《认识三角形》第二课时参考课件1

合集下载

人教版小学数学四年级下册5.《三角形的认识》课件(共28张PPT)

人教版小学数学四年级下册5.《三角形的认识》课件(共28张PPT)
BC
C
达标挑战二:我会对应
学习导图
D
C
B
A
A
C
D
B
聪聪
从三角形的一个顶点到它的对边作一条垂线,顶点和垂足之间的线段叫作三角形的高,这条对边叫作三角形的底。



B
C
三角形的底和高是对应关系。
顶点

学习任务三:请画出这个三角形指定底边上的高。
A
B
C

找顶点及对应边
放三角尺
画高
我认识了三角形的底和高,还会画三角形的高。
我知道了三角形有三个顶点,三条边和三个角。
温故而知新!
聪聪
1.完成数学书第63页第1题。
同学们再见!
授课老师:
时间:2024年9月1日
同学们再见!
授课老师:
时间:2024年9月1日
标垂足







学习任务四:请用三角尺画出每个三角形底边上的高。
每一个三角形可以画几条高?尝试画一画。
聪聪
三角形都可以画3条高。
2.画出三角形指定底边上的高。
1.判断:三角形和平行四边形、梯形一样都有无数条高。( )
达标挑战三:

学习导图
学习收获
由3条线段围成的图形(每相邻两条线段的端点相连)叫做三角形。
三角形的认识
一起开启今天的数学学习吧!
聪聪
数学书
三角尺和铅笔
学习导图
说一说这些三角形有什么共同点?
聪聪
都有三条边。
都有三个角。
都有三个点。
学习任务一:请拿出学习单,先自己动手画一个三角形,再说一说,什么是三角形。

《三角形的内角》三角形PPT(第2课时)

《三角形的内角》三角形PPT(第2课时)

思考 如果一个都不知道,或只知道1个角,你能知道
三角形各角的度数吗?
新课导入
课堂小结
三角形内角和定理:三角形内角和为 180°。
为了证明的需要,在原来的图形上添加的线叫做辅
助线.
在平面几何里,辅助线通常画成虚线.
推论 直角三角形的两个锐角互余。
反之,有两个角互余的三角形是直角三角形。
B
C
直角三角形的性质:直角三角形的两个锐角互余.
A
应用格式:
在Rt△ABC 中,

∠C =90°,

∠A +∠B =90°.
B
C
直角三角形的表示:
直角三角形可以用符号“Rt△”表示.如:直角三角形ABC 可
以写成Rt△ ABC.
例1 如图,∠C=∠D=90 °,AD,BC相交于点E. ∠CAE与
( )
新课导入
三角形内角和定理的辨析
例题
若一个三角形三个内角度数的比为 2︰3︰4,那么这
个三角形是( B )
A .直角三角形

B .锐角三角形
C .钝角三角形
D .等边三角形
例题
(1)一个三角形中最多有 1 个直角.
(2)一个三角形中最多有 1 个钝角.
(3)一个三角形中至少有 2 个锐角.
60°
x =18°
x =30°
新课导入
例题+变式:根据三角形内角和定理求角度
归纳 ①直接计算: 直接利用三角形的内角和180°进行计算.
②形题数解:
设某一个角为x(或将某一个角视为未知数),其余
的角用x的代数式表示,从而根据题意列出方程(组)求
解,这就是“形题数解”.

人教版八年级上册 三角形的内角第二课时课件

人教版八年级上册 三角形的内角第二课时课件

C
=180°-45°-90°=45°
Hale Waihona Puke ∴∠ACB=∠ACD-∠BCD
=60°- 45° =15°
A
B
D
三、研学教材 知识点二 直角三角形的两个锐角的关系
1、直角三角形可以用符号__R_t_△__ 表 示,直角三角形ABC可以写成 _R_t_△__A_B_C___.
三、研学教材
知识点二 直角三角形的两个锐角的关系
三、研学教材
认真阅读课本第12页到第14页 的内容,完成下面练习并体验 知识点的形成过程。
三、研学教材
知识点一 三角形内角和定理的应用 例2 如右下图,C岛在A岛的北偏东50°方 向,B岛在A岛的北偏东80°方向,C岛在B 岛的北偏西40°方向.从B岛看A、C两岛的 视角∠ABC是多少度?从C岛看A、B两岛的 视角是多少度?
三、研学教材
2、已知:如图,△ABC中,∠A+∠B=90°. A 求证:△ABC是直角三角形.
证明:∵∠A+∠B+∠C=__1_8_0__°
( 三角形内角和定理 ) 又∵∠A+∠B=90°
B
C
∴∠C=180°-___9_0__°=___9_0__°
∴△ABC是__直__角___三角形
结论: 有两个角互余的三角形是__直__角__三角形
=180°- 60°- 30°=90° :
答:从B岛看A、C两岛的视角∠ABC是60°, 从C岛看A、B两岛的视角是90°.
三、研学教材 知识点一 三角形内角和定理的应用
解:过点C画CF//AD ∠CAD=50°∠CBE=40° ∴∠1=∠CAD=50° ∵CF//AD, AD//BE ∴CF//BE ∴∠2=∠CBE=40° ∴∠ACB=∠1+∠2=50°+40°=90°

4.1认识三角形 第二课时-七年级数学下册课件(北师大版)

4.1认识三角形 第二课时-七年级数学下册课件(北师大版)

数,所以x 的值只能是4或6,所以三角形的第三边Байду номын сангаас长
是4或6.
总结
通过多个条件确定三角形第三边的方法:
已知两边
第三边的范围
第三边小于已知两边的 和而大于已知两边的差
附加条件
确定第 三边
1 三角形两边长分别为3和5,第三边的长可以是8吗? 可以是2吗?说说你的理由.
解:不可以是8,也不可以是2.理由:三角形任意两 边之和大于第三边,任意两边之差小于第三边.
④三角形按角分类应分为锐角三角形、直角三角形和
钝角三角形.其中正确的有( C )
A.1个
B.2个
C.3个
D.4个
知识点 3 三角形的三边关系
议一议 (1)元宵节的晚上,房梁
上亮起了彩灯(如图), 装有黄色彩灯的电线 与装有红色彩灯的电线哪根长呢?说明你的理由. (2)在一个三角形中,任意两边之和与第三边的长度有 怎样的关系?为什么?
则该等腰三角形的底边长为( A )
A.2 cm
B.4 cm
C.6 cm
D.8 cm
2 如图,在△ABC 中,BC=BA,点D 在AB上,且 AC=CD=DB,则图中的等腰三角形有( C )
A.1个 B.2个 C.3个 D.4个
3 △ABC 的三边长a,b,c 满足关系式(a-b )(b-c )(c-a )
归纳
三角形任意两边之和大于第三边.
做一做 分别量出(图4-14)三个三角形的三边长度,并填入空格内.
(1)a=________, (2)a=________, (3)a=________, b=________, b=________, b=________, c=________, c=________, c=________,

《认识三角形》优秀课件pptx

《认识三角形》优秀课件pptx
应用:判断三条线段能否构成三角形、求三角形周长取值范围等
三角形内心、外心、重心概念
内心
三角形内切圆的圆心, 到三角形三边距离相等
外心
三角形外接圆的圆心, 到三角形三个顶点距离 相等
重心
三角形三条中线的交点 ,具有将三角形面积平 分等性质
塞瓦定理和梅内劳斯定理简介
塞瓦定理
在一个三角形中,如果有三条过顶点且与对边有交点的线, 那么这三个交点是共线的当且仅当三条线的交点与对应顶点 的连线满足一定的比例关系
适用范围
适用于所有已知三边长的三角形面 积计算。
三角形面积与边长关系
等底等高原则
若两个三角形底边相等且高相等 ,则它们的面积相等。
边长比例关系
对于相似三角形,其面积之比等 于对应边长之比的平方。
三角形不等式
任意两边之和大于第三边,任意 两边之差小于第三边,与面积大
小有一定关联。
实际应用问题举例
土地测量
《认识三角形》优秀 课件pptx
目录
• 三角形基本概念与性质 • 三角形边角关系探究 • 三角形面积计算方法 • 三角形在生活中的应用 • 三角形相关数学问题解析 • 创新思维与拓展训练
01
三角形基本概念与性质
三角形定义及分类
三角形定义
由不在同一直线上的三条线段首 尾顺次相接所组成的图形。
三角形分类
01
在三角形中,当角度发生变化时,与之对应的边长也会发生变
化。
边长变化对角度的影响
02
在三角形中,当边长发生变化时,与之对应的角度也会发生变
化。
角度与边长的相互制约关系
03
在三角形中,角度与边长之间存在着相互制约的关系,即当一
个量发生变化时,另一个量也会随之变化。

人教版四年级下册数学 第五单元 三角形 第二课时《三角形3条边的关系》 教学课件PPT

人教版四年级下册数学 第五单元 三角形 第二课时《三角形3条边的关系》 教学课件PPT

(2) ×
4
5
49
5
9
(4)
8
11 11
探究新知
(1)

6
7
8
(2) ×
4
5
9
三角形任意两边的和大于
130
6
10
(4) √8
8 11 11
111
易错举例
判断:4根同样长的小棒,可以首尾相连地摆成一个三角形。
(其中2根小棒可以摆成三角形的一条边)
( ×√ )
错题分析:
此题错在没有完全掌握三角形 3条边之间的关系。两边之和 等于第三边,不能围成三角形
探究新知
两点间所有连线中线段最短,这条 线段的长度叫做两点间的距离。
探究新知
例4.剪出下面4组纸条(单位:cm) (1)6、7、8。 (2)4、5、9。 (3)3、6、10。 (4)8、11、11。
每组纸条都能摆出三角形吗?
我们来做个实验。
探究新知
(1) √
6
67 7 88
(3) 3 6 10
温馨提示:
只有当任意两边的和大于第 三边时,才能围成三角形, 等于或者小于第三边,都不 能围成。
巩固拓展 判断下面哪三条线段可以组成一个三角形。(单位:厘米)
(1)4 3 5 √ (2)2 6 7 √ (3)4 4 9 (4)3 9 8 √
课堂小结 同学们,这节课你们都学会了哪些知识?
两点间所有连线中线段最短,这条线 段的长度叫做两点间的距离(注意是线 段的长度,不是连接两点的线段)。 三角形的任意两边的和大于第三边。
《三角形3条边的关系》 第二课时
复习旧知
什么样的图形是 三角形?
由三条线段围成的图形是三角形。

2024年度幼儿园数学课件《认识三角形》PPT课件

2024年度幼儿园数学课件《认识三角形》PPT课件
2024/2/3
引导幼儿关注三角形的边长、 角度、高、面积等方面,培养 幼儿的观察力和描述能力。
通过对比不同三角形的特征, 帮助幼儿更好地理解三角形的 多样性和共性。
17
小组合作,共同完成复杂图形拼接
01
将幼儿分成小组,每组 提供一定数量的三角形 教具。
2024/2/3
02
让小组成员协作,利用 三角形教具拼接出复杂 的图形或图案,如房子 、火箭等。
在认识三角形的基础上,引导孩子探索其他几何图形的奥秘,如正 方形、长方形、圆形等。
对比学习
将三角形与其他几何图形进行对比学习,分析它们的异同点,帮助 孩子更好地理解和掌握几何图形的特点。
实际应用
引导孩子思考几何图形在日常生活和实际应用中的作用,如建筑设计 、交通工具制造等,激发孩子对几何图形的兴趣和好奇心。
运用三角形构建组合图形
可以教授学生如何利用三角形来构建更复杂的组合图形,如通过平移、旋转等操作将多个三角形组合在一起,形 成美丽的图案或实用的结构。同时,也可以引导学生思考三角形在日常生活和实际应用中的重要作用。
2024/2/3
14
04
实际操作环节:制作和观察三角形
2024/2/3
15
利用教具制作不同类型三角形
5
三角形在日常生活中的应用
建筑领域
三角形在建筑结构中具有稳定 性,如屋顶、桥梁等的设计。
2024/2/3
交通领域
道路标志线、车辆轮廓等常采 用三角形元素,以提醒人们注 意安全。
生活用品
许多生活用品的设计也采用了 三角形元素,如衣架、三角铁 等。
数学教育
三角形是数学教育中的重要内 容,通过学习三角形可以培养 学生的空间想象力和逻辑思维

《认识三角形》ppt课件

《认识三角形》ppt课件

三角形的角
总结词
三角形的角是三条边相交形成的空间角 ,它们具有一些重要的性质和定理。
VS
详细描写
三角形的角是三角形的重要组成部分,它 们的大小和关系决定了三角形的形状和大 小。其中,三角形的内角和定理是最重要 的定理之一,即三角形的三个内角之和等 于180度。此外,根据角的大小和关系, 三角形还可以分为锐角三角形、直角三角 形和钝角三角形。
01
三角形的分类
按角度分类
01
02
03
锐角三角形
三个角都小于90度的三角 形。
直角三角形
有一个角等于90度的三角 形。
钝角三角形
有一个角大于90度的三角 形。
按边分类
等边三角形
三边相等的三角形。
等腰三角形
两边相等的三角形。
不等边三角形
三边都不相等的三角形。
01
三角形的性质
内角和定理
总结词
三角形内角和的性质
《认识三角形》ppt 课件
THE FIRST LESSON OF THE SCHOOL YEAR
汇报人:XXX
202X-12-30
目录CONTENTS
• 三角形的定义与性质 • 三角形的分类 • 三角形的性质 • 三角形的应用
01
三角形的定义与性 质
三角形的定义
总结词
三角形是由三条边和三个角构成的闭合二维图形。
屋顶
桥梁
许多建筑的屋顶形状为三角形,这种设计 可以有效地承受雨雪等自然因素的重量, 保持建筑的完全性。
桥梁的构造中也经常使用三角形,这种设 计能够确保桥梁的坚固和稳定,保证行人 和车辆的安全。
数学中的三角形
总结词
在数学领域中,三角形是一个基本图形,具有许 多重要的性质和定理。

小班数学《认识三角形》PPT课件

小班数学《认识三角形》PPT课件

小班数学《认识三角形》PPT课件目录CONTENCT •三角形基本概念•三角形图形识别•三角形边长与角度关系•三角形面积计算及应用•三角形变换与操作实践•总结回顾与拓展延伸01三角形基本概念三角形定义及性质三角形的定义由三条线段首尾顺次连接而成的图形。

三角形的基本性质三角形的任意两边之和大于第三边;三角形的三个内角之和等于180度。

三角形分类与特点按角分类锐角三角形(三个角都小于90度)、直角三角形(有一个角等于90度)、钝角三角形(有一个角大于90度)。

按边分类等边三角形(三边相等)、等腰三角形(有两边相等)、不属于以上两种的其他三角形。

生活中三角形应用举例建筑结构在建筑设计中,三角形结构常被用于增强稳定性,如桥梁的支撑结构、房屋的屋顶等。

交通工具部分交通工具的设计中融入了三角形元素,如自行车的车架、飞机的机翼等,以提供稳固的支撑和减少风阻。

物品设计许多日常用品也采用了三角形设计,如三脚架、三角形的桌子和椅子等,这些设计往往具有稳定性和美观性。

02三角形图形识别01 02 03 04 05等边三角形三边长度相等,三个内角均为60度。

等腰三角形有两边长度相等,两个内角相等。

直角三角形有一个内角为90度,其余两个内角之和为90度。

锐角三角形三个内角均小于90度。

钝角三角形有一个内角大于90度,其余两个内角为锐角。

常见三角形图形展示相似与全等三角形判断方法相似三角形判断方法如果两个三角形的对应角相等,则这两个三角形相似。

全等三角形判断方法如果两个三角形的三边及三个内角分别相等,则这两个三角形全等。

观察法拆分法标记法利用已知条件复杂图形中三角形识别技巧通过观察图形的形状和特征,寻找可能存在的三角形。

将复杂图形拆分成简单的图形,再寻找其中的三角形。

在图形上标记出可能的三角形,以便后续分析和计算。

如果已知某些线段或角度的信息,可以利用这些信息来辅助识别三角形。

03三角形边长与角度关系010203三角形两边之和大于第三边三角形两边之差小于第三边等腰三角形两腰相等,等边三角形三边相等三角形边长关系定理介绍角度和定理及其推论三角形内角和为180°等腰三角形底角相等,等边三角形三个角均为60°直角三角形中,两锐角互余,且其中一个锐角的度数为90°减去另一个锐角的度数1 2 3短直角边等于斜边的一半,长直角边等于短直角边的√3倍30°-60°-90°三角形两直角边相等,斜边等于直角边的√2倍45°-45°-90°三角形两直角边相等,斜边等于直角边的√2倍,且两个锐角均为45°等腰直角三角形特殊角度下三角形性质探讨04三角形面积计算及应用海伦公式介绍海伦公式表达式海伦公式应用举例海伦公式求解任意三角形面积假设三角形三边长度分别为a 、b 、c ,半周长p=(a+b+c)/2,则三角形面积S=√[p(p -a)(p-b)(p-c)]。

四年级数学《认识三角形》PPT课件

四年级数学《认识三角形》PPT课件

相似三角形面积比关系
相似三角形面积比关系介绍
01
相似三角形的面积比等于其对应边长的平方比。
相似三角形面积比关系表达式
02
若两个三角形相似,且对应边长比为k,则它们的面积比为k^2

相似三角形面积比关系应用
03
利用相似三角形的性质,可以通过已知三角形的面积和边长比
,求出另一个相似三角形的面积。
实际问题中面积计算应用
选项A:80度 选项B:100度
选项C:140度
计算题:计算给定条件下三角形面积或边长
题目1
已知一个三角形的底边长为6cm ,高为4cm,求这个三角形的面
积。
题目2
已知一个等边三角形的周长为 18cm,求这个三角形的边长。
题目3
已知一个直角三角形的两条直角边 分别为3cm和4cm,求这个三角形 的面积和斜边长。
选项C
有一个角为90度的 图形
选择题:选择正确描述三角形性质的选项
题目1
下列关于三角形的描述中,正确的是?
选项A
任意两边之和大于第三边
选项B
任意两边之差小于第三边
选择题:选择正确描述三角形性质的选项
选项C
三角形的内角和等于180度
题目2
一个等腰三角形的一个底角是40度,那么它的顶角是多少度?
选择题:选择正确描述三角形性质的选项
三角形结构稳定性
实例展示
在建筑中,三角形结构被广泛用于提 高稳定性,如屋顶、桥梁和塔楼等结 构。
展示一些著名建筑如埃菲尔铁塔、金 字塔等,突出其三角形结构的设计。
原理解释
三角形具有稳定性是因为其三个内角 之和恒等于180度,这种特性使得三 角形在受到外力作用时不易变形。

《认识三角形》三角形PPT课件(第2课时)教学课件

《认识三角形》三角形PPT课件(第2课时)教学课件
若三角形的两边为2和5,则第三边c的长度应满足的条件___3__﹤__c_﹤__8____; 若三角形的两边为a和b,则第三边c的长度应满足的条件 是_____∣__a_-_b_∣__﹤__c__﹤__∣__a_+_b__∣__;
随堂检测
1.已知一个三角形的两边长分别为3和4,则第三边的长不可能的是( D )
将它的一个角对折,使其两边重合.
折痕AD即为三角形的∠A的角平分线.
AA
A分线”是一条射线
“三角形的角平分线”还是射线 吗?
在三角形中,一个内角的平分线与它的对边
相交,这个角的顶点与交点之间的线段叫三
角形的角平分线.
B
线段
注意 ! “三角形的角平分线”是一条线段.
A.2
B.3
C.4
D.1
2.小李有2根木棒,长度分别为10cm和15cm,要组成一个三角形(木棒的首
尾分别相连接),还需在下列4根木棒中选取( C )
A.4cm长的木棒
B.5cm长的木棒
C.20cm长的木棒
D.25cm长的木棒
随堂检测
3.下列长度的三根小木棒能构成三角形的是( D )
A.2cm,3cm,5cm
A 12
D
C
∠1=∠2
活动探究
每人准备锐角三角形、钝角三角形和直角三角形纸片各一个. (1) 你能分别画出这三个三角形的三条角平分线吗? (2) 你能用折纸的办法得到它们吗? (3) 在每个三角形中,这三条角平分线之间有怎样的位置关系? 将你的结果与同伴进行交流.
三角形的三条角平分线交于同一点.
随堂检测
c 2.5;
三角形三边关系,三角形任意两边之和大于第三边;三角形任意两边之 差小于第三边.

北师大版七年级初一上册 第四单元 4.1《认识三角形》课件(重要知识点)

北师大版七年级初一上册  第四单元 4.1《认识三角形》课件(重要知识点)
第四章 三角形
4.1 认识三角形
知识点 1 三角形的内角和
知1-导
三角形三个内角的和等于180°.
知1C=54°, AD平分∠BAC,交BC于点D,DE∥AB,交AC于点 E,则∠ADE的大小是( C ) A.45° B.54° C.40° D.50°
(来自《教材》)
总结
知4-讲
通过多个条件确定三角形第三边的方法:
已知两边
第三边的范围
第三边小于已知两边的 和而大于已知两边的差
附加条件
确定第 三边
知4-练
1 【2017·淮安】若一个三角形的两边长分别为5和
8,则第三边长可能是( B )
A.14
B.10
C.3
D.2
知4-练
4 【2016·岳阳】下列长度的三根小木棒能构成三角 形的是( D ) A.2 cm,3 cm,5 cm B.7 cm,4 cm,2 cm C.3 cm,4 cm,8 cm D.3 cm,3 cm,4cm
知4-练
9 【2017·白银】已知a,b,c是△ABC的三条边
长,化简|a+b-c|-|c-a-b|的结果为( D )
A.2a+2b-2c
B.2a+2b
C.2c
D.0
1 知识小结
判断三条线段组成三角形的方法: “三角形的任意两边之和大于第三边”是判断三
条线段能否组成三角形的依据,利用该性质时,通常 我们只比较较短的两边的和与最长边的大小关系,若 前者大于后者,说明可以组成三角形,否则不能组成 三角形.
知3-练
3 △ABC的三边长a,b,c满足关系式(a-b)(b- c)(c-a)=0,则这个三角形一定是( A ) A.等腰三角形 B.等边三角形 C.等腰直角三角形 D.无法确定

七下第四章《三角形》全章课件

七下第四章《三角形》全章课件

B
C
2.有公共点
D
A
A O
AD
A
E
D
B
C B
O B
CD
E CB
C
总结归纳 1. 有公共边,则公共边为对应边; 2. 有公共角(对顶角),则公共角(对顶角)为对应角; 3.最大边与最大边(最小边与最小边)为对应边;
最大角与最大角(最小角与最小角)为对应角;
4. 对应角的对边为对应边;对应边的对角为对应角.
(2)用长度为6㎝的木棒能与它们组成三角 形吗?为什么?用长度为11㎝的木棒呢?
解: 能。因为第三边的范围是大于3cm小于 11cm,6cm在此范围内。11cm不能,因为11cm 不在此范围内。
例2
(3)如果第三边长是奇数,那么第三边可能 是多长?
解: 可能是5cm、7cm、9cm
(4)如果周长是奇数,那么第三边可能是哪 几个数?
解:(1)对应边有EF和 NM,FG和MH,EG和NH; 对应角有∠E和∠N, ∠F 和∠M, ∠EGF和∠NHM.
(2)求线段NM及HG的长度;
解:∵ △EFG≌△NMH,
∴NM=EF=2.1cm,
EG=NH=3.3cm.
∴HG=EG –EH=3.3-1.1=2.2(cm).
(3)观察图形中对应线段的数量或位置关系,试提出

归纳总结
全等图形定义: 能够完全重合的两个图形叫做全等图形. 全等形性质: 如果两个图形全等,它们的形状和大小一定都相等.
下面哪些图形是全等图形?
大小、形状 完全相同
(1)
(2)
(3)
(5)
(6)
(7)
(9)
(10)
(11)
(4) (8) (12)

小学数学《三角形的认识》ppt优秀课件

小学数学《三角形的认识》ppt优秀课件
三角测量
在工程测量中,经常需要测量两点之间的距离或某一点的高度。通过三角形的相似性或全等性质,可 以准确地计算出所需的距离或高度。
激光测距仪
现代激光测距仪也利用了三角形的原理。通过发射激光束并测量其反射回来的时间,可以计算出目标 物体与测距仪之间的距离。
2024/1/25
29
地理信息系统中方向判断
若已知三角形的三条边长 分别为a、b、c,则周长 P=a+b+c。
11
实际问题中面积和周长应用
面积应用
在农业、林业等领域中,经常需要计算土地、林地等区域的面积,以确定种植面积、造林密度等参数。此时可以 利用三角形面积公式进行计算。
周长应用
在建筑、装修等领域中,经常需要计算房间、墙面等区域的周长,以确定材料用量、装修成本等参数。此时可以 利用三角形周长计算方法进行计算。同时,在解决一些实际问题时,如围栏问题、最短路径问题等,也需要利用 到三角形的周长计算。
小学数学《三角形的 认识》ppt优秀课件
2024/1/25
1
目录
2024/1/25
• 三角形基本概念与性质 • 三角形面积与周长计算 • 三角形角度与边长关系 • 相似与全等三角形判定定理 • 三角形在生活中的应用举例 • 总结回顾与拓展延伸
2
01 三角形基本概念与性质
2024/1/25
3
三角形定义及分类
2024/1/25
12
03 三角形角度与边长关系
2024/1/25
13
正弦、余弦、正切在三角形中应用
1 2
正弦(sine)
在直角三角形中,正弦值等于对边长度除以斜边 长度,即 sin(A) = a/c。通过正弦值可以求出角 度或边长。

4.1认识三角形三边关系第二课时

4.1认识三角形三边关系第二课时

长l的取值范围是

4 < c < 10 4+3+7 < c+3+7 < 10+3+7
14 < L< 20
等腰三角形两边长分别为3cm和 4cm,求三角形的周长。
分类思想:见有关“等腰三角形的边” 的问题,就考虑腰和底的分类。
已知等腰三角形的两边长分别为8cm,
3cm,则这三角形的周长为 (B )
等边三角形
三角形按边分类
三角形 不等边三角形
底边和腰不相等的等腰三角形 等腰三角形
等边三角形
特别提示:等边三角形是特殊的等腰三角形.是底边和 腰相等的等腰三角形.
按边分
三角形 不等边三角形
等腰三角形
等边三角形
长度为6cm, 4cm, 3cm三条线段首尾相接能否组成 三角形?
解:∵6+4>3
∵ 6-4<3
6+3>4
6-3<4
4+3>6
4-3<6
∴能组成三角形 ∴能组成三角形
解: ∵最长线段是 6cm
4+3>6
∴能组成三角形
判断步骤:
(1)找出最长线段 (2)比较大小:较短两边之和与最长线段的大小 (3)判断能否组成三角形。
进而得到: 两边之差第三边两边之和
(1)3㎝,4㎝,5㎝ (2)3㎝,12㎝,8㎝ (3)6㎝,6㎝,6㎝ (4)100㎝,200㎝,300㎝
则这三条线段首尾相接能构成一个三角形
C
b
a
Ac B
a+b>c b+c>a c+a>b
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.用两根长度分别为4㎝和7㎝的两根木棒, (1)用长度为2 ㎝的木棒能与它们组成三角形 吗?为什么? (2)用长度为11㎝的木棒呢? (3)如果第三边是正整数,那么第三边可能是 哪几个数? 2、三条线段的长度分别为: (1)3、8、10 (2 )5 、2 、7 (3)5、5、11 (4)13、12、20 能组成三角形的有( )组
第三章 三角形
3.1.2 认识三角形
知识回顾
由不在同一直线上的三条线段首尾顺次相接所组
成的图形叫做三角形(triangle)。 三角形可以用符号“”表示,如上图是顶点为 A,B,C的三角形,记作“ABC”.它的三边有时也 用a,b,c来表示。
A
c
b
B
a
C
若将方屋顶的框架图抽象成一个几何图形,标 出字母,请聪明的你尽可能多的表示这些三角形。
三角形三边之间的关系
a
a= b= c=
b
c
, , 。
a
a= b= c=
b
a
a= b= c=
b
, , 。
Hale Waihona Puke c, , 。c
计算每个三角形的任意两边之差,并与第三边 比较,你能得到什么结论?
任意三角形的两边之差,小于第三边
验证
有两根长度分别为5cm和8cm的木棒,用长度为 2cm的木棒与它们能摆成三角形吗?为什么?长度为 13cm的木棒呢?动手摆一摆。 解题技巧三角形第三边的取值范围是: 两边之差<第三边<两边之和
A F G C D
B
E
看一看 想一想
观察下面的三角形,你能发现它们各自的边长之 间有什么关系吗?
有两边相等的三角形叫做等腰三角形,如图
顶角
三边都相等的的三角形叫做等边三角形,也 叫正三角形


底角
底边
底角
A
B
A
(1) 元宵节的晚上,房梁上亮起 了彩灯,装有黄色彩灯的电线与装有 红色彩灯的电线哪根长呢?说明你的 理由。 C 利用你发现的规律填空 AB+AC
C
BC
B
A B
AB+BC
AC+BC
AC
AB
c
(2)在一个三角形中,任意两边之和与第三边的 长度有怎样的关系?为什么?由此你能得到什么结论?
议一议
A
C B
在A点的小狗,为了尽快吃到B点的香肠,它选 择A—B路线,而不选择A—C—B路线,难道小狗也懂 数学? 验证
三角形任意两边之和大于第三边
分别量出下面三个三角形的三边长度,并填入空 格内。
相关文档
最新文档