“鸡兔同笼”优质课比赛教学设计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“鸡兔同笼”优质课比赛教学设计
铜城学校何忠学
教学目标:
1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。
2、尝试用列表、假设的方法解决“鸡兔同笼”问题,使学生体会列表、假设的一般性。
3、在解决问题的过程中,培养学生的迁移思维能力。
教学重难点:
1、理解掌握解决问题的不同思路和方法。
2、学会用不同的方法解决实际生活中有关“鸡兔同笼”的问题。
教学过程:
一、游戏导入。
师:同学们,你们看到了什么?你们以前有没有学过《数青蛙》的儿歌?(学过)那好,现在让我们一起来再读一读。看来动物身上隐藏着许多数学问题,今天我们就一起来研究发生在动物身有趣的数学问题。
首先,请问同学们在生活中有没有见过鸡和兔,请看大屏幕,谁能描述一下他们从数量上讲有什么相同点和不同点。(鸡有一个头,兔也有一个头,一只鸡有2只脚,一只兔有四只脚),说得真好。如果有4只兔和3只鸡同笼,一共有多少个头和多少只脚呢?请同学们算算。算完的同学请举手说说你是怎样算的?板书(鸡的只数+兔的只数=总的头数,鸡的只数*2+兔的只数*4=腿的条数)你们能否完
成大屏幕的问题并齐读出来吗?这就是我们今天研究的问题叫鸡兔同笼。(板书课题)
二、教学新授。
1、课件出示例题并介绍,你们会解决这个问题吗?为了研究方便,我们把题目里的数字改小一点。“笼子里有若干只鸡和兔,从上面数,有8个头;从下面数,有26条腿。鸡和兔各有几只?”(说明:为了便于分析时叙述,把“26只脚”改成了“26条腿”课件出示)
2.我们一起来看看被关在同一个笼子里的鸡和兔给我们带来了什么信息?
学生理解:①鸡和兔共8只。②鸡和兔共有26条腿。③鸡有2条腿。④兔有4条腿。(课件出示)
3、猜想验证。
(1)、牛顿曾经说过:没有大胆的猜测就作不出伟大的发现。根据“鸡、兔共8只”这一信息,请你猜一猜可能有几只鸡几只兔?(多让学生猜测)我也猜猜:鸡有2只,兔有6只,对吗?为什么?、怎样才能确定同学们猜的对不对?(把鸡的腿和兔的腿加起来看等不等于26。刚才同学们就能抓住这个本质进行猜测,只是你们的猜测有些零乱,老师将你们的猜测稍加整理(师点击课件)。在这些猜测中只有一种猜测是正确的,你们能把它找出来吗?请找出它来,并将你验证的过程记录在课本P113页的表格中
(2)、假如笼子里的动物都是鸡,那么8×2=16(条腿)符合题意吗?照此类推。
鸡的只数8 7 6 5 4 3 2 1 0
兔的只数0 1 2 3 4 5 6 7 8
腿的条数16 18 20 22 24 26 28 30 32
刚才我们先将可能出现的情况一一列举,通过排除,最后找到正确答案,这种方法我们称为列举法(板书:列举法)。如果遇到数目大的时候,这种方法行吗?怎么办呢?有没有更好的方法。接下来,同学们积极开动脑筋,看看还有什么解决方法,看谁的方法最新最棒!解答后可以与同桌交流交流自己的想法。
师:有时候兔子对鸡也很好奇,它认为鸡叫起来很好玩,于是提起两条腿学鸡叫,你又会发现什么呢?(笼子里的脚少了,少的也刚好是兔子学鸡叫得数量。)也就是说,如果把笼子里的动物都看成是鸡的时候,笼子里有:8×2=16(条腿),比实际的26条腿少10条腿,那么这笼子里少的10条腿就是兔子学鸡叫得出的,即:10÷2=5(只兔),如果笼子里少了18条腿,同学们知道是几只兔子在学鸡叫吗?有时候,生活在同一笼子里的鸡看到兔子走路很好玩,于是他把两只翅膀伸出来学兔子走路,同学们说说,你会发现什么问题?(笼子里的脚多了,多的刚好是鸡学兔子走路的数量。)也就是说,如果把笼子里的动物都看着是兔子的时候,笼子里有:8×4=32(条腿)比实际的26条腿多6条腿,那么这6条腿就是鸡学兔子走路的得出的,就可以知道笼子里的鸡的只数:6÷2=3(只),如果笼子里多出40条腿,你能够知道有多少只鸡在学兔子走路呢?(有20只,笼子里多出的40条腿刚好是鸡学兔子走路得出的,即40÷2=20(只鸡)。学生
在老师的启发下列式。
(3)、假设全是鸡:(课件板书)
8×2=16(条)(如果把兔全当成鸡一共就有8*2=16条腿)
26-16=10(条)(把兔看成鸡来算,4条腿兔有当成两条腿的鸡算,每只兔就少了两条腿,10条腿是少算了兔的腿)
10÷2=5(只)兔(那把多少只兔当成鸡算就会少10条腿呢?就看10里面有几个2就是把几只兔当成了鸡来算,所以10÷2=5就是兔的只数。)
8-5=3(只)鸡(用鸡兔的总只数减去兔的只数就是鸡的只数,8-5=3只鸡)
(4)、算出来后,我们还要检验算的对不对,谁愿意口头检验。
生:3×2+5×4=26(只),5+3=8(只)。
师:看来做对了,最后写上答语。
(5)、假设全是兔
8×4=32(条)(如果把鸡全看成兔一共就有8*4=32条腿)
32-26=6(条)(把鸡当成兔来算,两条腿的鸡当成4条腿兔算,每只鸡就多了两条腿,6条腿是多算了鸡的腿)
4-2=2(假设全是兔,是把两条腿的鸡当成有4条腿的兔。所以4-2表示是一只鸡当成一只兔多算了2条腿。)
6÷2=3(只)鸡(那要把多少只鸡当成兔来算就会多算6条腿呢?就看6里面有几个2就是把几只鸡当成了兔算,所以6÷2=3就是现在鸡的只数。)
8-3=5(只)兔
小结:刚才我们假设都是鸡或都是兔,所以把这种方法叫做假设法。这是解答鸡兔同笼问题的一种基本方法。(板书:假设法)
(6)解:设鸡有X只,则兔有(8-X)只。
2X+4×(8-X)=26
32-2X=26
X=3
8-X=5
答:鸡有3只,兔有5只。
(2X代表鸡的脚数,4×(8-X)代表的是兔的脚数,加起来就是26只脚)
师:受这一解答方法的启发,你又想到什么?
D、解:设兔有X只,则鸡有(8-X)只。
4X+2×(8-X)=26
16+2X=26
X=5
8-X=3
答:鸡有3只,兔有5只。
(4X代表兔的脚数,2×(8-X)代表鸡的脚数,加起来一共是26只脚。)
……