刚体和流体习题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

聚作用, 其体积在不断收缩. 则一万年以后应有:
[ ] (A) 自转周期变小, 动能也变小 (B) 自转周期变小, 动能增大
(C) 自转周期变大, 动能增大
(D) 自转周期变大, 动能减小
25. 人造地球卫星绕地球作椭圆轨道运动. 卫星轨道近地点和远地点分别为 A 和 B,
用 L 和 Ek 分别表示卫星对地心的角动量及其动能的瞬时值, 则应有
惯量减少为 1 J , 则它的角速度将变为 3
[
] (A)
1 3
ω0
(B)
1 3
ω0
(C) 3ω0
(D) ω0
16. 绳的一端系一质量为 m 的小球, 在光滑的水平桌面上作
匀速圆周运动. 若从桌面中心孔向下拉绳子, 则小球的
[ ] (A) 角动量不变
(B) 角动量增加
(C) 动量不变
(D) 动量减少
[ ] (A) 切向加速度和法向加速度均不随时间变化 (B) 切向加速度和法向加速度均随时间变化
r
(C) 切向加速度恒定, 法向加速度随时间变化
(D) 切向加速度随时间变化, 法向加速度恒定
T3-1-2 图
3. 一飞轮从静止开始作匀加速转动时, 飞轮边缘上一点的法向加速度 an 和切向加速
度 aι 的值怎样?
[
] (A) an 不变, aι 为 0
(B) an 不变, aι 不变
(C) an 增大, aι 为 0
(D) an 增大, aι 不变
4. 当飞轮作加速转动时, 飞轮上到轮心距离不等的二点的切向加速度 aι 和法向加速
度 an 是否相同?
[
] (A) aι 相同, an 相同
(B) aι 相同, an 不同
直于板面撞击板, 并粘在板上. 对粘土和板系统, 如果不计空气阻 力, 在碰撞过程中守恒的量是
O
[ ] (A) 动能
(B) 绕长方形板转轴的角动量
O′
(C) 机械能
(D) 动量
T3-1-29 图
30. 在下列四个实例中, 物体机械能不守恒的实例是
[ ] (A) 质点作圆锥摆运动
(B) 物体在光滑斜面上自由滑下
惯量的数值相同
(D) 转动惯量是相对量, 随转轴的选取不同而不同
9. 两个质量分布均匀的圆盘 A 和 B 的密度分别为 ρ A 和 ρ B, 如果有 ρ A >ρ B, 但两 圆盘的总质量和厚度相同.设两圆盘对通过盘心垂直于盘面的轴的转动惯量分别为 JA 和
1
JB, 则有:
[
] (A) JA>JB
(B) 等于 90°
(C) 大于 90°
(D) 条件不足无法判定
27. 一质量为 M 的木块静止在光滑水平面上, 质量为 M 的子弹射入木块后又穿出 来.子弹在射入和穿出的过程中,
3
[ ] (A) 子弹的动量守恒 (B) 子弹和木块系统的动量守恒, 机械能不守恒 (C) 子弹的角动量守恒 (D) 子弹的机械能守恒
(C) 抛出的铁饼作斜抛运动(不计空气阻力)
(D) 物体在拉力作用下沿光滑斜面匀速运动
31. 在系统不受外力作用的非弹性碰撞过程中
[ ] (A) 动能和动量都守恒
(B) 动能和动量都不守恒
(C) 动能不守恒, 动量守恒
(D) 动能守恒, 动量不守恒
32. 下面说法中正确的是 [ ] (A) 物体的动量不变, 动能也不变
(D) (1)、(2)、(3)、(4)都正确
39. 一圆盘正绕垂直于盘面的水平光滑固定轴 O 转动,如
图射来两个质量相同、速度大小相同,方向相反并在一条直线 m
m
上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,
圆盘的角速度ω
r
O• M
[ ] (A) 增大
(B) 不变
(C) 减小
(D) 不能确定
[ ] (A) 角速度从小到大,角加速度从大到小 (B) 角速度从小到大,角加速度从小到大 (C) 角速度从大到小,角加速度从大到小 (D) 角速度从大到小,角加速度从小到大
O
A

θ
mg
T3-1-37 图
38. 有两个力作用在一个有固定转轴的刚体上:
(1) 这两个力都平行于轴作用时,它们对轴的合力矩一定是零;
(B) 作用在刚体上的外力矩一定很大
(C) 作用在刚体上的力和力矩都很大 (D) 难以判断外力和力矩的大小
19. 一个可绕定轴转动的刚体, 若受到两个大小相等、方向相反但不在一条直线上的
恒力作用, 而且力所在的平面不与转轴平行, 刚体将怎样运动?
[ ] (A) 静止
(B) 匀速转动
(C) 匀加速转动
[
] (A) LA > LB , EkA > EkB
(B) LA = LB , EkA < EkB
(C) LA = LB , EkA > EkB
(D) LA < LB , EkA < EkB
26. 一运动小球与另一质量相等的静止小球发生对心弹性碰撞, 则碰撞后两球运动方
向间的夹角
[
] (A) 小于 90°
ω
R
(C) 1 mR2ω 2 2
(D) − 1 mR2ω 2 2
T3-1-22 图
23. 在外力矩为零的情况下, 将一个绕定轴转动的物体的转动惯量减小一半, 则物体

[ ] (A) 角速度将增加三倍
(B) 角速度不变, 转动动能增大二倍
(C) 转动动能增大一倍
(D) 转动动能不变, 角速度增大二倍
24. 银河系中一均匀球体天体, 其半径为 R, 绕其对称轴自转的周期为 T.由于引力凝
3
4
动能之比为 [ ] (A) 1 : 9
(B) 1 : 3
(C) 9 : 1
(D) 3 : 1
36. 将唱片放在绕定轴转的电唱机转盘上时, 若忽略转轴摩擦, 则以唱片和转盘为体
系的
[ ] (A) 总动能守恒
(B) 总动能和角动量都守恒
(C) 角动量守恒
(D) 总动能和角动量都不守恒
37. 均匀细棒 OA 可绕通过其一端 O 而与棒垂直的水平固定光 滑轴转动,如 T3-1-37 图所示.今使棒从水平位置由静止开始自由下 落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的?
(D) 不能确定 JA、JB 哪个大
11. 一均匀圆环质量为 M, 内半径为 R1, 外半径为 R2, 圆环绕过 中心且垂直于圆环面的转轴的转动惯量是
[
] (A)
1 2
M (R2 2

R12 )
(B)
1 2
M (R2 2
+
R12 )
(C)
1 2
M (R2

R1 ) 2
(D)
1 2
M (R2
+
R1 ) 2
34. 人站在摩擦可忽略不计的转动平台上, 双臂水平地举起二哑铃, 当人在把此二哑
铃水平地收缩到胸前的过程中, 人与哑铃组成的系统有
[ ] (A) 机械能守恒, 角动量守恒
(B) 机械能守恒, 角动量不守恒
(C) 机械能不守恒, 角动量守恒
(D) 机械能不守恒, 角动量不守恒
35. 一人手拿两个哑铃, 两臂平伸并绕右足尖旋转, 转动惯量 J , 角速度为ω . 若此 人突然将两臂收回, 转动惯量变为 1 J .如忽略摩擦力, 则此人收臂后的动能与收臂前的
lv
[ ] (A)
12 3v
(C)
4l
2v
(B)
3l 3v
(D)
l
l
l
v
O
T3-1-40 图
二、填空题
1. 半径为 r 的圆环平放在光滑水平面上, 环上有一甲虫, 环和甲
r
虫的质量相等, 并且原先都是静止的. 以后甲虫相对于圆环以等速率
R1
R2
T3-1-11 图
12. 一正方形均匀薄板, 已知它对通过中心并与板面垂直的轴的转动惯量为 J.如果以
其一条对角线为轴, 它的转动惯量为
[
] (A) 2 J
3
(B) 1 J 2
(C) J
(D) 不能确定
T3-1-12 图
13. 地球的质量为 m, 太阳的质量为 M, 地心与太阳中心的距离为 R, 引力常数为 G, 地球绕太阳转动的轨道角动量的大小为
(C) 只要 m 不变, 则 J 一定不变
(D) 以上说法都不正确
7. 下列各因素中, 不影响刚体转动惯量的是
[ ] (A) 外力矩
(B) 刚体的质量
(C) 刚体的质量分布
(D) 转轴的位置
8. 关于刚体的转动惯量, 以下说法中错误的是 [ ] (A) 转动惯量是刚体转动惯性大小的量度
(B) 转动惯量是刚体的固有属性, 具有不变的量值 (C) 转动惯量是标量, 对于给定的转轴, 刚体顺时针转动和反时针转动时, 其转动
(B) 物体的动量不变, 角动量也不变 (C) 物体的动量变化, 角动量也一定变化 (D) 物体的动能变化, 动量却不一定变化
33. 人造地球卫星绕地球作椭圆轨道运动. 若忽略空气阻力和其他星球的作用, 在卫 星的运行过程中
[ ] (A) 卫星的动量守恒, 动能守恒 (B) 卫星的动能守恒, 但动量不守恒 (C) 卫星的动能不守恒, 但卫星对地心的角动量守恒 (D) 卫星的动量守恒, 但动能不守恒
第 3 章 刚体和流体
一、选择题 1. 飞轮绕定轴作匀速转动时, 飞轮边缘上任一点的 [ ] (A) 切向加速度为零, 法向加速度不为零
(B) 切向加速度不为零, 法向加速度为零 (C) 切向加速度和法向加速度均为零 (D) 切向加速度和法向加速度均不为零
2. 刚体绕一定轴作匀变速转动时, 刚体上距转轴为 r 的任一点的
[ ] (A) m G M R
GmM
(B)
R
G (C) mM
R
GmM
(D)
2R
14. 冰上芭蕾舞运动员以一只脚为轴旋转时将两臂收拢, 则
[ ] (A) 转动惯量减小
(B) 转动动能不变
(C) 转动角速度减小
(D) 角动量增大
15. 一滑冰者, 开始自转时其角速度为ω0 , 转动惯量为 J 0 当他将手臂收回时, 其转动
M
M
T3-1-27 图
28. 一子弹以水平速度 v 射入一静止于光滑水平面上的木块后随木块一起运动. 对于
这一过程的分析是
[ ] (A) 子弹的动能守恒 (B) 子弹、木块系统的机械能守恒
M
M
(C) 子弹、木块系统水平方向的动量守恒
(D) 子弹动能的减少等于木块动能的增加
T3-1-28 图
29. 一块长方形板可以其一个边为轴自由转动,最初板自由下垂.现有一小团粘土垂
(D) 变加速转动
20. 几个力同时作用在一个具有固定转轴的刚体上.如果这几个力的矢量和为零, 则
物体
[ ] (A) 必然不会转动
(B) 转速必然不变
(C) 转速必然改变
(D) 转速可能不变, 也可能变
21. 两个质量相同、飞行速度相同的球 A 和 B, 其中 A 球无转动, B 球转动, 假设要把
(2) 这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;
(3) 当这两个力的合力为零时,它们对轴的合力矩也一定是零;
(4) 当这两个力对轴的合力矩为零时,它们的合力也一定是零.
在上述说法中:
[ ] (A) 只有(1)是正确的
(B) (1)、(2)正确,(3)、(4)错误
(C) (1)、(2)、(3)都正确,(4)错误
17. 刚体角动量守恒的充分而必要的条件是
F
T3-1-16 图
[ ] (A) 刚体不受外力矩作用
(B) 刚体所受的合外力和合外力矩均为零
2
(C) 刚体所受合外力矩为零
(D) 刚体的转动惯量和角速度均保持不变
18. 绕定轴转动的刚体转动时, 如果它的角速度很大, 则
[ ] (A) 作用在刚体上的力一定很大
T3-1-39 图
40. 光滑的水平面上有长为 2l、质量为 m 的匀质细杆,可绕过其中点 O 且垂直于桌面
的竖直固定轴自由转动,转动惯量为 1 ml 2 .起初杆静止.有一质量为 m 的小球沿桌面正 3
对着杆的一端,在垂直于杆长的方向上,以速率 v 运动,如右图所示.当小球与杆端发生 碰撞后,就与杆粘在一起随杆转动,则这一系统碰撞后的转动角速度是
(C) aι 不同, an 相同
(D) aι 不同, an 不同
5. 刚体的转动惯量只决定于
[ ] (A) 刚体的质量
(B) 刚体的质量的空间分布
(C) 刚体的质量对给定转轴的空间分布 (D) 转轴的位置
6. 关于刚体的转动惯量 J, 下列说法中正确的是
[ ] (A) 轮子静止时其转动惯量为零
(B) 若 mA>mB, 则 J A>J B
它们接住,所作的功分别为 A1 和 A2, 则 :
[
] (A) A1>A2
(B) A1<A2
(C) A1 = A2
(D) 无法判定
22. 一个半径为 R 的水平圆盘恒以角速度ω 作匀速转动. 一质量为 m 的人要从圆盘边
缘走到圆盘中心, 圆盘对他所作的功为
[
] (A) mRω 2
(B) − mRω 2
(C) JA=JB
(B) JA<JB (D) 不能确定 JA、JB 哪个大
10. 两个半径相同、质量相等的细圆环 A 和 B,A 环的质量均匀分布,B 环的质量分
ቤተ መጻሕፍቲ ባይዱ
布不均匀, 它们对通过环心并与环面垂直的轴的转动惯量分别为 JA 和 JB, 则有:
[
] (A) JA>JB
(B) JA<JB
(C) JA=JB
相关文档
最新文档