人脸识别技术汇总

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人脸识别技术

人脸识别技术是基于人的脸部特征,对输入的人脸图象或者视频流 . 首先判断其是否存在人脸 , 如果存在人脸,则进一步的给出每个脸的位置、大小和各个主要面部器官的位置信息。并依据这些信息,进一步提取每个人脸中所蕴涵的身份特征,并将其与已知的人脸进行对比,从而识别每个人脸的身份。

人脸识别系统

人脸识别系统以人脸识别技术为核心,是一项新兴的生物识别技术,是当今国际科技领域攻关的高精尖技术。人脸因具有不可复制、采集方便、不需要被拍者的配合而深受欢迎。人脸识别系统具有广泛的应用:人脸识别出入管理系统、人脸识别门禁考勤系统、人脸识别监控管理、人脸识别电脑安全防范、人脸识别照片搜索、人脸识别来防登记、人脸识别ATM机智能视频报警系统、人脸识别监狱智能报警系统、人脸识别RFID智能通关系统、人脸识别公安罪犯追逃智能报警系统等等。

人脸识别系统的应用

人脸识别系统其实是台特殊的摄像机,判断速度相当快,只需要0.01秒左右,由于利用的是人体骨骼的识别技术,所以即使易容改装,也难以蒙过它的眼睛。而且“人脸识别系统”具有存储功能,只要把一些具有潜在危险性的“重点人物”的“脸部特写”输入存储系统,重点人物如擅自闯关,就会在0.01秒之内被揪出来,同时向其他安保中心“报警”。另外,某些重要区域如控制中心只允许特定身份的工作人员进出,这时候面部档案信息未被系统存储的所有人全都会被拒之门外。

与此前的指纹识别系统相比,人脸识别系统有很多的改进。指纹技术的使用寿命不如人脸识别系统,使用成本也高于人脸识别系统。由于沾水、沾汗、沾灰,还有传感器只能在室内使用等原因,指纹识别系统在露天户外使用的可能性很小。而用于人脸识别的摄像机一天24小时都可工作,第一它不侵犯人权,第二它是很安全的,无论室内还是户外均可使用。人脸识别系统意味着每个人的脸上都贴着名字,外人看不见,但监控系统能看得见。包括外国人,从踏入中国的一瞬间,他的图像和个人资料就会进入电脑的控制中心,不管在什么地方出现,都可认出此人。而且被观察的人不知道有设备在监视他,起到了科技奥运、文明奥运的功能。

人脸识别发展历史介绍

1 引言

在我们生存的这个地球上,居住着近65亿人。每个人的面孔都由额头、眉毛、眼睛、鼻子、嘴巴、双颊等少数几个区域组合而成,它们之间的大体位置关系也是固定的,并且每张脸的大小不过七八寸见方。然而,它们居然就形成了那么复杂的模式,即使是面容极其相似的双胞胎,其家人通常也能够非常容易地根据他们面孔上的细微差异将他们区分开来。这使得我们不得不承认这个世界上找不出两张完全相同的人脸!那么,区分如此众多的不同人脸的“特征”到底是什么?能否设计出具有与人类一样的人脸识别能力的自动机器?这种自动

机器的人脸识别能力是否能够超越人类自身?对这些问题的分析和解答无疑具有重要的理论和应用价值,这正是众多从事自动人脸识别研究的研究人员所面临的挑战。

然而,对这些问题的回答并不像看起来那么容易。即使在大量来自模式识别、计算机视觉、神经计算、生理学等领域的研究人员对自动人脸识别艰苦工作40余年之后,这些最基本的科学问题仍然困惑着研究人员。而退一步讲,即使对我们自己,尽管我们每天都在根据面孔区分着亲人、同学、朋友、同事等,大多数人却很难准确地描述出自己到底是如何区分他们的,甚至描述不出自己熟悉的人有什么具体的特征。即使专门从事相关的生理学、心理学、神经科学研究的一些专家,也很难描述清楚人类人脸识别的生理学过程。这意味着基于仿生学的人脸识别研究路线在实践上是难以操作的。当然,飞机的翅膀并不需要像鸟儿的翅膀一样煽动,自动人脸识别的计算模型也未必需要模拟“人脑”。我们也许可以通过另外的途径,例如建立人脸识别的计算模型,这种计算模型可能是基于仿生神经网络的,也可能是纯粹基于统计的,或者是这二者之外的第三只眼睛,并通过构建实用的自动人脸识别系统来验证这些计算模型,从而找出对上述基本科学问题的解答。

本文首先给出了人脸识别的一个一般计算模型,然后简单回顾自动人脸识别的研究历史,接下来阐述人脸识别的研究现状并介绍几种主流的技术方法,简单介绍计算所人脸识别研究组的研究进展,最后对上述哲学层面的问题作了一些简单的探讨。

2 人脸识别发展历史

人脸识别是一个被广泛研究着的热门问题,大量的研究论文层出不穷,在一定程度上有泛滥成“灾”之嫌。为了更好地对人脸识别研究的历史和现状进行介绍,本文将AFR的研究历史按照研究内容、技术方法等方面的特点大体划分为三个时间阶段,如表1所示。该表格概括了人脸识别研究的发展简史及其每个历史阶段代表性的研究工作及其技术特点。下面对三个阶段的研究进展情况作简单介绍:

第一阶段(1964年~1990年)

这一阶段人脸识别通常只是作为一个一般性的模式识别问题来研究,所采用的主要技术方案是基于人脸几何结构特征(Geometric feature based)的方法。这集中体现在人们对于剪影(Profile)的研究上,人们对面部剪影曲线的结构特征提取与分析方面进行了大量研究。人工神经网络也一度曾经被研究人员用于人脸识别问题中。较早从事AFR研究的研究人员除了布莱索(Bledsoe)外还有戈登斯泰因(Goldstein)、哈蒙(Harmon)以及金出武雄(Kanade Takeo)等。金出武雄于1973年在京都大学完成了第一篇AFR方面的博士论文,直到现在,作为卡内基-梅隆大学(CMU)机器人研究院的一名教授,仍然是人脸识别领域的活跃人物之一。他所在的研究组也是人脸识别领域的一支重要力量。总体而言,这一阶段是人脸识别研究的初级阶段,非常重要的成果不是很多,也基本没有获得实际应用。

第二阶段(1991年~1997年)

这一阶段尽管时间相对短暂,但却是人脸识别研究的高潮期,可谓硕果累累:不但诞生了若干代表性的人脸识别算法,美国军方还组织了著名的FERET人脸识别算法测试,并出现了若干商业化运作的人脸识别系统,比如最为著名的Visionics(现为Identix)的FaceIt

系统。

相关文档
最新文档