RL Rc // RL
Rid 2(Rb rbe ) ,Rod Rc
5.2.3-- 1.双端输入单端输出差放电路
单端输入
单端输出
双端输入
双端输出
1)差模信号 uI1 uI2
V1、V2管相对应极电流或电 压的变化量也是差模信号。
长尾式差分 放大电路
2)共模信号uI1 uI2
V1、V2管相对应极电流或电 压的变化量也是共模信号。
5.2.1 差分放大电路的组成及特点
2.基本特点 3)一般信号uI1 uI2
差模分量 uId uI1 uI2
由于输入回路没有变 化,所以IEQ、IBQ、ICQ 与双端输出时一样。但 是UCEQ1≠ UCEQ2。
VCC
RL Rc RL
VCC
Rc Rc // RL
UCQ1 VCC ICQ Rc UCQ2 VCC ICQ Rc
5.2.3-- 1.双端输入单端输出差放电路
(2)动态分析 1)对差模信号的作用
5.1.2 有源负载放大电路
5.1.1 基本电流源电路
电流源电路:提供恒定输出电流 1) 作为各级电路的偏置电路,以提供合适的静态电流; 2) 作为放大电路的有源负载,提高电路的增益。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

If
Rf
3.构成要求
R1 Ui
I1
∞ Uo
Rp=R1//Rf (R +=R -)
2.分析
RV
(5)、
Uo U Rf I f
Rf R1
Ui
(2)、U-=U+=0V(虚地) (3)、I1=Ui /R1
AUf
Uo Ui
Rf R1
Ui
(4)、∵I-=0,∴If =I1= Ui /R1
I3、输出端呈电压源特性: U-
I+
U+

Uo + A-U(U+-U- )
5
第二节 基本运算电路
一、比例运算电路 反相比例运算
二、加、减法运算电路 反相加法运算
同相比例运算
同相加法运算 减法运算
三、积分微分电路
四、对数指数电路
基本反相积分
对数电路
基本反相微分
指数电路
6
(一)、反相比例运算电路
1.电路
1.只考虑U1作用时:
Uo1
Rf R1
U1
2.只考虑U2作用时:同相端 输入电压为:
Up
R3 R2
R3
U
2
图07.02 减法电路
Uo2 Uo1 Uo2
Uo2 (1 Rf
R1
(1 Rf ) R1 R2
) R3 U R2 R3
R23RR3RU1f 1U23 1
3.总输出电压为:
Uo2
Uo1
Uo2
(1
Rf R1
)
R3 R2
R3
U2
Rf R1
U1
若取电阻 : R1 R2; R3 Rf ;
上式可简化为: U o
Rf R1
(U2
U1)
14
三、 积分电路
•积分运算电路的分析方法与加法电路类似,反相积
分运算电路如图所示:
1.利用运放虚地的概念:
i(t)= ui (t)/R i(t)= if (t)
(3)、
I1
U R1
Ui R1
( 5)、AUf
Uo Ui
1 Rf R1
Uo
(1
Rf R1
)U i
结论:闭环增益AUf只取决于Rf和R1 ;
而与运放本身无关。 8
同相比例运算电路(特例)
电路:
Rf =0
R1 =
R2 Ui
∞ Uo
当 Rf =0 ; R1 = 时:上式中的电压增益为:
AUf
Uo Ui
Ui2 )
图07.01 反相求和运算电路
当R1 R2 Rf时,输出等于两输入反相之和。
Uo
(Ui1 Ui2 ) 10
(二) 同相加法电路
•在同相比例运算电路的基础上,增加一个输入支 路,就构成了同相输入求和电路,如图所示。
图07.02 同相加法电路
•因 运 放 具 有 虚 断 的 特性; •对 运 放 同 相 输 入 端 的电位可用叠加原理 。 求得:
Rf Rs
)(U1 R1
U2 R2
Un ) Rn
1 (1 n
Rf Rs
) (U1 U2
Un)
结论:(1).同相加法器的输出电压与输入电压U1 Un之和成正比。
(2).缺点:调节某一支路的Rn会影响比例放大倍数 。
12
(3).优点:输入阻抗高。
二、 减法电路
P
•减法器为同、反相放大器的组合,利用叠加原理求解:
2.电容两端的电压:
图12.05 积分运算电路
uc
(t)
uo
(t)
1 C
if (t)dt
1 RC
ui (t)dt
15
四、 微分电路
•微分运算电路如图所示:
ic
(t
)
C
dui (t dt
)
;
ic (t) if (t)
if
(t
)
C
dui (t) dt
图 07.07 微分电路
线性应用运放电路的一般分析方法
•求输出电压的方法可分步骤进行: 1、利用i+=0,由电路求出同相输入端电压u+ ; 2、利用u+=u-,确定反相输入端电压u-=u+ ; 3、利用已知电压u-,由A电路求出电流i1 ; 4、利用i-=0,求出电流 if =i1 ; 5、由电路F的特性和u-确定输出电压:uo=u--F(if ) ;
结论:(1).闭环增益AUf只取决于Rf和R1 ;
(2).负号表示Ui与Uo反相;
7
(二)、同相比例运算电路
1.电路
If
I1 R1
R2 Ui
Rf
∞ Uo
3.构成要求
R2=R1//Rf (R +=R -)
2.分析
(4)、∵I-=0,∴If =I1
(1)、∵I+=0 ∴ U U i
(2)、 U U U i
•根据以上特点推出理想运放线性应用时的重要特性
4
二、线性应用情况下理想运算放大器具有如下特征:
1、u+=u-(虚短)
Ui=U+=U-= Uo / AU
两输入端电压近似相等;
2、 i+=i-=0 (虚断)
同相和反向输入端电流近似为零;
Ui= Uo / AU 0 ; Ui= Ii Ri 0 ; Ii 0 ;
1
即:U o Ui
•是一个理想的电压跟随器。
9
(一)、 反相加法电路
Rp
•在反相比例电路的基础上加一输入支路,构成反相加法电路。
•两输入电压产生的电流都流向Rf 。所以输出是两输入信号的比
例和。
Uo (Ii1 Ii2 )Rf
(U i1 R1
U i2 R2
) Rf
(
Rf R1
U i1
Rf R2
6*、检验输出电压是否在线性范围内。
3
一、理想运放模型: •理想运放具有如下性能:
1、开环电压增益——AUd ; 2、输入电阻——Rid ; 3、输出电阻——Ro=0; 4、频带宽度——BW ; 5、共模抑制比——CMRR ;
6、失调、漂移和内部噪声为零 ;
运放的主要特点 对功能电路非常重要
第一节 理想运放模型及闭环分析
•由前面介绍可知:集成运放原理及内部结构,而应用时常采 用闭环应用——线性应用,集成运放可用理想模型来代替。
理想模型:
1.按精度分类: 非理想模型:
运放模型分类
运放宏模型: 直流模型:
2.按功能分类:
交流小信号模型: 大信号模型:
噪声模型:
1
集成运算放大器的线性应用
1、集成运算放大器的转移特性: 正饱和
11
UP
U
Rs Rs Rf
Uo;
因: I1 I2 In
U1 U P U2 U P Un U P 0
R1
R2
Rn
U1 U2 R1 R2
Un Rn
( 1 1 R1 R2
1 Rn
)UP
1 Rs K Rs Rf
Uo
设 : R1 R2
Rn; K
R n
Uo
K (1
uo
u-

uo u+
线性工作范围 u- - u+
0
•输入差模电压的线性工作范围很小(一般仅 十几毫伏),所以常将特性理想化
负饱和
2、运放线性工作的保障: •两输入端的电压必须非常接近,才能保障运放工作
在线性范围内,否则,运放将进入饱和状态。
•运放应用电路中,负反馈是判断是否线性应用的主
要电路标志。
2
相关文档
最新文档