现代控制理论第5章2

合集下载

《现代控制理论》课后习题答案(完整版)

《现代控制理论》课后习题答案(完整版)
第一章习题答案
1-1
解:系统的模拟结构图如下:
系统的状态方程如下:

令 ,则
所以,系统的状态空间表达式及输出方程表达式为
1-2
解:由图,令 ,输出量
有电路原理可知:既得
写成矢量矩阵形式为:
1-3
1-4 两输入 , ,两输出 , 的系统,其模拟结构图如图1-30所示,试求其状态空间表达式和传递函数阵。
当时,
解之得 令 得
当时,
解之得 令 得
当 时,
解之得令得
约旦标准型
1-10
试求两子系统串联联结和并联连接时,系统的传递函数阵,并讨论所得结果解:(1)串联联结
(2)并联联结
1-11
求系统的闭环传递函数解:
求系统的闭环传递函数解:
1-12已知差分方程为
试将其用离散状态空间表达式表示,并使驱动函数u的系数b(即控制列阵)为
(1)
解法1:
解法2:
求T,使得得所以
解:系统的状态空间表达式如下所示:
1-5
列写其相应的状态空间表达式,并画出相应的模拟结构图。解:令 ,则有
相应的模拟结构图如下:
1-6
解:
1-7

(1)画出其模拟结构图
(2) 求系统的传递函数解:
(2)
1-8
(3)(3)
解:A的特征方程
解得: 令得
(或-9
(2)
解:A的特征方程

现代控制理论-09(第5章状态反馈控制器设计)

现代控制理论-09(第5章状态反馈控制器设计)

期望的闭环特征多项式
(λ − λ1 )(λ − λ 2 )(λ − λ3 ) = λ3 + b2 λ2 + b1 λ + b0
要实现极点配置,须
λ3 + (a 2 + k 2 )λ2 + (a1 + k1 )λ + a 0 + k 0 = λ3 + b2 λ2 + b1λ + b0
a 0 + k 0 = b0 a1 + k1 = b1 a 2 + k 2 = b2
− 设计一个状态反馈控制器,使得闭环极点是-2, 1 ± j

确定能控标准型实现
1 0⎤ ⎡0 ⎡0 ⎤ x = ⎢0 0 1⎥ x + ⎢0⎥u ⎢ ⎥ ⎢ ⎥ ⎢0 − 2 − 3⎥ ⎢1⎥ ⎣ ⎦ ⎣ ⎦ y = [10 0 0]x
状态反馈控制器 u = − Kx ,K = [k1 k 2 k3 ] 闭环多项式:det[λI − ( A − BK )] = λ3 + (3 + k 3 )λ2 + (2 + k 2 )λ + k1 期望多项式: (λ + 2)(λ + 1 − j)(λ + 1 + j) = λ3 + 4λ2 + 6λ + 4
问题:对一般状态空间模型,如何解极点配置问题? 思路:考虑能控状态空间模型 将能控状态空间模型等价地转化为能控标准型 如何从能控标准型模型的解导出一般模型的极 点配置控制器。
系统模型
x = Ax + Bu
~ TAT −1 = A, ~ TB = B
0 ⎤ 0 ⎥ ⎥ ⎥, ⎥ 1 ⎥ − an−1 ⎥ ⎦ ⎡0 ⎤ ⎢0 ⎥ ~ ⎢ ⎥ B=⎢ ⎥ ⎢ ⎥ ⎢0 ⎥ ⎢1⎥ ⎣ ⎦

现代控制理论第版课后习题答案

现代控制理论第版课后习题答案

现代控制理论第版课后习题答案Prepared on 22 November 2020《现代控制理论参考答案》第一章答案1-1 试求图1-27系统的模拟结构图,并建立其状态空间表达式。

解:系统的模拟结构图如下: 系统的状态方程如下: 令y s =)(θ,则1x y =所以,系统的状态空间表达式及输出方程表达式为1-2有电路如图1-28所示。

以电压)(t u 为输入量,求以电感中的电流和电容上的电压作为状态变量的状态方程,和以电阻2R 上的电压作为输出量的输出方程。

解:由图,令32211,,x u x i x i c ===,输出量22x R y =有电路原理可知:•••+==+=++3213222231111x C x x x x R x L ux x L x R 既得22213322222131111111111x R y x C x C x x L x L R x u L x L x L R x =+-=+-=+--=•••写成矢量矩阵形式为:1-4 两输入1u ,2u ,两输出1y ,2y 的系统,其模拟结构图如图1-30所示,试求其状态空间表达式和传递函数阵。

解:系统的状态空间表达式如下所示: 1-5系统的动态特性由下列微分方程描述列写其相应的状态空间表达式,并画出相应的模拟结构图。

解:令..3.21y x y x y x ===,,,则有相应的模拟结构图如下: 1-6 (2)已知系统传递函数2)3)(2()1(6)(+++=s s s s s W ,试求出系统的约旦标准型的实现,并画出相应的模拟结构图解:ss s s s s s s s W 31233310)3(4)3)(2()1(6)(22++++-++-=+++= 1-7 给定下列状态空间表达式[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321321321100210311032010x x x y u x x x x x x ‘(1) 画出其模拟结构图 (2) 求系统的传递函数 解:(2)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-+-=-=31103201)()(s s s A sI s W 1-8 求下列矩阵的特征矢量(3)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=6712203010A 解:A 的特征方程 061166712230123=+++=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+---=-λλλλλλλA I 解之得:3,2,1321-=-=-=λλλ当11-=λ时,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---3121113121116712203010p p p p p p 解得: 113121p p p -== 令111=p 得 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1113121111p p p P(或令111-=p ,得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1113121111p p p P ) 当21-=λ时,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---32221232221226712203010p p p p p p 解得: 1232122221,2p p p p =-= 令212=p 得 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1423222122p p p P(或令112=p ,得⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=21213222122p p p P )当31-=λ时,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---33231333231336712203010p p p p p p 解得: 133313233,3p p p p =-= 令113=p 得 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=3313323133p p p P1-9将下列状态空间表达式化成约旦标准型(并联分解)(2)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡32121321321110021357213311201214x x x y y u x x x x x x解:A 的特征方程 0)3)(1(311212142=--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------=-λλλλλλA I 当31=λ时,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--3121113121113311201214p p p p p p 解之得 113121p p p == 令111=p 得 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1113121111p p p P当32=λ时,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--1113311201214312111312111p p p p p p 解之得 32222212,1p p p p =+= 令112=p 得 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=0013222122p p p P当13=λ时,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--332313332313311201214p p p p p p 解之得3323132,0p p p == 令133=p 得 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1203323133p p p P约旦标准型1-10 已知两系统的传递函数分别为W 1(s)和W 2(s)试求两子系统串联联结和并联连接时,系统的传递函数阵,并讨论所得结果 解:(1)串联联结 (2)并联联结1-11 (第3版教材)已知如图1-22所示的系统,其中子系统1、2的传递函数阵分别为求系统的闭环传递函数解:1-11(第2版教材) 已知如图1-22所示的系统,其中子系统1、2的传递函数阵分别为求系统的闭环传递函数 解:1-12 已知差分方程为试将其用离散状态空间表达式表示,并使驱动函数u 的系数b(即控制列阵)为(1)⎥⎦⎤⎢⎣⎡=11b解法1: 解法2:求T,使得⎥⎦⎤⎢⎣⎡=-111B T 得⎥⎦⎤⎢⎣⎡=-10111T 所以 ⎥⎦⎤⎢⎣⎡-=1011T 所以,状态空间表达式为第二章习题答案2-4 用三种方法计算以下矩阵指数函数At e 。

课件-现代控制理论-刘豹第三版-第5章

课件-现代控制理论-刘豹第三版-第5章

能控性与能观性的判别方法
能观性判别方法
能控性判别方法
表示系统是否可以通过输入控制实现任意状态转移。若系统完全能控,则可以通过设计合适的控制器实现任意状态轨迹的跟踪或镇定;若部分能控或不能控,则存在状态无法被有效控制的风险。
能控性的物理意义
表示系统状态是否可以通过输出完全反映出来。若系统完全能观,则可以通过观测输出信号来准确估计系统状态;若部分能观或不能观,则存在状态无法被准确观测的风险,进而影响控制性能的实现。
控制系统稳定性分析是控制理论的核心内容之一,对于确保控制系统的正常运行具有重要意义。
章节内容结构
稳定性概念及定义
介绍稳定性的基本概念和定义,包括Lyapunov稳定性和BIBO稳定性等。
线性系统稳定性判据
详细阐述线性系统稳定性的判据,如Routh-Hurwitz判据、Nyquist判据和Bode图等。
图解法
状态转移矩阵的计算方法
1
2
3
状态转移矩阵反映了系统在时间间隔内从初始状态到最终状态的动态变化过程。
描述系统状态的动态变化过程
若系统稳定,则状态转移矩阵将逐渐趋于零,表示系统状态将逐渐趋于稳定。
反映系统稳定性
状态转移矩阵是进行系统分析和设计的重要工具,可用于研究系统的稳定性、能控性、能观性等性质。
非线性系统稳定性分析
介绍非线性系统稳定性分析方法,如相平面法、Lyapunov直接法等。
熟练掌握线性系统稳定性的判据和分析方法,能够应用所学知识分析和设计线性控制系统。
了解非线性系统稳定性分析方法的基本原理和应用范围,能够运用所学知识分析和设计简单的非线性控制系统。
掌握稳定性的基本概念和定义,理解不同稳定性定义之间的联系与区别。

现代控制理论(17-21讲:第5章知识点)

现代控制理论(17-21讲:第5章知识点)
V (x) C
0
试分析系统的稳定性。
解:(1)由 x(t ) 0 , 求得 xe = 0 是系统唯一平衡状态;

(2)选择Lyapunov函数为 1
2 2
二次型函数,是正定的; d 2 2 2 (3) V (x) ( x1 x2 ) 2 x1 x1 2 x2 x 2 2 x2 dt 故V(x)的导数是半负定的; (4)由:
(1) V(x)是正定的; (2) V ( x )是负定的;
则在状态空间坐标原点处的平衡状态是渐近稳定的。此时, 如果随着||x||→∞,V(x) →∞,那么在原点处的平衡状态是大 范围渐近稳定的。
2 2 例1:设系统的状态方程为: x1 x2 ax1 ( x1 x2 ) 其中:a为非零正常数。试 2 x2 x1 ax2 ( x12 x2 ) 分析系统的稳定性。

(2) V ( x ) 是半负定的; (3) 对于任意初始时刻t0时的任意状态x0≠0, 在t≥t0时,除了在 x=0时,有 V ( x) 0 外,V ( x )不恒等于零,则系统在平衡状 态是渐近稳定的。如果随着||x||→∞,V(x) →∞,那么在原 点处的平衡状态是大范围渐近稳定的。 在应用定理二时,注意以下两种情况: (1)极限环的情况。稳定, 但不是渐近稳定;
(1) V(x)在原点的某一邻域内是正定的; (2) V ( x ) 在同样的邻域内也是正定的;

那么系统在原点处的平衡状态是不稳定的。(注意:此地 V(x)的导数也可半正定,但有V(x)的导数不恒为零。)
例3:设时变系统的状态方程为: x1 x1 sin 2 t x2et x 2 x1et x2 cos 2 t 分析系统的稳定性。 解:(1) 显然 xe = 0 是系统平衡状态; (2)选择V(x)为:

《现代控制理论》第三版_.习题答案

《现代控制理论》第三版_.习题答案
或者
1 0 0 3 1 0 5 2 1 52 7 1 5 2 70 125 3 5 7 5 0 0 1 1 B 2 ; 2 5 5
1 0 a1 0 0 1 0 1 0 0 1 a2 3 7 5
0 B 0 1
C (b0 a0bn ) (bn1 an1bn ) 2 1 0
3 1 a 或者 2 2 1 a1 0 a0
e At I At 1 22 1 33 A t A t 2! 3! t2 t4 t6 t3 t5 1 4 16 64 , 4 16 t 2! 4! 6! 3! 5! 3 5 2 4 6 t t t t t t 4 16 64 , 1 4 16 64 3! 5! 2! 4! 6!
0 0 1 B M 1 0 0 0 0 1 M2
1 0 B 1 M1 B1 M2
1 B1 M1 B1 B2 M2
0
0 0 1 0 C 0 0 0 1
1-5. 根据微分方程, 写状态方程, 画模 拟结构图。
1 a2 a2 2 a1 3 2 a a a 1 2 2 a0
1 a2 a1
1 a2
12 b1 b0
b3 b 2 b1 1 b0
凯莱哈密顿法: 1,2 2 j
0 (t ) 1 1 e1t 1 2(e 2 jt e 2 jt ) (t ) 1 2t 4 2 jt 2 jt e j ( e e ) 2 1

现代控制理论基础_周军_第五章状态反馈与状态观测器

现代控制理论基础_周军_第五章状态反馈与状态观测器

5.1状态反馈与极点配置一、状态反馈系统的动态方程以单输入-多输出受控对象动态方程为例:(5-1)将对象状态向量通过待设计的参数矩阵即状态反馈行矩阵,负反馈至系统的参考输入,于是存在(5-2)这时便构成了状态反馈系统,见图5-1。

图5-1 状态反馈系统结构图(5-3)(5-4)式中v为纯量,为维向量,为维矩阵,为维向量,为维行矩阵,为维向量,为维矩阵。

为闭环状态阵,为闭环特征多项式。

二、用状态反馈使闭环极点配置在任意位置上的充要条件是:受控对象能控证明若式(5-1)所示对象可控,定可通过变换化为能控标准形,有若在变换后的状态空间内引维状态反馈矩阵:(5-5)其中分别为由状态变量引出的反馈系数,则变换后的状态反馈系统动态方程为:(5-6)(5-7)式中(5-8)该式与仍为能控标准形,故引入状态反馈后,系统能控性不变。

特征方程为:(5-9)显见,任意选择阵的个元素,可使特征方程的个系数满足规定要求,能保证特征值(即闭环极点)任意配置。

将逆变换代入式(5-6),可求出原状态空间内的状态反馈系统状态方程:(5-10)与式(5-3)相比,式(5-10)所示对象应引入状态反馈阵为:(5-11)需指出,当受控对象可控时,若不具有能控标准形形式,并不必象如上证明那样去化为能控标准形,只要直接计算状态反馈系统闭环特征多项式,这时,其系数为的函数,与给定极点的特征多项式系数相比较,便可确定。

能控的多输入-多输出系统,经如上类似分析可知,实现闭环极点任意配置的状态反馈阵K为维。

若受控对象不稳定,只要有能控性,完全可由状态反馈配置极点使系统稳定。

状态变量受控情况下,引入状态反馈表示增加一条反馈通路,它能改变反馈所包围环节的传递特性,即通过改变局部回路的极点来改变闭环极点配置。

不能控状态变量与控制量无关,即使引入状态反馈,对闭环极点位置也不会产生任何影响,这是因为传递函数只与系统能控、能观测部分有关的缘故。

若不能控状态变量是稳定的状态变量,那么系统还是能稳定的,否则,系统不稳定。

《现代控制理论基础》第2版 现代控制理论基础_上海交通大学_施颂椒等_PPT_第5章

《现代控制理论基础》第2版 现代控制理论基础_上海交通大学_施颂椒等_PPT_第5章

① 定义 有理函数 g(s) 当s 时,
② g(假)设
常n数(s〔) d(s) g(s)〕, 就称为正那么有理函数。
③ g假( 设)那么有理函数。

假g(设) 〔 n(s)d(s)
g(〕s) , 就是 非正那么有理函数。
有理函数阵 G (s) 假设G() 0 ,那G (s么) 是严格正那么有理函数阵〔其每个元均为
G (s) C (sI A )1BD
那么(称A,B,C,D) 是G (s) 的一个实现。
•实现研究的问题
⑴ G (s)可实现为 (A,B,C,D) 的条件问题 ⑵ G (s) 实现的方法
〔5-1〕
•最小实现
如果 (A,B,C,D)是G (s) 的一个实现,那么其所有等价系统也都是其 实现 。 G (s) 可有不同维数的实现,其中维数最小的实现称为最小实 现。它描述了系统的既能控又能观的局部。通常要求的实现 为最小实现。
s 1 s4 s(s1) (s1)s(3) (s1)s(3)
s
1
3
s(s 1 )s( 2 ) (s 1 )s( 2 )s( 3 ) s(s 1 )s( 2 )s( 3 )
G (s) 的特征多项式为:s(s1)s(2)s(3),deG g(s)4。
⑵ G (s) 可实现为 (A,B,C,D) 的条件
③ 非正那么传递函数〔G() 〕,也存在实现,其实现具有
④ 如下形式
Ex(t)A(xt)Bu(t) y(t)Cx(t)Du(t)
〔5-9〕
式中 E为奇异阵。这种形式的系统称为广义系统,或奇异 系统。(本书不予讨论,在专门文献中研究)
5.2.2 最小实现的性质
如果将例〔5-5〕的传递函数阵写成
G ( s ) G 1 ( s )G 2 ( s )

现代控制理论第五章

现代控制理论第五章

定理 5.3.2 设 x(k 1) Gx(k )
x Rn , G Rnn , G1
则系统在原点为渐近稳定的充分必要条件是方程
GT PG P Q,
Q 0
存在唯一正定对称解 P 0 如果 V x(k ) V x(k 1) V x(k ) xT Qx 沿任一解 的序列不恒等于零,则 Q 可取半正定的。
定理5.2.4 如果 V ( x, t ) 0 V ( x, t ) 0则原点不稳定
例5.2.2
已知系统
x1 x2 x1 ( x12 x2 2 ) x2 x1 x2 ( x12 x2 2 )

试用李雅普诺夫第二方法判断其稳定性。
解: 显然,原点 xe 0 是唯一平衡点, 取 V ( x) x12 x22 0 ,则
5.2.3 几点说明
1)对于一给定系统,李雅普诺夫函数不是唯一的。 2)对于非线性系统能给出在大范围内稳定性的信息。 3)关于稳定性的条件是充分的,而不是必要的。 4)若不能找到合适的李雅普诺夫函数就不能得出该
系统稳定性方面的任何结论。
5)李雅普诺夫函数只能判断其定义域内平衡状态的稳 定性。 6)如果系统的原点是稳定的或渐近稳定的,那么具有
定义5.1.8 不稳定: 对于某个实数
内始终存在状态

,在超球域
,使得从该状态开始的
受扰运动要突破超球域 定义5.1.9 正定函数:
1)
时, 则称
存在 2)
3)当
是正定的(正半定的)。
如果条件3)中不等式的符号反向,则称 是负定的(负半定的)。
例5.1.1
1)
2)
正定的
半正定的
3)

第5章现代控制理论之系统运动的稳定性分析

第5章现代控制理论之系统运动的稳定性分析
当然,对于线性系统, 从不稳定平衡状态出发的轨 迹,理论上趋于无穷远。
由稳定性定义知,球域S(δ) 限制着初始状态x0的取值,球域
S(ε)规定了系统自由运动响应 xt xt; x0的, t0边 界。
简单地说:1.如果 x t; x0, t0 有界,则称 xe 稳定;
2.如果 x t; x0, t0 不仅有界,而且当t→∞时收敛于原点,则
5.1.1 平衡状态
李雅普诺夫关于稳定性的研究均针对平衡状态而言。
1. 平衡状态的定义
设系统状态方程为: x f x,t , x Rn
若对所有t ,状态 x 满足 x 0 ,则称该状态x为平衡状
态,记为xe。故有下式成立:f xe ,t 0
由平衡状态在状态空间中所确定的点,称为平衡点。
2.平衡状态的求法
由定义,平衡状态将包含在 f x,t 这样0 一个代数方程组
中。
对于线性定常系统 x A,x其平衡状态为 xe 应满足代数
方程 。Ax 0
只有坐标原点处是线性系统的平衡状态点。
对于非线性系统,方程 方程而定。
如:
x1 x2
x1 x1
x2
x
3 2
f x的,t 解 可0 能有多个,视系统
稳定性是系统的重要特性,是系统正常工作的必要条件。
稳定性是指系统在平衡状态下受到扰动后,系统自由运动 的性质。因此,系统的稳定性是相对于系统的平衡状态而 言的。它描述初始条件下系统方程是否具有收敛性,而不 考虑输入作用。
1. 线性系统的稳定性只取决于系统的结构和参数,与系统 初始条件及外作用无关; 2. 非线性系统的稳定性既取决于系统的结构和参数,也与 系统初始条件及外作用有关;
当稳定性与 t0 的选择无关时,称一致全局渐近稳定。

现代控制理论课后答案(俞立)第五章

现代控制理论课后答案(俞立)第五章

《现代控制理论》第5章习题解答5.1 已知系统的状态空间模型为Cx y Bu Ax x =+=, ,画出加入状态反馈后的系统结构图,写出其状态空间表达式。

答:具有状态反馈的闭环系统状态空间模型为:u Kx =−+v ()xA BK x Bv y Cx=−+=相应的闭环系统结构图为闭环系统结构图5.2画出状态反馈和输出反馈的结构图,并写出状态反馈和输出反馈的闭环系统状态空间模型。

答:具有状态反馈的闭环系统状态空间模型为u Kx =−+v ()xA BK x Bv y Cx=−+=相应的反馈控制系统结构图为具有输出反馈的闭环系统状态空间模型为u Fy =−+v ()x A BFC x Bv y Cx=−+=相应的反馈控制系统结构图为后案网 ww w.kh d5.3 状态反馈对系统的能控性和能观性有什么影响?输出反馈对系统能控性和能观性的影响如何?答:状态反馈不改变系统的能控性,但不一定能保持系统的能观性。

输出反馈不改变系统的能控性和能观性。

5.4 通过检验能控性矩阵是否满秩的方法证明定理5.1.1。

答:加入状态反馈后得到闭环系统K S ,其状态空间模型为()x A BK x Bv y Cx=−+=开环系统的能控性矩阵为0S 1[,][]n c A B BAB A B −Γ="闭环系统K S 的能控性矩阵为 1[(),][()()]n cK A BK B B A BK B A BK B −Γ−=−−"由于222()()()()(A BK B AB BKBA BKB A ABK BKA BKBK B)A B AB KB B KAB KBKB −=−−=−−+=−−−#以此类推,总可以写成的线性组合。

因此,存在一个适当非奇异的矩阵U ,使得()m A BK B −1,,,m m A B A B AB B −[(),][,]cK c A BK B A B U Γ−=Γ由此可得:若rank([,])c A B n Γ=,即有个线性无关的列向量,则n [(),]cK A BK B Γ−也有个线性无关的列向量,故n rank([(),])cK A BK B n Γ−=5.5 状态反馈和输出反馈各有什么优缺点。

《现代控制理论》第三版 第五章.习题答案

《现代控制理论》第三版 第五章.习题答案
det I A = 2 ; 0 1 ; a0 a1 0; L 1 0 T 1 LN L; T L; 于是 0 0 1 1 1 x T ATx T bu u; 1 0 0 y cTx 0 1 x
1 0
f * ( ) ( r )( 2r ) 2 3r 2r 2
3r 比较得: G 2 2r
6
5-12 (1) 由于系统属于能观 I 型,所以能观,故 存在状态观测器, 且 rank c = 1 (2) 构造变换阵作线性变换, 设 0 0 1 0 0 1 c0 1 T 0 1 0 ,T 0 1 0 c 1 0 0 1 0 0 0 0 1 0 1 0 0 0 1 A T 1 AT 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 0
f * ( ) 3 12 2 24 40
所以 K 40 13 1 (3) K KTc 1 4 1.2 0.1
2 5-5(1) M b Ab A b 2 4 0 0 1 0 1 1 5 det M 0 RankM 3 所以系统通过状态 反馈能镇定。
型所以能观故存在状态观测器且rank可由y直接提供故只需设计二维状态观测器
第五章 作业
参考答案
5-2.解法 1: (1) 0 10 0 2 0 , M b , Ab , A b 10 110 10 100 990
rankM 3满秩 可以任意极点配置
3 12 2 24 40 解之: K 4 1.2 0.1 解法 2:(1)

现代控制理论第版课后习题答案

现代控制理论第版课后习题答案

现代控制理论第版课后习题答案Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT《现代控制理论参考答案》第一章答案1-1 试求图1-27系统的模拟结构图,并建立其状态空间表达式。

解:系统的模拟结构图如下: 系统的状态方程如下: 令y s =)(θ,则1x y =所以,系统的状态空间表达式及输出方程表达式为1-2有电路如图1-28所示。

以电压)(t u 为输入量,求以电感中的电流和电容上的电压作为状态变量的状态方程,和以电阻2R 上的电压作为输出量的输出方程。

解:由图,令32211,,x u x i x i c ===,输出量22x R y =有电路原理可知:•••+==+=++3213222231111x C x x x x R x L ux x L x R 既得22213322222131111111111x R y x C x C x x L x L R x u L x L x L R x =+-=+-=+--=•••写成矢量矩阵形式为:1-4 两输入1u ,2u ,两输出1y ,2y 的系统,其模拟结构图如图1-30所示,试求其状态空间表达式和传递函数阵。

解:系统的状态空间表达式如下所示: 1-5系统的动态特性由下列微分方程描述列写其相应的状态空间表达式,并画出相应的模拟结构图。

解:令..3.21y x y x y x ===,,,则有相应的模拟结构图如下: 1-6 (2)已知系统传递函数2)3)(2()1(6)(+++=s s s s s W ,试求出系统的约旦标准型的实现,并画出相应的模拟结构图解:ss s s s s s s s W 31233310)3(4)3)(2()1(6)(22++++-++-=+++= 1-7 给定下列状态空间表达式[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321321321100210311032010x x x y u x x x x x x ‘(1) 画出其模拟结构图 (2) 求系统的传递函数 解:(2)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-+-=-=31103201)()(s s s A sI s W 1-8 求下列矩阵的特征矢量(3)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=6712203010A 解:A 的特征方程 061166712230123=+++=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+---=-λλλλλλλA I 解之得:3,2,1321-=-=-=λλλ当11-=λ时,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---3121113121116712203010p p p p p p 解得: 113121p p p -== 令111=p 得 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1113121111p p p P(或令111-=p ,得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1113121111p p p P ) 当21-=λ时,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---32221232221226712203010p p p p p p 解得: 1232122221,2p p p p =-= 令212=p 得 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1423222122p p p P(或令112=p ,得⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=21213222122p p p P )当31-=λ时,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---33231333231336712203010p p p p p p 解得: 133313233,3p p p p =-= 令113=p 得 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=3313323133p p p P1-9将下列状态空间表达式化成约旦标准型(并联分解)(2)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡32121321321110021357213311201214x x x y y u x x x x x x解:A 的特征方程 0)3)(1(311212142=--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------=-λλλλλλA I 当31=λ时,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--3121113121113311201214p p p p p p 解之得 113121p p p == 令111=p 得 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1113121111p p p P当32=λ时,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--1113311201214312111312111p p p p p p 解之得 32222212,1p p p p =+= 令112=p 得 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=0013222122p p p P当13=λ时,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--332313332313311201214p p p p p p 解之得3323132,0p p p == 令133=p 得 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1203323133p p p P约旦标准型1-10 已知两系统的传递函数分别为W 1(s)和W 2(s)试求两子系统串联联结和并联连接时,系统的传递函数阵,并讨论所得结果 解:(1)串联联结 (2)并联联结1-11 (第3版教材)已知如图1-22所示的系统,其中子系统1、2的传递函数阵分别为求系统的闭环传递函数解:1-11(第2版教材) 已知如图1-22所示的系统,其中子系统1、2的传递函数阵分别为求系统的闭环传递函数 解:1-12 已知差分方程为试将其用离散状态空间表达式表示,并使驱动函数u 的系数b(即控制列阵)为(1)⎥⎦⎤⎢⎣⎡=11b解法1: 解法2:求T,使得⎥⎦⎤⎢⎣⎡=-111B T 得⎥⎦⎤⎢⎣⎡=-10111T 所以 ⎥⎦⎤⎢⎣⎡-=1011T 所以,状态空间表达式为第二章习题答案2-4 用三种方法计算以下矩阵指数函数At e 。

江苏大学线性系统理论(现代控制理论)考试必备--第5章

江苏大学线性系统理论(现代控制理论)考试必备--第5章
* * 第2步:由期望的闭环系统特征值 1* , 2 ,, n ,计算期
望的闭环系统特征多项式
* n 1 * 1 * * ( s) ( s i* ) s n an s a s a 1 1 0 i 0 n
第5章 状态反馈
江苏大学电气学院
第3步:写出通过非奇异变换 x Px 将(A,b)化成能控
第5章 状态反馈
江苏大学电气学院
系统经输出反馈后,其系统矩阵变成了 A -BFC ,此处 FC的相当于状态反馈中的K。可见,选择 F 也可以改变系
统矩阵的值使系统特征根位置发生改变。
虽然状态反馈和输出反馈都可改变系统矩阵,但两者 是有区别的。状态变量包含了系统所有的运动信息,而系
统输出量是状态变量的线性组合。当输出矩阵 C 为单位矩
变成了一个单输入能控系统 ( A BK, bi ) 。 利用这一结论,在随后的多输入系统状态反馈极点 配置相关的结论证明中,可以方便地将多输入能控系统 变成单输入系统来讨论,从而利用单输入系统的极点配 置的相关结论。
第5章 状态反馈
江苏大学电气学院
5.3 系统的极点配置
一. 极点配置的概念
由前面的讨论可知,状态反馈使原系统的系统矩阵由 A变成了A-BK,通过选择不同的反馈增益矩阵 K ,可改 变系统的特征值。后面将看到,当系统完全能控且完全能 观时,系统的特征值也就是闭环传递函数矩阵的极点 。 由经典控制理论可知,闭环系统传统意义上的一些主
1.状态反馈与输出反馈的概念 2.反馈对能控性和能观性的影响 3.系统与输出反馈的极点配置 4.状态反馈的解耦
第5章 状态反馈
江苏大学电气学院
5.1 状态反馈与输出反馈的概念
经典控制理论以输出量作为反馈量,使系统得以稳定 或使系统性能指标得到改善。在系统的状态空间描述中,

现代控制工程五

现代控制工程五

1
R4
) x2
17
可控性矩阵为S b Ab
1
L
0
1(
RR 12
L2 R R
RR 34
R R
)
1
2
1(
R 2
3
R 4
4 )
LC R R
1
2
R R
3
4
当 R R R R 时,rankS 2 n,系统可控;
14
23
反之当 R R R R ,即电桥处于平衡状态时,
14
23
rankS rankb
u 0
b
Ab
A b n1
u 1
记 S b Ab
An1b
un1
其状态可控的充分必要条件是 rankS n
(2)多输入系统 x Ax Bu
记可控性矩阵 S B AB
An1B
其状态可控的充要条件为 rankS n
或 det S ST 0
16
例8-32 试用可控性判据判断图8-20所示桥式电路的可控性。
1
,
x 2
u 1 C c 2
i 2
dt
2
状态方程为
x1
1 R1C1
x1
1 R1C1
u
x2
1 R2C2
x2
1 R2C2
u
19
于是 rankb
1
Ab
RC rank 1 1
1
RC 22
1 R2C
2
1
1
1
R2C 2 22
当 R C R C 时,系统可控。
11
22

R 1
R 2
,C 1

现代控制理论

现代控制理论

5.1.2 输出反馈
设线性定常系统为
Ax Bu x y Cx Du
其输入u ,状态变量 x,输出量y 的维数分别是r,n,m 状态反馈控制律 u Fv Hy
F输入变换阵
D
H输出反馈阵
+ +
v
+
F
u
B
+ +

A
x
C
y
H
u Fv Hy Fv H (Cx Du )
0 0 0 s 3 18s 2 72s det(sI A) 1 s 6 0 1 s 12 0
a 0= 0,a1= 72,a2=18
5.2.1状态反馈极点配置
计算由期望闭环极点组决定的特征多项式
3 2 f ( s) ( s * ) ( s 2 )( s 1 j )( s 1 j ) s 4 s 6s 4 i * i 1 3
性能指标的类型
性能指标实质上是对所要综合的控制系统在运动过程行为 上的一种规定。
非优化型性能指标 (不等式型) 优化性型能指标 (极值型)
(1)镇定问题 (2)极点配置 (3)解耦控制 (4)跟踪问题
J (u()) ( x T Qx uT Ru)dt
0
5.1 反馈控制系统的基本结构
0 1 0 0 0 0 1 0 A bc K 0 0 0 0 1 (an 1 kn 1 ) (a0 k0 ) (a1 k1 )
sI ( Ac bc K ) s n ( an 1 kn 1 ) s n 1 ( a1 k1 ) s ( a0 k0 )

5现代控制理论5李雅普诺夫稳定性分析报告

5现代控制理论5李雅普诺夫稳定性分析报告
6
对于线性定常系统,其状态方程为
x Ax
系统的平衡状态应满足Axe = 0。 当A是非奇异的,则系统存在唯一的一个平衡状态 xe = 0。 当A是奇异的,则系统有无穷多个平衡状态。 显然对线性定常系统来说,当A是非奇异的,只有 坐标原点是系统的唯一的一个平衡点。
7
对于非线性系统,方程f( xe,t) = 0的解可能 有多个,即可能有多个平衡状态。如
值或微分方程及状态方程的解的性质来判断系统的稳 定性。通常又称为间接法。它适用于线性定常系统、 线性时变系统及非线性系统可以线性化的情况。
1. 线性定常系统 定理5-1 线性定常系统,渐近稳定的充要条件是A 的特征值均具有负实部,即
Re(i) < 0( i = 1,2,…,n)
显然,这与经典理论中判别系统稳定性的结论是完全 相同的。这里的渐近稳定就是经典理论中的稳定。
x f (x,t)
f(x, t)对状态向量x有连续的偏导数。设系统的平衡状 态为xe = 0,则在平衡状态xe = 0处可将f(x, t)展成泰勒 级数,则得
x Ax R(x)
19
f1
A

f ( x,t) x T


x1 f2

x1
f1
x2 f2
解:
v(x) =10 x12 +4 x22 +2 x1 x2
当v(x)是正定的,称P是正定的,记为P > 0; 当v(x)是负定的,称P是负定的,记为P < 0; 当v(x)是正半定的,称P是正半定的,记为P 0; 当v(x)是负半定的,称P是负半定的,记为P 0。
27
例5-1 已知v(x) =10 x12 +4 x22 +2 x1 x2 ,试判定 v(x)是否正定。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x(t)和u(t)的稳态值求法如下:在稳态( (5.92)可得
t )时,由式
由于A-BK的期望特征值均在s的左半平面, 所以矩阵A-BK的逆存在。从而,x( )可确定为
同样,u(
)可求得为
u() Kx() k1r 0
[例5.7] 考虑被控系统传递函数具有一个积分器时的I型闭 环伺服系统的设计。
式(5.101)确定了误差的动态特性。 给定被控系统的特征方程为
因此
由于A-BK的期望特征值为 所以期望的特征方程为
因此 为了利用极点配置方法来确定矩阵K, 采用式(5.13),将其重写为 (5.102) 由于式(5.96)已是能控标准形,所以P = I。
因此
该系统的阶跃响应容易由计算机仿真求得。由于
Kx k r 1
(5.91)
假设在t = 0时施加参考输入(阶跃函数)。因此t > 0时,该 系统的动态特性由式(5.89)和(5.91)描述,即 (5.92) 设计I型闭环伺服系统,使得闭环极点配置在期望的位置。
这里设计的将是一个渐近稳定系统,y( )趋于常值r(r为阶 跃输入),u( )趋于零。
由式(5.99),可得此闭环反馈系统的状态方程为
由式(5.99),可得此闭环反馈系统的状态方程为
输出方程为
(5.103)
y [1
0
当r为单位阶跃函数时,求解式(5.103)和(5.104),即可得
x1 0] x 2 x3
(5.104)
到y(t)对t的单位阶跃响应曲线。利用MATLAB Program 5.9,
将可轻松地求出单位阶跃响应。
MATLAB Program 5.9
% ------ Unit-step response -----% ***** Enter the state matrix A,control matrix B, output matrix C, % and direct transmission matrix D ***** A=[0 1 0;0 0 1;-160 -56 -14]; B=[0;0;160]; C=[1 0 0]; D=[0]; % ***** Enter step command and plot command ***** t=0:0.01:5; y=step(A,B,C,D,1,t); plot(t,y) grid title(‘Unit-Step Response’) xlabel(‘t Sec’) ylabel(‘Output y’)
假设被控系统的传递函数为
试设计一个I型闭环伺服系统,使得闭环极点 为 。
2 j 2 3和 - 10
假设该系统的结构与图5.9所示相同,参考输入r是阶跃函数。 [解] 定义状态变量x1,x2和x3为
x1 y
1 x2 x
2 x3 x
则该被控系统的状态空间表达式为 (5.96) 式中 (5.97)
(5.95)
因此,I型闭环伺服系统的设计转化为:对于给定的任意初 始条件e(0),设计一个渐近稳定的调节器系统,使得e(t)趋 于零。 如果由式(5.89)确定的系统是状态完全能控的,则对矩阵ABK,通过指定的期望特征值μ 1,μ 2,…,μ n,可由5.2节介绍过 的极点配置方法来确定线性反馈增益矩阵K。
因此,当t趋于无穷时,x(t)趋于定常向量x( ) 。
在稳态时,
(5.100)
() ( A BK ) x() Bk1r x
从式(5.99)减去式(5.100),可得
(t ) x () ( A BK )[ x(t ) x()] x
定义 那么 (5.101)
图5.9 被控系统具有一个积分器的I型闭环伺服系统 这里,假设y =x1。在分析中,假设参考输入r是阶跃函数。
在此系统中,采用如下的状态反馈控制规律
u [0
k
2
k 3
x1 x2 kn ] k (r x ) 1 1 伺服系统
由图中可得 (5.105) (5.106)
(5.107)
(5.108)
式中
假设由式(5.105)定义的系统是状态完全能控的。该系 统的传递函数为
相应的单位阶跃响应曲线如图5.10所示。
图5.10 例5.7设计的系统之y(t)对t的单位阶跃响应曲线
注意到
5.100),可得 () ,因此由式( x 0
由于
所以
显然,
。在阶跃响应中没有稳态误差。
注意,由于
所以
即在稳态时,控制输入u为零。
如果被控系统中没有积分器(0型被控系统),则设计I型闭 环伺服系统的基本原则是在误差比较器和系统间的前馈通道中 插入一个积分器,如图5.11所示(当不含积分器时,图5.11 所示方块图是I型闭环伺服系统的基本形式)。


在稳态时,
(5.93)
r(t)=r(常值) 注意,r(t)是阶跃输入。对t > 0,有r( )= 。用式(5.92)减去(5.93),可得
(t ) x () ( A BK )[ x(t ) x()] x
定义
(5.94)
因此,式(5.94)成为
式(5.95)描述了误差动态特征。
0 A 0 0
1 0 , 0 1 2 3
0 B 0, C [1 0 1
0]
参见图5.9并注意到n = 3,则控制输入u为 (5.98)
式中
此时,就可用极点配置方法确定状态反馈增益矩阵K。
现检验系统的能控性矩性。由于
的秩为3。 因此,该系统是状态完全能控的,并且可任意配置极点。 将式(5.98)代入式(5.96),可得 式中的r为阶跃函数。 (5.99)
5.7.1 被控系统具有积分器的I型闭环伺服系统
考虑由下式定义的线性定常系统
(5.89)
(5.90)
式中,
如前所述,假设控制输入u和系统输出y均为纯量。选择一组适
当的状态变量,例如可以选择输出量等于其中的一个状态变量 ,这里假定输出量y等于x1。
图5.9给出了被控系统具有一个积分器时 I型伺服闭环系统 的一般结构。
相关文档
最新文档