高考数学文化素养型题

合集下载

专题数学文化及核心素养类试题精品PPT课件山东高考数学大二轮专题复习讲义(新高考)

专题数学文化及核心素养类试题精品PPT课件山东高考数学大二轮专题复习讲义(新高考)

D.公元前 6000 年到公元前 4000 年
【名校课堂】获奖PPT-专题数学文化 及核心 素养类 试题课 件(共P PT)推 荐山东 省高考 数学大 二轮专 题复习 讲义( 新高考 )推荐 (最新 版本) 推荐
答案
【名校课堂】获奖PPT-专题数学文化 及核心 素养类 试题课 件(共P PT)推 荐山东 省高考 数学大 二轮专 题复习 讲义( 新高考 )推荐 (最新 版本) 推荐
【名校课堂】获奖PPT-专题数学文化 及核心 素养类 试题课 件(共P PT)推 荐山东 省高考 数学大 二轮专 题复习 讲义( 新高考 )推荐 (最新 版本) 推荐
【名校课堂】获奖PPT-专题数学文化 及核心 素养类 试题课 件(共P PT)推 荐山东 省高考 数学大 二轮专 题复习 讲义( 新高考 )推荐 (最新 版本) 推荐
第二编 讲专题
专题八 数学文化与创新应用 第1讲 数学文化及核心素养类试题
「考情研析」 数学文化与数学知识相结合,有效考查考生的阅读理 解能力、抽象概括能力、转化与化归能力,既体现了对数学应用性的考查, 也体现了我国数学文化的源远流长.高考中多以选择题的形式出现,难度 中等.
1
PART ONE
核心知识回顾
解析 由 acosB+(b+3c)cosA=0,可得 sinAcosB+cosAsinB+3sinCcosA
=0,即 sin(A+B)+3sinCcosA=0,即 sinC(1+3cosA)=0,因为 sinC≠0,
所以 cosA=-13,由余弦定理可得 a2-b2-c2=-2bccosA=23bc=2,所以 bc
= 3 , 由 △ ABC 的 面 积 公 式 可 得 S =
14bc2-c2+b22-a22 =

高考数学二轮复习练习-专题七数学文化练典型习题提数学素养

高考数学二轮复习练习-专题七数学文化练典型习题提数学素养

一、选择题1.我国古代数学著作《九章算术》中有一衰分问题:今有北乡八千一百人,西乡七千四百八十八人,南乡六千九百一十二人,凡三乡,发役三百人,则北乡遣( )A .104人B .108人C .112人D .120人解析:选 B.由题设可知这是一个分层抽样的问题,其中北乡可抽取的人数为300×8 1008 100+7 488+6 912=300×8 10022 500=108.故选B. 2.“干支纪年法”是中国自古以来就一直使用的纪年方法.干支是天干和地支的总称.天干、地支互相配合,配成六十组为一周,周而复始,依次循环.甲、乙、丙、丁、戊、己、庚、辛、壬、癸十个符号为天干;子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥为地支.如:公元1984年为农历甲子年、公元1985年为农历乙丑年,公元1986年为农历丙寅年.则2049年为农历( )A .己亥年B .己巳年C .己卯年D .戊辰年解析:选B.法一:由公元1984年为农历甲子年、公元1985年为农历乙丑年,公元1986年为农历丙寅年,可知以公元纪年的尾数在天干中找出对应该尾数的天干,再将公元纪年除以12,用除不尽的余数在地支中查出对应该余数的地支,这样就得到了公元纪年的干支纪年.2049年对应的天干为“己”,因其除以12的余数为9,所以2049年对应的地支为“巳”,故2049年为农历己巳年.故选B.法二:易知(年份-3)除以10所得的余数对应天干,则2 049-3=2 046,2 046除以10所得的余数是6,即对应的天干为“己”.(年份-3)除以12所得的余数对应地支,则2 049-3=2 046,2 046除以12所得的余数是6,即对应的地支为“巳”,所以2049年为农历己巳年.故选B.3.(2019·山东淄博模拟)我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,问次一尺各重几何?”意思是:“现有一根金箠,长5尺,一头粗,一头细,在粗的一端截下1尺,重4斤,在细的一端截下1尺,重2斤,问依次每一尺各重多少斤?”设该金箠由粗到细是均匀变化的,其重量为M ,现将该金箠截成长度相等的10段,记第i 段的重量为a i (i =1,2,…,10),且a 1<a 2<…<a 10,若48a i =5M ,则i =( )A .4B .5C .6D .7解析:选C.由题意知,由细到粗每段的重量组成一个等差数列,记为{a n },设公差为d ,则有⎩⎪⎨⎪⎧a 1+a 2=2,a 9+a 10=4⇒⎩⎪⎨⎪⎧2a 1+d =2,2a 1+17d =4⇒⎩⎨⎧a 1=1516,d =18.所以该金箠的总重量 M =10×1516+10×92×18=15. 因为48a i =5M ,所以有48[1516+(i -1)×18]=75,解得i =6,故选C.4.《九章算术》是我国古代的数学名著,书中《均输章》有如下问题:“今有五人分五钱,令上二人所得与下三人等,问各得几何.”其意思为:已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊每人所得依次成等差数列,问五人各得多少钱?(“钱”是古代的一种重量单位)在这个问题中,丙所得为( )A .76钱 B .56钱 C .23钱 D .1钱解析:选D.因为甲、乙、丙、丁、戊每人所得依次成等差数列,设每人所得依次为a -2d 、a -d 、a 、a +d 、a +2d ,则a -2d +a -d +a +a +d +a +2d =5,解得a =1,即丙所得为1钱,故选D.5.《数术记遗》相传是汉末徐岳(约公元2世纪)所著,该书主要记述了:积算(即筹算)、太乙算、两仪算、三才算、五行算、八卦算、九宫算、运筹算、了知算、成数算、把头算、龟算、珠算、计数共14种计算方法.某研究性学习小组3人分工搜集整理该14种计算方法的相关资料,其中一人4种,其余两人每人5种,则不同的分配方法种数是( )A .C 414C 510C 55A 33A 22B .C 414C 510C 55A 22C 55A 33 C .C 414C 510C 55A 22D .C 414C 510C 55解析:选A.先将14种计算方法分为三组,方法有C 414C 510C 55A 22种,再分配给3个人,方法有C 414C 510C 55A 22×A 33种.故选A.6.我国古代的天文学和数学著作《周髀算经》中记载:一年有二十四个节气,每个节气晷(ɡuǐ)长损益相同(晷是按照日影测定时刻的仪器,晷长即为所测量影子的长度).二十四个节气及晷长变化如图所示,相邻两个节气晷长的变化量相同,周而复始.若冬至晷长一丈三尺五寸,夏至晷长一尺五寸(一丈等于十尺,一尺等于十寸),则夏至之后的那个节气(小暑)晷长是( )A.五寸B.二尺五寸C.三尺五寸D.四尺五寸解析:选B.设从夏至到冬至的晷长依次构成等差数列{a n},公差为d,a1=15,a13=135,则15+12d=135,解得d=10.所以a2=15+10=25,所以小暑的晷长是25寸.故选B.7.(2019·江西七校第一次联考)意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,8,13,…,该数列的特点是:前两个数都是1,从第三个数起,每一个数都等于它前面两个数的和,人们把这样的一列数组成的数列{a n}称为“斐波那契数列”,则a2 017·a2 019-a22 018等于()A.1 B.-1C.2 017 D.-2 017解析:选A.因为a1a3-a22=1×2-1=1,a2a4-a23=1×3-22=-1,a3a5-a24=2×5-32=1,a4a6-a25=3×8-52=-1,…,由此可知a n a n+2-a2n+1=(-1)n+1,所以a2 017a2 019-a22 018=(-1)2 017+1=1,故选A.8.《周易》历来被人们视作儒家群经之首,它表现了古代中华民族对万事万物深刻而又朴素的认识,是中华人文文化的基础,它反映出中国古代的二进制计数的思想方法.我们用近代术语解释为:把阳爻“”当作数字“1”,把阴爻“”当作数字“0”,则八卦所代表的数表示如下:依次类推,则六十四卦中的“屯”卦,符号为“”,其表示的十进制数是( )A .33B .34C .36D .35解析:选B.由题意类推,可知六十四卦中的“屯”卦的符号“”表示的二进制数为100010,转化为十进制数为0×20+1×21+0×22+0×23+0×24+1×25=34.故选B.9.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:“置如其周,令相乘也.又以高乘之,三十六成一.”该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式V ≈136L 2h .它实际上是将圆锥体积公式中的圆周率π近似取为3.那么,近似公式V ≈7264L 2h 相当于将圆锥体积公式中的π近似取为( )A .227B .258C .15750D .355113解析:选A.依题意,设圆锥的底面半径为r ,则V =13πr 2h ≈7264L 2h =7264(2πr )2h ,化简得π≈227.故选A.10.中国古代名词“刍童”原来是草堆的意思,关于“刍童”体积计算的描述,《九章算术》注曰:“倍上袤,下袤从之.亦倍下袤,上袤从之.各以其广乘之,并,以高乘之,六而一.”其计算方法是:将上底面的长乘二,与下底面的长相加,再与上底面的宽相乘;将下底面的长乘二,与上底面的长相加,再与下底面的宽相乘;把这两个数值相加,与高相乘,再取其六分之一.已知一个“刍童”的下底面是周长为18的矩形,上底面矩形的长为3,宽为2,“刍童”的高为3,则该“刍童”的体积的最大值为( )A .392B .752C .39D .6018解析:选B.设下底面的长为x ⎝⎛⎭⎫92≤x <9,则下底面的宽为18-2x 2=9-x .由题可知上底面矩形的长为3,宽为2,“刍童”的高为3,所以其体积V =16×3×[(3×2+x )×2+(2x +3)(9-x )]=-x 2+17x 2+392,故当x =92时,体积取得最大值,最大值为-⎝⎛⎭⎫922+92×172+392=752.故选B. 11.(多选)(2019·济南模拟)如图是谢宾斯基三角形,在所给的四个三角形图案中,黑色的小三角形个数构成数列{a n }的前4项,则( )A .a n =3n -1 B .a n =2n -1C .a 4=27D .a n -a n -1=2·3n -2(n ≥2) 解析:选ACD.黑色的小三角形个数构成数列{a n }的前4项,分别为a 1=1,a 2=3,a 3=3×3=32,a 4=32×3,因此{a n }的通项公式可以是a n =3n -1.12.(多选)在《增删算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关.”则下列说法正确的是( )A .此人第二天走了九十六里路B .此人第一天走的路程比后五天走的路程多六里C .此人第三天走的路程占全程的18D .此人后三天共走了42里路解析:选ABD.设此人第n 天走a n 里路,前n 天共走S n 里路.由题意可知,{a n }是首项为a 1,公比q =12的等比数列,由等比数列前n 项和公式得S 6=a 1⎝⎛⎭⎫1-1261-12=378,解得a 1=192. 在A 中,a 2=192×12=96,故A 正确; 在B 中,378-192=186,192-186=6,故B 正确;在C 中,a 3=192×14=48,48378>18,故C 错误; 在D 中,a 4+a 5+a 6=192×⎝⎛⎭⎫18+116+132=42,故D 正确.13.(多选)中国传统文化中很多内容体现了数学的“对称美”.如图所示的太极图是由黑白两个鱼形纹组成的圆形图案,充分体现了相互转化、对称统一的形式美、和谐美.定义:图象能够将圆O 的周长和面积同时等分成两部分的函数称为圆O 的一个“太极函数”,下列命题正确的是( )A .对于任意一个圆O ,其“太极函数”有无数个B .函数f (x )=ln(x 2+x 2+1)可以是某个圆的“太极函数”C .正弦函数y =sin x 可以同时是无数个圆的“太极函数”D .函数y =f (x )是“太极函数”的充要条件为函数y =f (x )的图象是中心对称图形解析:选AC.过圆心的直线都可以将圆的周长和面积等分成两部分,故对于任意一个圆O ,其“太极函数”有无数个,故A 正确;函数f (x )=ln(x 2+x 2+1)的图象如图1所示,故其不可能为圆的“太极函数”,故B 错误;将圆的圆心放在正弦函数y =sin x 图象的对称中心上,则正弦函数y =sin x 是该圆的“太极函数”,从而正弦函数y =sin x 可以同时是无数个圆的“太极函数”,故C 正确;函数y =f (x )的图象是中心对称图形,则y =f (x )是“太极函数”,但函数y =f (x )是“太极函数”时,图象不一定是中心对称图形,如图2所示,故D 错误.二、填空题14.鲁班锁是中国传统的智力玩具,起源于古代汉族建筑中首创的榫卯结构,这种三维的拼插器具内部的凹凸部分(即榫卯结构)啮合,十分巧妙,外观看是严丝合缝的十字立方体,其上下、左右、前后完全对称.从外表上看,六根等长的正四棱柱体分成三组,经90°榫卯起来,如图,若正四棱柱体的高为6,底面正方形的边长为1,现将该鲁班锁放进一个球形容器内,则该球形容器的表面积的最小值为________.(容器壁的厚度忽略不计)解析:表面积最小的球形容器可以看成长、宽、高分别为1、2、6的长方体的外接球.设其半径为R ,(2R )2=62+22+12,解得R 2=414,所以该球形容器的表面积的最小值为4πR 2=41π.答案:41π15.《九章算术》是我国古代内容极为丰富的数学名著,其中“勾股”章讲述了“勾股定理”及一些应用.直角三角形的三条边分别称为“勾”“股”“弦”.设F 1,F 2分别是椭圆x 24+y 2=1的左、右焦点,P 是第一象限内该椭圆上的一点,若线段PF 2,PF 1分别是Rt △F 1PF 2的“勾”“股”,则点P 的横坐标为________.解析:由题意知半焦距c =3,又PF 1⊥PF 2,故点P 在圆x 2+y 2=3上,设P (x ,y ),联立,得⎩⎪⎨⎪⎧x 2+y 2=3,x 24+y 2=1,得P ⎝⎛⎭⎫263,33. 故点P 的横坐标为263. 答案:26316.公元前6世纪,古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图方法,发现了黄金分割,其比值约为0.618,这一数值也可以表示为m =2sin 18°,若m 2+n =4,则m n 2cos 227°-1=________. 解析:由题设n =4-m 2=4-4sin 218°=4(1-sin 218°)=4cos 218°,m n 2cos 227°-1=2sin 18°4cos 218°2cos 227°-1=2·(2sin 18°cos 18°)cos 54°=2sin 36°sin 36°=2. 答案:217.(2019·高考全国卷Ⅱ)中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1,则该半正多面体共有________个面,其棱长为________.解析:依题意知,题中的半正多面体的上、下、左、右、前、后6个面都在正方体的表面上,且该半正多面体的表面由18个正方形,8个正三角形组成,因此题中的半正多面体共有26个面.注意到该半正多面体的俯视图的轮廓是一个正八边形,设题中的半正多面体的棱长为x,则22x+x+22x=1,解得x=2-1,故题中的半正多面体的棱长为2-1.答案:262-1。

高考数学二轮复习专题十第十九讲数学文化与核心素养习题文

高考数学二轮复习专题十第十九讲数学文化与核心素养习题文

第十九讲数学文化与核心素养1.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:“置如其周,令相乘也.又以高乘之,三十六成一.”该术相当于给出了由圆锥的底面周长l与高h,计算其体积V的近似公式V≈136l2h.它实际上是将圆锥体积公式中的圆周率π近似取为3.那么,近似公式V≈7264l2h相当于将圆锥体积公式中的π近似取为( )A.227B.258C.15750D.3551132.我国南宋著名数学家秦九韶发现了由三角形三边长求三角形的面积的“三斜求积”公式:设△ABC的三个内角A,B,C所对的边分别为a,b,c,则△ABC的面积S=√14[c2c2-(c2+c2-c22)2].若a2sinC=4sinA,(a+c)2=12+b2,则用“三斜求积”公式求得△ABC的面积为( )A.√3B.2C.3D.√63.3世纪中期,数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并因此创立了“割圆术”.利用“割圆术”,刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”设计的一个程序框图,则输出的n为(参考数据:sin15°≈0.2588,sin7.5°≈0.1305)()A.12B.24C.36D.484.(2018贵州贵阳模拟)我国明朝数学家程大位著的《算法统宗》里有一道闻名世界的题目:“一百馒头一百僧,大僧三个更无争.小僧三人分一个,大小和尚各几丁?”如图所示的程序框图反映了对此题的一个求解算法,执行程序框图,则输出的n 的值为( ) A.20 B.25 C.30D.355.(2018重庆六校联考)《九章算术》中有如下问题:“今有勾八步,股一十五步,问勾中容圆径几何.”其大意:“已知直角三角形两直角边长分别为8步和15步,问其内切圆的直径为多少步?”现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率是( ) A.3π10B.3π20C.1-3π10D.1-3π206.(2018云南昆明调研)如图所示的程序框图来源于中国古代数学著作《孙子算经》,其中定义[x]表示不超过x 的最大整数,例如[0.6]=0,[2]=2,[3.6]=3.执行该程序框图,则输出的a=( )A.9B.16C.23D.307.(2018吉林长春监测)《九章算术》卷五商功中有如下问题:今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈,问积几何?刍甍:底面为矩形的屋脊状的几何体(网格纸中粗线部分为其三视图,设网格纸上每个小正方形的边长为1),那么该刍甍的体积为( )A.4B.5C.6D.128.北宋数学家沈括的主要成就之一为隙积术,即用来计算诸如累棋、层坛的物体体积的方法.设隙积共n 层,上底由a×b 个物体组成,以下各层的长、宽依次增加一个物体,最下层(即下底)由c×d 个物体组成,沈括给出求隙积中物体总数的公式为s=c6[(2a+c)b+(2c+a)d]+c6(c-a),其中a 是上底长,b 是上底宽,c 是下底长,d是下底宽,n为层数.已知由若干个相同小球粘黏组成的隙积的三视图如图所示,则该隙积中所有小球的个数为( )A.83B.84C.85D.869.(2018福建福州模拟)如图所示的程序框图的算法思路源于我国古代著名的《孙子算经》.图中的Mod(N,m)≡n表示正整数N除以正整数m后的余数为n,例如Mod(10,3)≡1.执行该程序框图,则输出的i 等于( )A.23B.38C.44D.5810.祖暅是南北朝时代的伟大科学家,他在5世纪末提出体积计算原理,即祖暅原理:“幂势既同,则积不容异”.意思是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等.图①是从圆柱中挖去一个圆锥所得的几何体,图②、图③、图④分别是圆锥、圆台和半球,则满足祖暅原理的两个几何体为( )A.①②B.①③C.②④D.①④11.《九章算术》是我国古代数学成就的杰出代表,它的出现标志着中国古代数学形成了完整的体系.其中《方田》章有弧田面积计算问题,术曰:以弦乘矢,矢又自乘,并之,二而一.其大意是弧田面积计算公式为:弧田面积=12(弦×矢+矢×矢).弧田是由圆弧(弧田弧)和以圆弧的端点为端点的线段(弧田弦)围成的平面图形,公式中的“弦”指的是弧田弦的长,“矢”指的是弧田弧所在圆的半径与圆心到弧田弦的距离之差.现有一弧田,其弧田弦AB等于6米,其弧田弧所在圆为圆O,若用上述弧田面积计算公式算得该弧田的面积为72平方米,则cos∠AOB=()A.125B.325C.15D.72512.中国传统文化中很多内容体现了数学的“对称美”.如图所示的太极图是由黑、白两个鱼形纹组成的圆形图案,充分体现了相互转化、对称统一的形式美、和谐美.定义:图象能够将圆O的周长和面积同时等分成两部分的函数称为圆O的一个“太极函数”.给出下列命题:①对于任意一个圆O,其“太极函数”有无数个;②函数f(x)=ln(x2+√c2+1)可以是某个圆的“太极函数”;③正弦函数y=sinx可以同时是无数个圆的“太极函数”;④函数y=f(x)是“太极函数”的充要条件为函数y=f(x)的图象是中心对称图形.其中正确的命题为( )A.①③B.①③④C.②③D.①④13.如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是.14.(2018四川成都模拟)“更相减损术”是我国古代数学名著《九章算术》中的算法案例,其对应的程序框图如图所示.若输入的x,y,k的值分别为4,6,1,则输出的k的值为.15.《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称为阳马,将四个面都为直角三角形的三棱锥称为鳖臑.若三棱锥P-ABC 为鳖臑,PA⊥平面ABC,PA=AB=2,AC=4,三棱锥P-ABC 的四个顶点都在球O 的球面上,则球O 的体积为 .答案精解精析1.A 依题意,设圆锥的底面半径为r,则V=13πr 2h≈7264l 2h=7264(2πr)2h,化简得π≈227.故选A. 2.A 根据正弦定理及a 2sinC=4sinA,得ac=4.再结合(a+c)2=12+b 2,得a 2+c 2-b 2=4,则S=√14[c 2c 2-(c 2+c 2-c 22)2]=√16-44=√3,故选A.3.B 按照程序框图执行,n=6,S=3sin60°=3√32,不满足条件S≥3.10,执行循环;n=12,S=6sin30°=3,不满足条件S≥3.10,执行循环;n=24,S=12sin15°≈12×0.2588=3.1056,满足条件S≥3.10,跳出循环,输出n 的值为24,故选B. 4.B 解法一:执行程序框图,n=20,m=80,S=60+803≠100;n=21,m=79,S=63+793≠100;……;n=25,m=75,S=75+25=100,退出循环.输出n=25.故选B.解法二:由题意,得{c +c =100,3c +c 3=100,且m,n 都是整数,解得n=25,m=75,故选B.5.D 如图,直角三角形的斜边长为√82+152=17,设其内切圆的半径为r,则8-r+15-r=17,解得r=3,∴内切圆的面积为πr 2=9π,∴豆子落在内切圆外的概率P=1-9π12×8×15=1-3π20.6.C 执行程序框图,k=1,a=9,9-3·[93]≠2;k=2,a=16,16-3·[163]=1≠2;k=3,a=23,23-3·[233]=2,23-5·[235]=3,满足条件,退出循环,则输出a=23.故选C.7.B 如图所示,由三视图可还原得到几何体ABCDEF,过E,F 分别作垂直于底面的截面EGH 和FMN,可将原几何体切割成直三棱柱EHG-FNM,四棱锥E-ADHG 和四棱锥F-MBCN,易知直三棱柱的体积为12×3×1×2=3,两个四棱锥的体积相同,都为13×1×3×1=1,则原几何体的体积为3+1+1=5.故选B.8.C 由三视图知,n=5,a=3,b=1,c=7,d=5,代入公式s=c6[(2a+c)b+(2c+a)d]+c6(c-a),得s=85,故选C. 9.A Mod(11,3)≡2成立,Mod(11,5)≡3不成立,i=12;Mod(12,3)≡2不成立,i=13;Mod(13,3)≡2不成立,i=14;Mod(14,3)≡2成立,Mod(14,5)≡3不成立,i=15;Mod(15,3)≡2不成立,i=16;Mod(16,3)≡2不成立,i=17;Mod(17,3)≡2成立,Mod(17,5)≡3不成立,i=18;Mod(18,3)≡2不成立,i=19;Mod(19,3)≡2不成立,i=20;Mod(20,3)≡2成立,Mod(20,5)≡3不成立,i =21;Mod(21,3)≡2不成立,i=22;Mod(22,3)≡2不成立,i=23;Mod(23,3)≡2成立,Mod(23,5)≡3成立,Mod(23,7)≡2成立,结束循环.故输出的i=23.故选A.10.D 设截面与下底面的距离为h,则①中截面内的圆半径为h,则截面圆环的面积为π(R 2-h 2);②中截面圆的半径为R-h,则截面圆的面积为π(R -h)2;③中截面圆的半径为R-c2,则截面圆的面积为π(c -c 2)2;④中截面圆的半径为√c 2-c 2,则截面圆的面积为π(R 2-h 2).所以①④中截面的面积相等,满足祖暅原理,故选D.11.D 如图,AB=6,设CD=x(x>0),则12(6x+x 2)=72,解得x=1.设OA=y,则(y-1)2+9=y 2,解得y=5.由余弦定理得cos∠AOB=25+25-362×5×5=725,故选D.12.A 过圆心的直线都可以将圆的周长和面积等分成两部分,故对于任意一个圆O,其“太极函数”有无数个,故①正确;函数f(x)=ln(x 2+√c 2+1)的大致图象如图所示,故其不可能为圆的“太极函数”,故②错误;将圆的圆心放在正弦函数y=sinx 图象的对称中心上,则正弦函数y=sinx 是该圆的“太极函数”,从而正弦函数y=sinx 可以同时是无数个圆的“太极函数”,故③正确;函数y=f(x)的图象是中心对称图形,则y=f(x)是“太极函数”,但函数y=f(x)是“太极函数”时,图象不一定是中心对称图形,如图,故④错误,故选A.13.答案π8解析 设正方形的边长为2,则正方形的内切圆的半径为1,其中黑色部分和白色部分关于正方形的中心对称,则黑色部分的面积为π2,所以在正方形内随机取一点,此点取自黑色部分的概率P=π22×2=π8. 14.答案 4解析 x=4,y=6,k=1,k=1+1=2,因为4>6不成立,4=6不成立,所以y=6-4=2;k=2+1=3,因为4>2成立,所以x=4-2=2;k=3+1=4,因为2>2不成立,2=2成立,所以输出的k=4. 15.答案20√5π3解析 如图,在长方体中可找到符合题意的三棱锥P-ABC,则球O 的直径2R=PC=√cc 2+A c 2=√20=2√5,所以R=√5.故球O 的体积V=43πR 3=20√5π3.。

2020届高考数学大二轮复习专题八数学文化与创新应用第1讲数学文化及核心素养类试题练习文

2020届高考数学大二轮复习专题八数学文化与创新应用第1讲数学文化及核心素养类试题练习文

第1讲数学文化及核心素养类试题「考情研析」数学文化与数学知识相结合,有效考查考生的阅读理解能力、抽象概括能力、转化与化归能力,既体现了对数学应用性的考查,也体现了我国数学文化的源远流长•高考中多以选择题的形式出现,难度中等核心知识回顾1.以古代数学书籍《九章算术》《数书九章》等书为背景的数学文化类题目.2 •与高等数学相衔接的题目,如几类特殊的函数:取整函数、狄利克雷函数、符号函数.3 •以课本阅读和课后习题为背景的数学文化类题目:辗转相除法、更相减损术、秦九韶算法、二进制、割圆术、阿氏圆等.4 •以中外一些经典的数学问题为背景的题目,如:回文数、匹克定理、哥尼斯堡七桥问题、四色猜想等经典数学小问题.热点考向探究考向1 算法中的数学文化例1 (2019 •哈尔滨市第三中学高三第二次模拟)我国古代名著《庄子•天下篇》中有一句名言“一尺之棰,日取其半,万世不竭”,其意思为:一尺的木棍,每天截取一半,永远都截不完•现将该木棍依此规律截取,如图所示的程序框图的功能就是计算截取20天后所剩木棍的长度(单位:尺),则①②③处可分别填入的是()1A. i <20, S= S— r, i = 2i1B. i w 20, S= S—r, i = 2iSC. i <20, S= 2, i = i + 1S ••D. i w 20, S= ^, i = i + 1答案D1 S 1解析根据题意可知,第一天S= 2,所以满足S= ,不满足S= S— r,故排除A, B;由S框图可知,计算第二十天的剩余时,有S= 2且i = 21,所以循环条件应该是i w 20.故选D.以古代秦九韶算法,更相减损术、割圆术等为背景,将数学文化嵌入到程序框图,既强 调了算法的历史,又展示了算法的思想,解题时要弄明白计数变量和累加变量的变化规律, 理解程序框图的算法功能.我国古代数学著作《孙子算经》中有如下问题:“今有方物一束,外周一匝有三十二枚, 问积几何? ”设每层外周枚数为 a ,如图是解决该问题的程序框图,则输出的结果为( )A. 121 B . 81 C . 74 D . 49 答案 B解析 满足a <32,第一次循环:S = 1, n = 2, a = 8;满足a <32,第二次循环:S = 9, n = 3, a = 16;满足a w 32,第三次循环:S = 25, n = 4, a = 24;满足a w 32,第四次循环:S =49, n = 5, a = 32;满足 a w 32,第五次循环:S = 81, n = 6, a = 40.不满足 a w 32,输出 S 故选B.考向2数列中的数学文化例2 (2019 •陕西省高三第三次教学质量检测)我国南宋数学家杨辉 1261年所著的《详解九章算法》一书里出现了如图所示的表,即杨辉三角,这是数学史上的一个伟大成就,在 “杨辉三角”中,第 n 行的所有数字之和为 2_1,若去除所有为1的项,依次构成数列2,3,3,4,6,4,5,10,10,5,…,则此数列的前 15项和为( )A. 110 B . 114 C . 124 D . 125 答案 B解析 由题意,n 次二项式系数对应的杨辉三角形的第n + 1行,令x = 1,可得二项展开式的二项式系数的和 2n ,其中第1行为20,第2行为21,第3行为22,…以此类推,即每 行的数字之和构成首项为 1,公比为2的等比数列,则杨辉三角形中前 n 行的数字之和为 S n = 岂 =2n - 1,若除去所有为1的项,则剩下的每一行的数字的个数为 1,2,3,4,…,可以=5,所以前15项的和表示前 7行的数列之和减去所有的 项的数字之和为114,故选B.看成构成一个首项为 1,公差为2的等差数列,则Ti =n + 1人n ,令一 n + 12=15,解得n 1,即(2 7- 1) - 13= 114,即前 15以传统数学文化为载体考查数列的实际应用问题•解题的关键是将古代实际问题转化为 现代数学问题,建立等差、等比数列的模型,探索并掌握它们的一些基本数量关系,利用方 程思想求解.《张丘建算经》卷上第 22题为“今有女善织,日益功疾,初日织五尺,今一月日织九匹三丈•”其意思为:现有一善于织布的女子,从第2天开始,每天比前一天多织相同量的布,第1天织了 5尺布,现在一月(按30天计算)共织390尺布•记该女子一月中的第 n 天所织布的尺数为 a n ,贝V a i4+ a i5 + a i6 + ai 7的值为()A . 55B • 52C • 39D • 26考向3 立体几何中的数学文化例3(20i9 •六安市第一中学高三模拟 )我国齐梁时代的数学家祖暅提出了一条原理:“幕势既同,则积不容异” •意思是:两个等高的几何体若在所有等高处的水平截面的面积 相等,则这两个几何体的体积相等•椭球体是椭圆绕其轴旋转所成的旋转体•如图,将底面 直径都为2b ,高皆为a 的椭半球体和已被挖去了圆锥体的圆柱放置于同一平面3上,用平行于平面3且与平面3任意距离d 处的平面截这两个几何体, 可横截得到S 圆及S 环两截面.可 以证明S 圆=S 环总成立•据此,半短轴长为 i ,半长轴长为3的椭球体的体积是 _____________________________ •答案 4n2i 2 2 2解析 因为S 圆=S 环总成立,则半椭球体的体积为n b 2a — -n b 2a =-n b 2a ,所以椭球体3 342一4的体积为V = -n b a ,因为椭球体的半短轴长为 i ,半长轴长为3,所以椭球体的体积为 V =§ 24 2n b a = — nX1 X 3= 4n,故答案是 4 n.3依托立体几何,传播数学文化•立体几何是中国古代数学的一个重要研究内容,从中国 古代数学中挖掘素材,考查立体几何的三视图、线面的位置关系、几何体的体积等知识,既答案 B解析设从第2天开始,每天比前一天多织d 尺布,则S 30= 390,所以30X 5+30X 29 216 =390,解得d =函,所以 a i4+ a i5+ a i6 + a i7= 4a i + 58d = 4 X 5+ 58 X 1629= 52.故选 B.符合考生的认知水平,又可以引导学生关注中华优秀传统文化.《九章算术》是我国古代数学名著,它在几何学中的研究比西方早一千多年•例如堑堵指底面为直角三角形,且侧棱垂直于底面的三棱柱;阳马指底面为矩形,一侧棱垂直于底面的四棱锥.如图,在堑堵 ABC- A 1B 1G 中,AC 丄BC 若AA = AB= 2,当阳马B- AACC 体积最大 时,则堑堵 ABC-ABC 的体积为()A. 8B.型 C . 2 D . 2农 答案 C解析 由阳马的定义,知 VB- A 1ACC = ?AA ・ AC- BC= |A C- BC C £(AC + BC = 当且仅当 AC= BC= 2时等号成立,所以当阳马 B- AACC 体积最大时,则堑堵 ABC- ABC 的 1体积为2 X 2 X 2= 2,故选C.考向4概率中的数学文化 例4(2019 •皖南八校高三第三次联考 )七巧板是古代中国劳动人民发明的一种中国传统智力玩具,它由五块等腰直角三角形,一块正方形和一块平行四边形共七块板组成.清陆 以湉《冷庐杂识》卷一中写道:近又有七巧图,其式五,其数七,其变化之式多至千余•体 物肖形,随手变幻,盖游戏之具,足以排闷破寂,故世俗皆喜为之•如图是一个用七巧板拼 成的正方形,若在此正方形中任取一点,则此点取自阴影部分的概率为( )答案 A解析 设正方形的边长为 4,则正方形的面积为 S = 4X 4= 16,此时阴影部分所对应的直 角梯形的上底边长为 2眾,下底边长为3眾,高为迈,所以阴影部分的面积为 S = -1 X (2迄+3 2) X 2 = 5,根据几何概型,可得概率为P =弓=三,故选A S 16数学文化渗透到概率数学中去,不但丰富了数学的概率知识,还提高了学生的文化素 养•解决此类问题的关键是构建合理的概率模型,利用相应的概率计算公式求解.5 113 A.亦 B. 32 C. 8 D. 13 32《算法统宗》是我国古代的数学名著,书中把三角形中的田称为“圭田”,把直角梯形的田称为“邪田”,称底是“广”,称高是“正从”,“步”是丈量土地的单位•现有一邪田,广分别为十步和二十步,正从为十步,其内有一块广为八步,正从为五步的圭田•若在邪田内随机种植一株茶树,则该茶树恰好被种在圭田内的概率为2 2 4A.i5B. 5C. i5D.答案A解析根据题意,得出其示意图如图所示,题意为:在直角梯形ABC[内随机种一株茶树,求该茶树恰好被种在三角形AEF内的概率.且已知AB= 20, DC= 10, AD= 10, AE= 8,三角形18X 5X - 22AEF的高h= 5,所以该茶树被种在三角形AEF内的概率P= =応,故选A.1 1520 + 10 X 10X考向5推理与证明中的数学文化例5 (2019 •南充市第三次诊断)《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等,问各得几何•”其意思为“已知甲、乙、丙、丁、戊五人分五钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列,问五人各得多少钱?”(“钱”是古代的一种重量单位)•这个问题中,甲所得为()5 4 3 5A 5钱B. 3钱霭钱D.3钱4 3 2 3答案B解析设甲、乙、丙、丁、戊所得钱分别为a—2d, a—d, a, a+ d, a+ 2d,贝U a—2d + a—d= a+ a + d+ a+ 2d,解得a= —6d,又a—2d+ a—d+ a+ a+ d+ a+ 2d= 5,a 4 4••• a= 1,贝U a—2d= a —2X — - =:a=:,故选B.6 3 3以古代有代表意义的猜想推理为背景,考查数学文化相关知识,让学生通过逻辑推理得到结论•解题时要联系具体实例,体会和领悟归纳推理、类比推理、演绎推理的原理、内涵及特点,并会用这些方法分析、解决具体问题.(2019 •上海市奉贤区高三一模)天干地支纪年法源于中国,中国自古便有十天干与十二地支•十天干:甲、乙、丙、丁、戊、己、庚、辛、壬、癸•十二地支:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥•天干地支纪年法是按顺序以一个天干和一个地支相配,排列起来,天干在前,地支在后,天干由“甲”起,地支由“子”起,比如第一年为“甲子”,第二年为“乙丑”,第三年为“丙寅”,…,以此类推,排列到“癸酉”后,天干回到“甲” 重新开始,即“甲戌”,“乙亥”,之后地支回到“子”重新开始,即“丙子”,…,以此类推,已知2016年为丙申年,那么到改革开放100年时,即2078年为年.答案戊戌解析从2017年到2078年经过了61年,且2017年为丁酉年,61 - 10= 6余1,则2078 年的天干为戊,61 - 12= 5余1,则2078年的地支为戌,所以2078年为戊戌年.考向6数学文化与现代科学例6 2016年1月14 日,国防科工局宣布,嫦娥四号任务已经通过了探月工程重大专项领导小组审议,正式开始实施•如图所示,假设“嫦娥四号”卫星将沿地月转移轨道飞向月球后,在月球附近一点P变轨进入以月球球心F为一个焦点的椭圆轨道I绕月飞行,之后卫星在P点第二次变轨进入仍以F为一个焦点的椭圆轨道H绕月飞行.若用2C1和2C2分别表示椭圆轨道I和n的焦距,用2a1和2a2分别表示椭圆轨道I和n的长轴长,给出下列式子:① a*1 + C1 =比+ C2 :② a1 —C1 = a2 —C2 ;C1 C2③一<—:④ aa2>a1C2.a a2其中正确式子的序号是()A.①③B .①④ C .②③ D .②④答案D解析观察题图可知a1>a2, C1>C2, ••• a1+ C1>a2+ C2,即①式不正确;a1 —C1 = a2—C2= |PF| ,a1 —C1 a2 —C2 a1 a2 C1 C2即②式正确;由a1 —C1= a2—C2>0, C1>C2>0,知< ,即<,从而oa2>a1C2, > .' C1 C2 C1 C2 a1 a2即④式正确,③式不正确.(1)命题者抓住“嫦娥奔月”这个古老而又现代的浪漫话题,以探测卫星轨道为背景,抽象出共一条对称轴、一个焦点和一个顶点的两个椭圆的几何性质,并以加减乘除的方式构造两个等式和两个不等式,考查椭圆的几何性质,可谓匠心独运.(2)注意到椭圆轨道I 和n 共一个顶点 P 和一个焦点F ,题目所给四个式子涉及长半轴长 和半焦距,从焦距入手,这是求解的关键,本题对考生的数学能力进行了比较全面的考查, 是一道名副其实的小中见大、常中见新、蕴文化于现代科学技术应用之中的好题.第24届国际数学家大会会标是以我国古代数学家赵爽的弦图为基础进行设计的. 如图所 示,会标是由四个全等的直角三角形与一个小正方形拼成的一个大正方形•如果小正方形的n面积为1,大正方形的面积为25,直角三角形中较大的锐角为0,那么tan= _________答案n依题意,得大、小正方形的边长分别是 5,1 ,于是有5si n e — 5c os e = 1 0< e ,贝U si n e — c os e =5从而(si n e + c os e )2= 2 — (si n e — c os e )2= 2f ,贝y Si n e + c os e = 5,4 34n因此 sin e = 5, c os e = 5, tane = 3.故tan 0+広=真题押题 『真题模拟』1 • (2019 •浙江高考)祖暅是我国南北朝时代的伟大科学家,他提出的“幕势既同,则积 不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V 柱体=Sh,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示 (单位:cm ),则该柱体的体积(单位:cm 3) 是()A . 158B • 162C • 182D • 324 答案 B解析 如图,该柱体是一个五棱柱,棱柱的高为 6,底面可以看作由两个直角梯形组合而成,其中一个上底为 4,下底为6,高为3,另一个的上底为 2,下底为6,高为3.则底面 面积S =—厂解析n tan e +11 — tan e _7.x 3+—厂X 3= 27,因此,该柱体的体积W= 27X 6= 162.故选B.2. (2019 •北京高考)在天文学中,天体的明暗程度可以用星等或亮度来描述•两颗星的5 R星等与亮度满足m —m= lg 1,其中星等为m的星的亮度为压(k = 1,2)•已知太阳的星等是2 E2—26.7,天狼星的星等是一1.45,则太阳与天狼星的亮度的比值为()10.1 ——10.1A. 10 B • 10.1 C • lg 10.1 D • 10答案A5 E解析由题意知,m=—26.7 , m=— 1.45 ,代入所给公式得—1.45 —(—26.7)= lg2 匕R E i所以lg --= 10.1 ,所以三=1010.1.故选A.巳—23 • (2019 •湖南省高三六校联考)秦九韶是我国南宋时期的数学家,他在所著《数书九章》中提出的求多项式值的秦九韶算法,至今仍是比较先进的算法•如图所示的程序框图,是利3用秦九韶算法求一个多项式的值,若输入n, x的值分别为3, ?,则输出v的值为()A. 17B. 11.5C. 10D. 7答案B3 一一解析初始值n= 3, x = 2,程序运行过程如下:v = 2,3v = 2X + 1 = 4, n = 2,不满足n w0;3v = 4x + 1 = 7, n=1,不满足n w0;3 23v = 7X 2+ 1 = ~, n=0,满足n w0,退出循环,23输出v的值为_ = 11.5.故选B.4. (2019 •全国卷n )中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”1)•半正多面体是由两种或两种以上的正多边形围成的多面体•半正多面体体现了数学的对称美•图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有___________ 个面,其棱长为_________ •答案26 2 — 1解析先求面数,有如下两种方法.解法一:由“半正多面体”的结构特征及棱数为48可知,其上部分有9个面,中间部分有8个面,下部分有9个面,共有2X 9+ 8= 26(个)面.解法二:一般地,对于凸多面体,顶点数(V)+面数(F)—棱数(E)= 2(欧拉公式).由图形知,棱数为48的半正多面体的顶点数为24,故由V+ F—E= 2,得面数F= 2 + E—V= 2 + 48 —24 = 26.再求棱长.作中间部分的横截面,由题意知该截面为各顶点都在边长为1的正方形上的正八边形ABCDEFGH口图,设其边长为x,则正八边形的边长即为半正多面体的棱长. 连接AF,过H, G分别作HMLAF, GNLAF,垂足分别为M N 则AM= MH= NG= NF=*x.又AM + MNb NF= 1,即~22x+ x+#x= 1.解得x= 2—1,即半正多面体的棱长为2—1.『金版押题』5•《九章算术》中有一题:今有牛、马、羊食人苗•苗主责之粟五斗•羊主曰:“我羊食半马•”马主“我马食半牛•”今欲衰偿之,问各出几何•其意思是:今有牛、羊吃了别人的禾苗,禾苗主人要求赔偿五斗粟.羊主人说:“我羊所吃的禾苗只有马的一半. 马主人说:“我马所吃的禾苗只有牛的一半•”若按此比例偿还,牛、马、羊的主人各应赔偿多少粟?在这个问题中,牛主人比羊主人多赔偿(A.50斗粟B.号斗粟C.字斗粟D. 20斗粟答案C解析解法一:设羊、马、牛主人赔偿的粟的斗数分别为a, a2, a3,则这3个数依次成5 20 20 5 15等比数列,公比q= 2,所以a1 + 2a+ 4a1 = 5,解得a1 = 7,故a3=〒,a3 —a1=〒—-=〒,故选C.4 20解法二:羊、马、牛主人赔偿的比例是 1 : 2 : 4,故牛主人应赔偿5X片=20斗,羊主人1 5 20 5 15应赔偿5X 7=5斗,故牛主人比羊主人多赔偿了20-1=号斗,故选C.6 •《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵” •已知某“堑堵”的三视图如图所示,俯视图中虚线平分矩形的面积,则该“堑堵”的侧面积为()A. 2B. 4+ 2 2C. 4 + 4 2D. 4+ 6 2答案C解析由三视图知几何体为一个三棱柱,底面为等腰直角三角形,高为1,则底面三角形腰长为2,底边长为2,三棱柱高为2,所以侧面积为2X 2 + 2X 2X 2= 4 + 4 2.故选C.配套作业、选择题1 . (2019 •赤峰市高三模拟)《史记》卷六十五《孙子吴起列传第五》中有这样一道题: 齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中随机选一匹马进行一场比赛,齐王获胜的概率是(2 3 5A. 3B. 5C. 9D.答案A解析因为双方各有3匹马,所以“从双方的马匹中随机选一匹马进行一场比赛”的事件数为9种,满足“齐王获胜”这一条件的情况为:齐王派出上等马,则获胜的事件数为3;齐王派出中等马,则获胜的事件数为2;齐王派出下等马,则获胜的事件数为1;故满足“齐王获胜”这一条件的事件数为6种,6 2根据古典概型公式可得,齐王获胜的概率P= 9=3故选A.2. (2019 •南昌外国语学校高三高考适应性测试)下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a, b分别为16,20 , 则输出的a的值为()A. 0 B . 2 C.4 D . 1答案C解析输入a, b的值,分别为16,20 ,第一次循环:第一-层判断::满足a z b,进入第二层选择结构,第二层判断:不满足a>b满足a w b,故b= 20 —16= 4;第二次循环:第 -层判断:满足a z b,进入第二层选择结构,第二层判断: 满足a>b,故a= 16— 4 = 12;第三次循环:第-层判断:满足a z b,进入第二层选择结构,第二层判断: 满足a>b,故a= 12— 4 = 8;a zb ,进入第二层选择结构,第二层判断:满足 a >b .故 a = 8— 4= 4;为难,次日脚痛减一半,六朝才得到其关,要见次日行里数, “有一个人走 378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半, 走了 6天后到达目的地” •则该人第五天走的路程为( )A . 48 里B • 24 里C • 12 里D • 6 里 答案 C4 1 6a 1 1- 2 1解析 设第一天的路程为 a 1里,贝U ------------------------ 1 ---- = 378, a 1= 192,所以a 5 = 192x12.1 —24 • (2019 •河南洛阳高三阶段性考试 )《九章算术》中有如下问题:“今有牛、羊、马食 人苗,苗主责之粟五斗,羊主曰:‘我羊食半马•’马主曰:‘我马食半牛•’今欲衰偿之, 问各出几何? ”翻译为:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟•羊主人说:“我羊所吃的禾苗只有马的一半•”马主人说“我马吃的禾苗只有牛的一半•”打算 按此比率偿还,问:牛、马、羊的主人各应赔偿多少粟?已知 1斗=10升,针对这一问题, 设计程序框图如图所示,若输出k 的值为2,贝U m =()次循环,S = 50 — 7m 此时要输出k 的值,则50 — 7m = 0, 5 •我国古代数学名著《九章算术》的论割圆术中有: 以至于不可割,则与圆周合体而无所失矣” •它体现了一种无限与有限的转化过程•比如在 1 1表达式1 +中“…”即代表无限次重复, 但原式却是个定值,它可以通过方程1+-= 1x1 +1 +…x 求得x = 节1.类比上述过程,则 一.3+ 2 3+ 2 •••=( )第四次循环:第一层判断:满足 第五次循环:第一层判断:满足a =b = 4,故输出 4,选 C.3 •中国古代数学著作《算法统宗》 中有这样一个问题: “三百七十八里关,初步健步不请公仔细算相还” •其大意为: 50 代亍5010 100 B. 7 C. T D. ~答案解析 运行该程序,第一次循环, S = 50 — m k = 1; 第二循环,S = 50 — 3m , k = 2;第三解得m = 50,故选B. “割之弥细,所失弥少,割之又割,A . 3 C. 6 答案 A解析 令'3+ 2 3 + 2 •••= x (x >0),两边平方,得 3+ 2 3+ 2=x 2 3 4,即 3+ 2x = x 2, 解得 x = 3,x =— 1(舍去),故 ,3+ 2\ 3 + 2 .…=3,选 A.6. (2019 •江西省名校高三 5月联考)我国古代《九章算术》将上、下两个平行平面为矩 形的六面体称为刍童•如图是一个刍童的三视图,其中正视图及侧视图均为等腰梯形,两底 的长分别为2和6,高为2,则该刍童的体积为()100 104A.刁B. — C . 27 D . 18 答案 B解析 由题意,几何体原图为正四棱台,底面的边长分别为 2和6,高为2,所以几何体1 ; ---- 104的体积 V = 3X (4 + 36+ 4X 36) X 2=—.故选 B.3 37. (2019 •河北联考)《九章算术》是我国古代第一部数学专著,它有如下问题:“今有 圆堡瑽(c o ng ),周四丈八尺,高一丈一尺•问积几何?”意思是“今有圆柱体形的土筑小城 堡,底面周长为4丈8尺,高1丈1尺•则它的体积是(注:1丈=10尺,取n= 3)()A . 704立方尺B . 2112立方尺 C. 2115立方尺 D. 2118立方尺答案 B2CC ?h 482X 11、 ,=n r h =nX2X h = == 2112(立方尺).故选 B.4 n 4 n 128. (2019 •南宁市高三第一次适应性测试)元朝著名数学家朱世杰在《四元玉鉴》中有一 首诗:“我有一壶酒,携着游春走,遇店添一倍,逢友饮一斗,店友经三处,没了壶中酒, 借问此壶中,当原多少酒?”用程序框图表达如图所示.若将“没了壶中酒”改为“剩余原 1 1壶中3的酒量”,即输出值是输入值的3,则输入的x =()B. D. 2 2解析设圆柱体底面圆半径为r,高为h,周长为C.因为C= 2n r,所以r ,所以V2 n余金的I ,第3关收税金为剩余金的4,第4关收税金为剩余金的 5第5关收税金为剩余金的3 4 5 1,5关所收税金之和,恰好重1斤•问此人总共持金多少. 6A.丄斤B.丄斤C.丄斤D. — 斤 20 25 30 36 答案 1111 1 11111 11—2一6一徨一20x =依题意,得 2x +2X3x +I X4x ++丙%= j 即 1一加 56 1 161=1, 6x = X 解得 x =5,所以5^6x =5^6X 5=2?故选 B.10 . (2019 •陕西省高三第一次模拟 )公元263年左右,我国数学家刘徽发现当圆内接正是利用刘徽的“割圆术”思想设计的一个程序框图,则输出的(参考数据:sin 15 ° ~ 0.2588 , sin7.5 ° ~ 0.1305) A . 12 B . 24 C . 48 D . 96A .| 9 B.— 11 21 C.2I 45D .47 答案 C解析 i = 1 时,x = 2x — 1; i = 2 时,x = 2(2 x — 1) — 1 = 4x — 3; i = 3 时,x = 2(4x — 3)—1= 8x — 7; i = 4时,退出循环.此时,1 218x — 7 = -x ,解得 x = 2|.故选 C.9.我国古代数学著作《九章算术》中有如下问题:“今有人持金出五关, 前关二而税一,次关三而税一,次关四而税一,次关五而税一,次关六而税一,并五关所税,适重一斤.问 本持金几何.”其意思为:今有人持金出五关,第11关收税金为持金的2第2关收税金为剩则在此问题中,第5关收税金()解析 假设原来持金为x ,则第1关收税金1x ;第1收税金-1 1 1 1 1 1 — 2—6x =芮x ;第4关收税金5 1—2 12关收税金|1 1一 - x = _ 6 12 4X51 1x ;第5关收税金-6多边形的边数无限增加时, 多边形面积可无限逼近圆的面积, 并创立了 “割圆术”, 利用“割 圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14 ,这就是著名的“徽率” .如图n 的值为( )解析 模拟执行程序,可得 n = 6, S= 3sin60 °= ,不满足条件 S 》3.10 , n = 12, S = 6x sin30 ° = 3,不满足条件 S >3.10 , n = 24, S = 12x sin15 °~ 12x 0.2588 = 3.1056,满足条件 S >3.10 , 退出循环,输出n 的值为24.故选B.11.“杨辉三角”又称“贾宪三角”,是因为贾宪约在公元1050年首先使用“贾宪三角”进行高次开方运算,而杨辉在公元 1261年所著的《详解九章算法》一书中,辑录了贾宪 三角形数表,并称之为“开方作法本源”图•下列数表的构造思路就源于“杨辉三角” •该 表由若干行数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后 一行仅有一个数,则这个数是 ()2017 2016 2015 2014… …6 5 4 3 214033 4031 .............9 7 5 34029 ............. (II)8064 8060- ...on 16 12 8 (20)16124……•…36 28 20答案 B解析 从给出的数表可以看出,该数表每行都是等差数列,其中第一行从右到左是公差 为1的等差数列,第二行从右到左的公差为2,第三行从右到左的公差为4,…,即第n 行从右到左的公差为2n 「1,而从右向左看,每行的第一个数分别为 1 = 2X2「1,3= 3X2 0,8 = 4X2 1,20=5X2 2,48= 6X2 3,-,所以第n 行的第一个数为(n + 1) X2 ^.显然第2017行只有一个数, 其值为(2017 + 1) X 2 2017_2= 2018X 2 2015,故选 B.12. (2019 •德州市高三下学期第一次练习)正整数N 除以正整数 m 后的余数为n ,记为N= n (MOD),例如25三1(MOD6)如图所示程序框图的算法源于“中国剩余定理”,若执行该 程序框图,当输入 N= 25时,则输出N =()A. 31B. 33C. 35D. 37A . 2017X22016B . 2018X22015C. 2017X22015D. 2018X22016解析模拟程序的运行,可得N= 25,N= 26,不满足条件N三1(M0D3) N= 27,不满足条件N三1(M0D3) N= 28,满足条件N三1(M0D3)不满足条件N三1(M0D5) N= 29,不满足条件N^ 1(M0D3) N= 30,不满足条件N三1(M0D3) N= 31,满足条件N^ 1(M0D3)满足条件N^ 1(M0D5)输出N的值为31.故选A.二、填空题13 .《周易》历来被人们视作儒家群经之首,它表现了古代中华民族对万事万物深刻而又朴素的认识,是中华人文文化的基础,它反映出中国古代的二进制计数的思想方法•我们用近代术语解释为:把阳爻“”当作数字“ 1”,把阴爻“”当作数字“ 0”,则八卦所代表的数表示如下:依次类推,则六十四卦中的“屯”卦符号“”表示的十进制数是答案34解析由题意类推,可知六十四卦中的“屯”卦符号“”表示的二进制数为100010,转化为十进制数为0X2°+ 1 X 2 1+ 0X 2 2+ 0X 2 3+ 0X 2 4+ 1 X 2 5= 34.14 •《孙子算经》是我国古代的数学名著,书中有如下问题:“今有五等诸侯,共分橘子六十颗,人别加三颗•问:五人各得几何?”其意思为“有5个人分60个橘子,他们分得的橘子数成公差为3的等差数列,问5人各得多少橘子•”这个问题中,得到橘子最少的人所得的橘子个数是 _________________ •答案6亠、5X4解析设等差数列{a n},首项为a,公差为3,贝U S5 = 5a i+ — X3= 60,解得a i= 6, 即得到橘子最少的人所得的橘子个数是 6.。

人文素养考试试卷数学高三

人文素养考试试卷数学高三

考试时间:120分钟满分:100分一、选择题(每题5分,共50分)1. 下列各式中,属于有理数的是()。

A. √9B. √-16C. πD. 2/32. 若函数f(x) = x^2 - 4x + 4,则f(x)的图像是()。

A. 双曲线B. 抛物线C. 直线D. 圆3. 在三角形ABC中,∠A=60°,∠B=45°,则∠C的大小是()。

A. 75°B. 105°C. 120°D. 135°4. 下列哪个数是实数()。

A. 无理数B. 有理数C. 复数D. 以上都是5. 已知等差数列{an}的前三项分别为2,5,8,则该数列的公差是()。

A. 3B. 4C. 5D. 66. 下列函数中,在定义域内单调递增的是()。

A. f(x) = x^2B. f(x) = -x^2C. f(x) = x^3D. f(x) = -x^37. 下列哪个方程无实数解()。

A. x^2 + 4 = 0B. x^2 - 1 = 0C. x^2 + 2x + 1 = 0D. x^2 - 2x + 1 = 08. 已知数列{an}的前n项和为Sn,且S1=1,S2=3,S3=6,则数列{an}的通项公式是()。

A. an = nB. an = n^2C. an = 2nD. an = n(n+1)/29. 若等比数列{an}的首项为2,公比为3,则该数列的第5项是()。

A. 18B. 54C. 162D. 48610. 已知函数f(x) = x^3 - 3x^2 + 4x,则f'(x)的零点是()。

A. 1B. 2C. 3D. 4二、填空题(每题5分,共50分)1. 已知等差数列{an}的前三项分别为1,4,7,则该数列的公差是______。

2. 若函数f(x) = x^2 - 2ax + a^2在区间[0, 2a]上单调递增,则a的取值范围是______。

(全国通用)2020版高考数学专题八数学文化与创新应用第1讲数学文化及核心素养类试题练习理

(全国通用)2020版高考数学专题八数学文化与创新应用第1讲数学文化及核心素养类试题练习理

第1讲 数学文化及核心素养类试题「考情研析」 数学文化与数学知识相结合,有效考查考生的阅读理解能力、抽象概括能力、转化与化归能力,既体现了对数学应用性的考查,也体现了我国数学文化的源远流长.高考中多以选择题的形式出现,难度中等.核心知识回顾1.以古代数学书籍《九章算术》《数书九章》等书为背景的数学文化类题目.2.与高等数学相衔接的题目,如几类特殊的函数:取整函数、狄利克雷函数、符号函数.3.以课本阅读和课后习题为背景的数学文化类题目:辗转相除法、更相减损术、秦九韶算法、二进制、割圆术、阿氏圆等.4.以中外一些经典的数学问题为背景的题目,如:回文数、匹克定理、哥尼斯堡七桥问题、四色猜想等经典数学小问题.热点考向探究考向1 算法中的数学文化例1 (2019·哈尔滨市第三中学高三第二次模拟)我国古代名著《庄子·天下篇》中有一句名言“一尺之棰,日取其半,万世不竭”,其意思为:一尺的木棍,每天截取一半,永远都截不完.现将该木棍依此规律截取,如图所示的程序框图的功能就是计算截取20天后所剩木棍的长度(单位:尺),则①②③处可分别填入的是( )A .i <20,S =S -1i,i =2i B .i ≤20,S =S -1i,i =2i C .i <20,S =S 2,i =i +1D .i ≤20,S =S 2,i =i +1 答案 D解析 根据题意可知,第一天S =12,所以满足S =S 2,不满足S =S -1i,故排除A ,B ;由框图可知,计算第二十天的剩余时,有S =S 2,且i =21,所以循环条件应该是i ≤20.故选D.以古代秦九韶算法,更相减损术、割圆术等为背景,将数学文化嵌入到程序框图,既强调了算法的历史,又展示了算法的思想,解题时要弄明白计数变量和累加变量的变化规律,理解程序框图的算法功能.我国古代数学著作《孙子算经》中有如下问题:“今有方物一束,外周一匝有三十二枚,问积几何?”设每层外周枚数为a ,如图是解决该问题的程序框图,则输出的结果为( )A .121B .81C .74D .49答案 B解析 满足a ≤32,第一次循环:S =1,n =2,a =8;满足a ≤32,第二次循环:S =9,n =3,a =16;满足a ≤32,第三次循环:S =25,n =4,a =24;满足a ≤32,第四次循环:S =49,n =5,a =32;满足a ≤32,第五次循环:S =81,n =6,a =40.不满足a ≤32,输出S .故选B.考向2 数列中的数学文化例2 (2019·陕西省高三第三次教学质量检测)我国南宋数学家杨辉1261年所著的《详解九章算法》一书里出现了如图所示的表,即杨辉三角,这是数学史上的一个伟大成就,在“杨辉三角”中,第n 行的所有数字之和为2n -1,若去除所有为1的项,依次构成数列2,3,3,4,6,4,5,10,10,5,…,则此数列的前15项和为( )A .110B .114C .124D .125答案 B解析 由题意,n 次二项式系数对应的杨辉三角形的第n +1行,令x =1,可得二项展开式的二项式系数的和2n ,其中第1行为20,第2行为21,第3行为22,…以此类推,即每一行的数字之和构成首项为1,公比为2的等比数列,则杨辉三角形中前n 行的数字之和为S n =1-2n 1-2=2n -1,若除去所有为1的项,则剩下的每一行的数字的个数为1,2,3,4,…,可以看成构成一个首项为1,公差为2的等差数列,则T n =n (n +1)2,令n (n +1)2=15,解得n =5,所以前15项的和表示前7行的数列之和减去所有的1,即(27-1)-13=114,即前15项的数字之和为114,故选B.以传统数学文化为载体考查数列的实际应用问题.解题的关键是将古代实际问题转化为现代数学问题,建立等差、等比数列的模型,探索并掌握它们的一些基本数量关系,利用方程思想求解.《张丘建算经》卷上第22题为“今有女善织,日益功疾,初日织五尺,今一月日织九匹三丈.”其意思为:现有一善于织布的女子,从第2天开始,每天比前一天多织相同量的布,第1天织了5尺布,现在一月(按30天计算)共织390尺布.记该女子一月中的第n 天所织布的尺数为a n ,则a 14+a 15+a 16+a 17的值为( )A .55B .52C .39D .26答案 B解析 设从第2天开始,每天比前一天多织d 尺布,则S 30=390,所以30×5+30×292d =390,解得d =1629,所以a 14+a 15+a 16+a 17=4a 1+58d =4×5+58×1629=52.故选B. 考向3 立体几何中的数学文化例 3 (2019·六安市第一中学高三模拟)我国齐梁时代的数学家祖暅提出了一条原理:“幂势既同,则积不容异”.意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体的体积相等.椭球体是椭圆绕其轴旋转所成的旋转体.如图,将底面直径都为2b ,高皆为a 的椭半球体和已被挖去了圆锥体的圆柱放置于同一平面β上,用平行于平面β且与平面β任意距离d 处的平面截这两个几何体,可横截得到S 圆及S 环两截面.可以证明S 圆=S 环总成立.据此,半短轴长为1,半长轴长为3的椭球体的体积是________.答案 4π解析 因为S 圆=S 环总成立,则半椭球体的体积为πb 2a -13πb 2a =23πb 2a , 所以椭球体的体积为V =43πb 2a , 因为椭球体的半短轴长为1,半长轴长为3,所以椭球体的体积为V =43πb 2a =43π×12×3=4π, 故答案是4π.依托立体几何,传播数学文化.立体几何是中国古代数学的一个重要研究内容,从中国古代数学中挖掘素材,考查立体几何的三视图、线面的位置关系、几何体的体积等知识,既符合考生的认知水平,又可以引导学生关注中华优秀传统文化.《九章算术》是我国古代数学名著,它在几何学中的研究比西方早一千多年.例如堑堵指底面为直角三角形,且侧棱垂直于底面的三棱柱;阳马指底面为矩形,一侧棱垂直于底面的四棱锥.如图,在堑堵ABC -A 1B 1C 1中,AC ⊥BC ,若A 1A =AB =2,当阳马B -A 1ACC 1体积最大时,则堑堵ABC -A 1B 1C 1的体积为( )A.83B. 2 C .2 D .2 2 答案 C解析 由阳马的定义,知V B -A 1ACC 1=13A 1A ·AC ·BC =23AC ·BC ≤13(AC 2+BC 2)=13AB 2=43,当且仅当AC =BC =2时等号成立,所以当阳马B -A 1ACC 1体积最大时,则堑堵ABC -A 1B 1C 1的体积为12×2×2×2=2,故选C. 考向4 概率中的数学文化例 4 (2019·山西省高三高考考前适应性训练)中国是发现和研究勾股定理最古老的国家之一,古代数学家称直角三角形较短的直角边为勾,另一直角边为股,斜边为弦,其三边长组成的一组数据成为勾股数.现从1~15这15个数中随机抽取3个数,则这三个数为勾股数的概率为( )A.1910B.3910C.4455D.6455答案 C解析 从这15个数中随机抽取3个数所有基本事件个数为C 315,其中为勾股数的为(3,4,5),(6,8,10),(9,12,15),(5,12,13),共4个,故概率P =4C 315=4455,故选C.数学文化渗透到概率数学中去,不但丰富了数学的概率知识,还提高了学生的文化素养.解决此类问题的关键是构建合理的概率模型,利用相应的概率计算公式求解.数学与文化有许多奇妙的联系,如诗中有回文诗:“儿忆父兮妻忆夫”,既可以顺读也可以逆读.数学中有回文数,如343,12521等,两位数的回文数有11,22,33,…,99共9个,则三位数的回文数中,偶数的概率是________.答案 49解析 三位数的回文数为ABA ,A 共有1到9共9种可能,即1B 1,2B 2,3B 3,…B 共有0到9共10种可能,即A 0A ,A 1A ,A 2A ,A 3A ,…共有9×10=90个,其中ABA 是偶数则A 是偶数,共4种可能,即2B 2,4B 4,6B 6,8B 8.B 共有0到9共10种可能,即A 0A ,A 1A ,A 2A ,A 3A ,…共有4×10=40个,∴三位数的回文数中,偶数的概率P =4090=49. 考向5 推理与证明中的数学文化例5 (2019·南充市第三次诊断)《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等,问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分五钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列,问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为( )A.54钱B.43钱C.32钱D.53钱 答案 B解析 设甲、乙、丙、丁、戊所得钱分别为a -2d ,a -d ,a ,a +d ,a +2d ,则a -2d +a -d =a +a +d +a +2d ,解得a =-6d ,又a -2d +a -d +a +a +d +a +2d =5,∴a =1,则a -2d =a -2×(-a 6)=43a =43,故选B.以古代有代表意义的猜想推理为背景,考查数学文化相关知识,让学生通过逻辑推理得到结论.解题时要联系具体实例,体会和领悟归纳推理、类比推理、演绎推理的原理、内涵及特点,并会用这些方法分析、解决具体问题.(2019·上海市奉贤区高三一模)天干地支纪年法源于中国,中国自古便有十天干与十二地支.十天干:甲、乙、丙、丁、戊、己、庚、辛、壬、癸.十二地支:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.天干地支纪年法是按顺序以一个天干和一个地支相配,排列起来,天干在前,地支在后,天干由“甲”起,地支由“子”起,比如第一年为“甲子”,第二年为“乙丑”,第三年为“丙寅”,…,以此类推,排列到“癸酉”后,天干回到“甲”重新开始,即“甲戌”,“乙亥”,之后地支回到“子”重新开始,即“丙子”,…,以此类推,已知2016年为丙申年,那么到改革开放100年时,即2078年为________年.答案 戊戌解析 从2017年到2078年经过了61年,且2017年为丁酉年,61÷10=6余1,则2078年的天干为戊,61÷12=5余1,则2078年的地支为戌,所以2078年为戊戌年.考向6 数学文化与现代科学例6 2016年1月14日,国防科工局宣布,嫦娥四号任务已经通过了探月工程重大专项领导小组审议,正式开始实施.如图所示,假设“嫦娥四号”卫星将沿地月转移轨道飞向月球后,在月球附近一点P 变轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行.若用2c 1和2c 2分别表示椭圆轨道Ⅰ和Ⅱ的焦距,用2a 1和2a 2分别表示椭圆轨道Ⅰ和Ⅱ的长轴长,给出下列式子:①a 1+c 1=a 2+c 2;②a 1-c 1=a 2-c 2;③c 1a 1<c 2a 2;④c 1a 2>a 1c 2.其中正确式子的序号是( )A .①③ B.①④ C.②③ D.②④答案 D解析 观察题图可知a 1>a 2,c 1>c 2,∴a 1+c 1>a 2+c 2,即①式不正确;a 1-c 1=a 2-c 2=|PF |,即②式正确;由a 1-c 1=a 2-c 2>0,c 1>c 2>0,知a 1-c 1c 1<a 2-c 2c 2,即a 1c 1<a 2c 2,从而c 1a 2>a 1c 2,c 1a 1>c 2a 2.即④式正确,③式不正确.(1)命题者抓住“嫦娥奔月”这个古老而又现代的浪漫话题,以探测卫星轨道为背景,抽象出共一条对称轴、一个焦点和一个顶点的两个椭圆的几何性质,并以加减乘除的方式构造两个等式和两个不等式,考查椭圆的几何性质,可谓匠心独运.(2)注意到椭圆轨道Ⅰ和Ⅱ共一个顶点P 和一个焦点F ,题目所给四个式子涉及长半轴长和半焦距,从焦距入手,这是求解的关键,本题对考生的数学能力进行了比较全面的考查,是一道名副其实的小中见大、常中见新、蕴文化于现代科学技术应用之中的好题.第24届国际数学家大会会标是以我国古代数学家赵爽的弦图为基础进行设计的.如图所示,会标是由四个全等的直角三角形与一个小正方形拼成的一个大正方形.如果小正方形的面积为1,大正方形的面积为25,直角三角形中较大的锐角为θ,那么tan ⎝⎛⎭⎪⎫θ+π4=________.答案 -7解析 依题意,得大、小正方形的边长分别是5,1,于是有5sin θ-5cos θ=1⎝⎛⎭⎪⎫0<θ<π2,则sin θ-cos θ=15.从而(sin θ+cos θ)2=2-(sin θ-cos θ)2=4925,则sin θ+cos θ=75,因此sin θ=45,cos θ=35,tan θ=43. 故tan ⎝⎛⎭⎪⎫θ+π4=tan θ+11-tan θ=-7. 真题押题『真题模拟』1.(2019·浙江高考)祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V 柱体=Sh ,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm 3)是( )A .158B .162C .182D .324答案 B解析 如图,该柱体是一个五棱柱,棱柱的高为6,底面可以看作由两个直角梯形组合而成,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3.则底面面积S =2+62×3+4+62×3=27,因此,该柱体的体积V =27×6=162.故选B.2.(2019·北京高考)在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 2-m 1=52lg E 1E 2,其中星等为m k 的星的亮度为E k (k =1,2).已知太阳的星等是-26.7,天狼星的星等是-1.45,则太阳与天狼星的亮度的比值为( )A .1010.1B .10.1C .lg 10.1D .10-10.1答案 A解析 由题意知,m 1=-26.7,m 2=-1.45,代入所给公式得-1.45-(-26.7)=52lg E 1E 2,所以lg E 1E 2=10.1,所以E 1E 2=1010.1.故选A.3.(2019·湖南省高三六校联考)秦九韶是我国南宋时期的数学家,他在所著《数书九章》中提出的求多项式值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图,是利用秦九韶算法求一个多项式的值,若输入n ,x 的值分别为3,32,则输出v 的值为( )A .17B .11.5C .10D .7答案 B解析 初始值n =3,x =32,程序运行过程如下: v =2,v =2×32+1=4,n =2,不满足n ≤0;v =4×32+1=7,n =1,不满足n ≤0;v =7×32+1=232,n =0,满足n ≤0,退出循环,输出v 的值为232=11.5.故选B. 4.(2019·全国卷Ⅱ)中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为________.答案 26 2-1解析 先求面数,有如下两种方法.解法一:由“半正多面体”的结构特征及棱数为48可知,其上部分有9个面,中间部分有8个面,下部分有9个面,共有2×9+8=26(个)面.解法二:一般地,对于凸多面体,顶点数(V )+面数(F )-棱数(E )=2(欧拉公式).由图形知,棱数为48的半正多面体的顶点数为24,故由V +F -E =2,得面数F =2+E -V =2+48-24=26.再求棱长.作中间部分的横截面,由题意知该截面为各顶点都在边长为1的正方形上的正八边形ABCDEFGH ,如图,设其边长为x ,则正八边形的边长即为半正多面体的棱长.连接AF ,过H ,G 分别作HM ⊥AF ,GN ⊥AF ,垂足分别为M ,N ,则AM =MH =NG =NF =22x .又AM +MN +NF =1,即22x +x +22x =1.解得x =2-1,即半正多面体的棱长为2-1.『金版押题』5.《九章算术》中有一题:今有牛、马、羊食人苗.苗主责之粟五斗.羊主曰:“我羊食半马.”马主曰:“我马食半牛.”今欲衰偿之,问各出几何.其意思是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿五斗粟.羊主人说:“我羊所吃的禾苗只有马的一半.”马主人说:“我马所吃的禾苗只有牛的一半.”若按此比例偿还,牛、马、羊的主人各应赔偿多少粟?在这个问题中,牛主人比羊主人多赔偿( )A.507斗粟B.107斗粟C.157斗粟D.207斗粟 答案 C解析 解法一:设羊、马、牛主人赔偿的粟的斗数分别为a 1,a 2,a 3,则这3个数依次成等比数列,公比q =2,所以a 1+2a 1+4a 1=5,解得a 1=57,故a 3=207,a 3-a 1=207-57=157,故选C.解法二:羊、马、牛主人赔偿的比例是1∶2∶4,故牛主人应赔偿5×47=207斗,羊主人应赔偿5×17=57斗,故牛主人比羊主人多赔偿了207-57=157斗,故选C. 6.《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”.已知某“堑堵”的三视图如图所示,俯视图中虚线平分矩形的面积,则该“堑堵”的侧面积为( )A .2B .4+2 2C .4+4 2D .4+6 2答案 C解析 由三视图知几何体为一个三棱柱,底面为等腰直角三角形,高为1,则底面三角形腰长为2,底边长为2,三棱柱高为2,所以侧面积为2×2+2×2×2=4+4 2.故选C.配套作业一、选择题1.(2019·赤峰市高三模拟)《史记》卷六十五《孙子吴起列传第五》中有这样一道题:齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中随机选一匹马进行一场比赛,齐王获胜的概率是( )A.23B.35C.59D.34答案 A解析 因为双方各有3匹马,所以“从双方的马匹中随机选一匹马进行一场比赛”的事件数为9种,满足“齐王获胜”这一条件的情况为:齐王派出上等马,则获胜的事件数为3;齐王派出中等马,则获胜的事件数为2;齐王派出下等马,则获胜的事件数为1;故满足“齐王获胜”这一条件的事件数为6种,根据古典概型公式可得,齐王获胜的概率P =69=23,故选A.2.(2019·南昌外国语学校高三高考适应性测试)下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a ,b 分别为16,20,则输出的a 的值为( )A .0B .2C .4D .1答案 C解析 输入a ,b 的值,分别为16,20,第一次循环:第一层判断:满足a ≠b ,进入第二层选择结构,第二层判断:不满足a >b ,满足a ≤b ,故b =20-16=4;第二次循环:第一层判断:满足a ≠b ,进入第二层选择结构,第二层判断:满足a >b ,故a =16-4=12;第三次循环:第一层判断:满足a ≠b ,进入第二层选择结构,第二层判断:满足a >b ,故a =12-4=8;第四次循环:第一层判断:满足a ≠b ,进入第二层选择结构,第二层判断:满足a >b ,故a =8-4=4;第五次循环:第一层判断:满足a =b =4,故输出4,选C.3.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还”.其大意为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地”.则该人第五天走的路程为( )A .48里B .24里C .12里D .6里答案 C解析 设第一天的路程为a 1里,则a 1⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫1261-12=378,a 1=192,所以a 5=192×124=12. 4.(2019·河南洛阳高三阶段性考试)《九章算术》中有如下问题:“今有牛、羊、马食人苗,苗主责之粟五斗,羊主曰:‘我羊食半马.’马主曰:‘我马食半牛.’今欲衰偿之,问各出几何?”翻译为:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟.羊主人说:“我羊所吃的禾苗只有马的一半.”马主人说“我马吃的禾苗只有牛的一半.”打算按此比率偿还,问:牛、马、羊的主人各应赔偿多少粟?已知1斗=10升,针对这一问题,设计程序框图如图所示,若输出k 的值为2,则m =()A.503B.507C.103D.1007答案 B解析 运行该程序,第一次循环,S =50-m ,k =1;第二循环,S =50-3m ,k =2;第三次循环,S =50-7m ,此时要输出k 的值,则50-7m =0,解得m =507,故选B. 5.我国古代数学名著《九章算术》的论割圆术中有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”.它体现了一种无限与有限的转化过程.比如在表达式1+11+11+…中“…”即代表无限次重复,但原式却是个定值,它可以通过方程1+1x =x 求得x =5+12.类比上述过程,则 3+23+2…=( ) A .3 B.13+12 C .6 D .2 2答案 A解析 令3+23+2…=x (x >0),两边平方,得3+23+2…=x 2,即3+2x =x 2,解得x =3,x =-1(舍去),故 3+23+2…=3,选A.6.(2019·江西省名校高三5月联考)我国古代《九章算术》将上、下两个平行平面为矩形的六面体称为刍童.如图是一个刍童的三视图,其中正视图及侧视图均为等腰梯形,两底的长分别为2和6,高为2,则该刍童的体积为( )A.1003B.1043C .27D .18 答案 B解析 由题意,几何体原图为正四棱台,底面的边长分别为2和6,高为2,所以几何体的体积V =13×(4+36+4×36)×2=1043.故选B. 7.(2019·河北联考)《九章算术》是我国古代第一部数学专著,它有如下问题:“今有圆堡瑽(cōng),周四丈八尺,高一丈一尺.问积几何?”意思是“今有圆柱体形的土筑小城堡,底面周长为4丈8尺,高1丈1尺.则它的体积是(注:1丈=10尺,取π=3)( )A .704立方尺B .2112立方尺C .2115立方尺D .2118立方尺答案 B 解析 设圆柱体底面圆半径为r ,高为h ,周长为C .因为C =2πr ,所以r =C 2π,所以V =πr 2h =π×C 24π2×h =C 2h 4π=482×1112=2112(立方尺).故选B. 8.(2019·南宁市高三第一次适应性测试)元朝著名数学家朱世杰在《四元玉鉴》中有一首诗:“我有一壶酒,携着游春走,遇店添一倍,逢友饮一斗,店友经三处,没了壶中酒,借问此壶中,当原多少酒?”用程序框图表达如图所示.若将“没了壶中酒”改为“剩余原壶中13的酒量”,即输出值是输入值的13,则输入的x =( )A.35B.911C.2123D.4547答案 C解析 i =1时,x =2x -1;i =2时,x =2(2x -1)-1=4x -3;i =3时,x =2(4x -3)-1=8x -7;i =4时,退出循环.此时,8x -7=13x ,解得x =2123.故选C. 9.我国古代数学著作《九章算术》中有如下问题:“今有人持金出五关,前关二而税一,次关三而税一,次关四而税一,次关五而税一,次关六而税一,并五关所税,适重一斤.问本持金几何.”其意思为:今有人持金出五关,第1关收税金为持金的12,第2关收税金为剩余金的13,第3关收税金为剩余金的14,第4关收税金为剩余金的15,第5关收税金为剩余金的16,5关所收税金之和,恰好重1斤.问此人总共持金多少.则在此问题中,第5关收税金( )A.120斤B.125斤C.130斤D.136斤 答案 B解析 假设原来持金为x ,则第1关收税金12x ;第2关收税金13⎝ ⎛⎭⎪⎫1-12x =12×3x ;第3关收税金14⎝ ⎛⎭⎪⎫1-12-16x =13×4x ;第4关收税金15⎝ ⎛⎭⎪⎫1-12-16-112x =14×5x ;第5关收税金16⎝ ⎛⎭⎪⎫1-12-16-112-120x =15×6x .依题意,得12x +12×3x +13×4x +14×5x +15×6x =1,即⎝ ⎛⎭⎪⎫1-16x =1,56x =1,解得x =65,所以15×6x =15×6×65=125.故选B.10.(2019·陕西省高三第一次模拟)公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出的n 的值为( )(参考数据:sin15°≈0.2588,sin7.5°≈0.1305)A .12B .24C .48D .96答案 B解析 模拟执行程序,可得n =6,S =3sin60°=332,不满足条件S ≥3.10,n =12,S =6×sin30°=3,不满足条件S ≥3.10,n =24,S =12×sin15°≈12×0.2588=3.1056,满足条件S ≥3.10,退出循环,输出n 的值为24.故选B.11.“杨辉三角”又称“贾宪三角”,是因为贾宪约在公元1050年首先使用“贾宪三角”进行高次开方运算,而杨辉在公元1261年所著的《详解九章算法》一书中,辑录了贾宪三角形数表,并称之为“开方作法本源”图.下列数表的构造思路就源于“杨辉三角”.该表由若干行数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数是( )2017 2016 2015 2014……6 5 4 3 2 14033 4031 4029……………11 9 7 5 38064 8060……………………20 16 12 816124…………………………36 28 20…………………………A .2017×22016 B .2018×22015 C .2017×22015 D .2018×22016答案 B解析从给出的数表可以看出,该数表每行都是等差数列,其中第一行从右到左是公差为1的等差数列,第二行从右到左的公差为2,第三行从右到左的公差为4,…,即第n行从右到左的公差为2n-1,而从右向左看,每行的第一个数分别为1=2×2-1,3=3×20,8=4×21,20=5×22,48=6×23,…,所以第n行的第一个数为(n+1)×2n-2.显然第2017行只有一个数,其值为(2017+1)×22017-2=2018×22015,故选B.12.(2019·德州市高三下学期第一次练习)正整数N除以正整数m后的余数为n,记为N≡n(MOD m),例如25≡1(MOD6).如图所示程序框图的算法源于“中国剩余定理”,若执行该程序框图,当输入N=25时,则输出N=( )A.31B.33C.35D.37答案 A解析模拟程序的运行,可得N=25,N=26,不满足条件N≡1(MOD3),N=27,不满足条件N≡1(MOD3),N=28,满足条件N≡1(MOD3),不满足条件N≡1(MOD5),N=29,不满足条件N ≡1(MOD3),N =30,不满足条件N ≡1(MOD3),N =31,满足条件N ≡1(MOD3),满足条件N ≡1(MOD5),输出N 的值为31.故选A.二、填空题13.《周易》历来被人们视作儒家群经之首,它表现了古代中华民族对万事万物深刻而又朴素的认识,是中华人文文化的基础,它反映出中国古代的二进制计数的思想方法.我们用近代术语解释为:把阳爻“”当作数字“1”,把阴爻“”当作数字“0”,则八卦所代表的数表示如下:依次类推,则六十四卦中的“屯”卦符号“”表示的十进制数是________.答案 34 解析 由题意类推,可知六十四卦中的“屯”卦符号“”表示的二进制数为100010,转化为十进制数为0×20+1×21+0×22+0×23+0×24+1×25=34.14.《孙子算经》是我国古代的数学名著,书中有如下问题:“今有五等诸侯,共分橘子六十颗,人别加三颗.问:五人各得几何?”其意思为“有5个人分60个橘子,他们分得的橘子数成公差为3的等差数列,问5人各得多少橘子.”这个问题中,得到橘子最少的人所得的橘子个数是________.答案 6解析 设等差数列{a n },首项为a 1,公差为3,则S 5=5a 1+5×42×3=60,解得a 1=6,即得到橘子最少的人所得的橘子个数是6.。

2023高考题数学文化试题

2023高考题数学文化试题

2023高考题数学文化试题数学文化作为高考科目之一,对于考生来说是一个非常重要的科目。

在2023年的高考中,数学文化试题将考察考生的数学知识、思维能力以及解决问题的能力。

下面将为大家介绍2023高考题数学文化试题的内容和要求。

一、选择题选择题是数学文化试题的基础部分,考察考生对基本概念、定理和公式的理解和运用能力。

考生需要根据题目的要求,在给出的选项中选择一个正确的答案。

例如:1. 已知函数f(x)在区间[a, b]上连续,则下列哪个说法是正确的?A. f(x)在区间[a, b]上一定有极大值和极小值。

B. f(x)在区间(a, b)上一定有极大值和极小值。

C. f(x)在区间[a, b]上一定有最大值和最小值。

D. f(x)在区间(a, b)上一定有最大值和最小值。

考生需要根据函数f(x)在区间上的连续性,选择一个正确的说法。

二、填空题填空题考察考生对数学知识的掌握和运用能力。

考生需要根据题目给出的条件,利用所学的数学方法进行计算,并填写正确的答案。

例如:2. 已知三角形ABC,AB=AC,∠B=60°,则∠ACB的度数是________。

考生需要利用三角形内角和定理和角度的概念,计算出∠ACB的度数,并填写在横线上。

三、解答题解答题是数学文化试题中较为复杂的部分,要求考生具备较强的数学思维和解决问题的能力。

考生需要根据题目的要求,运用所学的数学知识和方法,解决实际问题,并给出详细的解题过程和答案。

例如:3. 已知函数f(x)=2x^2-3x+1,求函数f(x)的最大值和最小值。

考生需要利用函数的导数和极值的概念,求出函数f(x)的导函数和零点,并判断最大值和最小值的存在性,并给出最大值和最小值的值。

综上所述,2023高考题数学文化试题将考察考生的数学知识、思维能力以及解决问题的能力。

考生需要通过选择题、填空题和解答题,全面展示自己的数学水平和能力。

在备考过程中,考生需要牢固掌握数学的基本概念、定理和公式,多做练习题,提高解题的能力和速度。

高考数学卷里的亮点———“数学文化”题

高考数学卷里的亮点———“数学文化”题

哈尔滨师范大学附属中学刘冰2017年,高考考试大纲修订内容中增加了对数学文化的要求,但是高考数学试题中早就出现过以数学文化为背景的新颖命题,经过持续发展,在2018年高考中呈现出了求新、求变的效果.把历史和文化内容引入高考数学,为高考数学题打上了文化的烙印.教师应在平时的教学中弘扬中国传统文化,吸收世界文化的精华,引导学生胸怀祖国,放眼世界.例1(2018年全国新课标I,理10)下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,A C.△ABC的三边所围成的区域记为I,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自I,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p3解析:设AB=a,A C=b,BC=a2+b2,√设整个图形的面积为S则p1=ab2S,p2=1S{π(a2)22+π(b2)22-[π(a2+b2√2)22-1 2ab]}=ab2S=p1故选A.【数学文化】古希腊数学家希波克拉底发现的一条平面几何里应用广泛的优美定理———月牙定理,指以直角三角形两条直角边为直径向外做两个半圆,以斜边为直径向内做半圆,则三个半圆所围成的两个月牙型面积之和等于该直角三角形的面积.本题依据这一定理考查几何概型问题.例2(2017年全国卷II,理3)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏B.3盏C.5盏D.9盏解析:设顶层灯数为a1,q=2,s7=a1(1-27)1-2=381,解得a1=3.故选B.【数学文化】《算法统宗》,又名《直指算法统宗》《新编直指算法统宗》,明代数学家程大位撰,共17卷.1592年编成《算法统宗》共列算题595道,以珠算为主要的计算工具,卷一介绍数学常识,卷二介绍珠算,卷三以后分别为方田、粟布、衰分、少广、分田截积、商功、均输、盈亏、方程、勾等,第十七卷附以难题杂法,又列有14个纵横图.本题以数学史中《算法统宗》的一个问题为包装,考查数列问题.例3(2016年全国新课标II,理8)中国古代有计算多项式值的秦九韶算法,实现该算法的程序框图见下页.执行该程序框图,若输入的x=2,n=2,依次输入的a 为2,2,5,则输出的s=.(A)7(B)12(C)17(D)34解析:第一次运算:s=0×2+2=2,第二次运算:s=2×2+2=6,第三次运算:s=6×2+5=17,故选C.【数学文化】秦九韶算法是中国南宋时期的数学家秦九韶提出的一种多项式简化算法.在著作《数书九章》中提出了这一先进的多项式简化算法.一般一元n次多项式的求值需要经过n(n+1)2次乘. All Rights Reserved.a ,ba ≠ba >ba =a -bb =b-aa法和n 次加法,而秦九韶算法只需要n 次乘法和n 次加法.在人工计算时,大大简化了运算过程.本题以数学史中《秦九韶算法》的问题为背景,考查程序框图问题.例4(2015年全国卷II,理8)下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入a ,b 分别为14,18,则输出的a =.(A )0(B )2(C )4(D )14解析:逐次运行程序,直至程序结束得出a .a=14,b =18.第一次循环:14≠18且14<18,b =18-14=4;第二次循环:14≠4且14>4,a=14-4=10;第三次循环:10≠4且10>4,a=10-4=6;第四次循环:6≠4且6>4,a=6-4=2;第五次循环:2≠4且2<4,b =4-2=2;第六次循环:a=b =2,跳出循环,输出a=2,故选B.【数学文化】更相减损术出自《九章算术》中的求最大公约数的算法,原本是为约分而设计的,但它适用于任何需要求最大公约数的场合.本题将更相减损术与程序框图相结合,加大了该问题的考查难度.考生若能看出此程序框图的功能,便很容易解决.例5(2015年湖北卷,理2)我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓有人送来米1534石,验得米内夹谷,254粒内夹谷28粒,则这批米内夹谷约为(A )134石(B)169石(C)338石解析:254粒和1534致相同的,设1534解得x =169,故这批米内夹谷约为169石.【数学文化】中的“米谷粒分”问题,体.本题以《数书九章》为载体,例6(2018年全国新课标II,理8)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是()A.112B.114C.115D.118解析:不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有n =C 210=45种不同的情况,其中和等于30的有7+23=30,11+19=30,13+17=30,共m =3种不同的情况,则所求的概率p =m n =345=115,故选C.【数学文化】在1742年给欧拉的信中,哥德巴赫提出了如下猜想:任一大于2的偶数都可写成两个素数之和.但是哥德巴赫自己无法证明它,于是就写信请教赫赫有名的大数学家欧拉帮忙证明,但是一直到死,欧拉也无法证明.1966年,陈景润证明了“1+2”成立,即“任一充分大的偶数都可以表示成二个素数的和,或是一个素数和一个半素数的和”.本题依据这一定理,考查古典概型问题.“数学文化”题是经典与创新的完美结合,也是近几年全国及各省份高考数学题中的一大亮点.我们在教学中应引导学生多多了解中国数学史及世界数学史,以便学生在高考中更好地发挥.编辑/王一鸣E-mail:***************考试KAOSHI. All Rights Reserved.。

数学文化试题库-精简版

数学文化试题库-精简版

第一、二章-数学是什么与数学简史一、单选题数学素养不包括()A、从数学的角度看问题B、控制问题中的因素C、有条理地理性思考D、解决问题时的逻辑能力正确答案:B柯朗是()的数学家A、英国B、美国C、德国D、法国正确答案:B解析:美国数学家柯朗“万物皆数”是()的观点A、牛顿B、高斯C、笛卡尔D、毕达哥拉斯正确答案:D解析:毕达哥拉斯学派提出万物皆数发现无理数的第一人是()A、毕达哥拉斯B、希帕索斯C、泰勒斯D、阿基米德正确答案:B毕达哥拉斯定理的发现庆祝时当时宰的是()A、马B、羊C、牛D、老虎正确答案:C《几何原本》的作者是()A、牛顿B、高斯C、笛卡尔D、欧几里得正确答案:D在世界数学史上第一次将圆周率π值计算到小数点后的第7位的人是()A、刘徽B、杨辉C、祖冲之D、秦九韶正确答案:C目前我们采用十进制和()有关。

A、人的十指B、宗教信仰C、天文观测D、以上都不对正确答案:A中国数学史上最先完成勾股定理的证明出自()A、《周髀算经》B、《四元玉鉴》C、《数学九章》D、以上均不是正确答案:A宋元四大家不包括()A、李冶B、杨辉C、祖冲之D、朱世杰正确答案:C数学起源的河流地域不包括()A、尼罗河B、黄河和长江C、幼发拉底河和底格里斯河D、亚马逊河正确答案:D解析:尼罗河黄河和长江幼发拉底河和底格里斯河恒河和印度河是四大发源地爱因斯坦何时提出广义相对论()A、2020年B、1800年C、1900年D、1915年正确答案:D二、判断题数学是我们永远不知道说什么,也不知道我们说的是否对的一门学科。

()正确答案:正确数学是哲学的一部分。

()正确答:正确数学文化课的用到的数学基础知识只有初等数学。

()正确答案:错误学习数学文化课程只需要学习高中的课程即可。

()正确答案:错误数学文化课与高等数学课程没有什么区别。

()正确答案:错误数学不仅是一些知识还是一种素质或素养。

()正确答案:正确数学素养不是与生俱来的,是在学习和实践中培养的。

数学文化题目及解答

数学文化题目及解答

数学文化题目及解答数学文化题目及解答(一)1、毕达哥拉斯学派发现第一个不能被整数比的数是根号二2、数学是研究现实世界中的数量关系和空间形式:恩格斯3、四色猜想的提出者:英国人古德里4、不属于数学起源的河谷地带:密西西比河5、平面图形对称中用到的三种运动:平移折叠旋转7、现代数学起源于:19世纪20年8、相容的体系一定是不完全的,得出这个结论的是:哥德尔第一定理9、高等数学的研究范围不包括:常量10、反证法是依据逻辑学中的:排中律11、被称为理发师悖论的悖论是:罗素悖论12:、上海路佳明发现的元朝玉桂:1986年13、1993年,经哥德尔证明,把“连续统假设”加紧急合论的zf 系统中是相容的,不会导致矛盾:康托集合论14、被积函数不连续,其定积分也可能存在的理论的提出者:黎曼15、根据两个事物之间的相同或相拟之处,推知她们在其他方面也有可能相同或相拟的推理方法:类比16、极限理论的创立者:柯西18、.下列不属于黄金分割点的是(C)A.印堂 B. 膝盖 C.鼻子D都不对19、5个平面分空间,最多可分为(C)A22 B25 C26 D2820、.S(N)中任意两个元素,相继作用的结果仍保持N整体不变,仍在S(N)中,称之为S(N)中的运算满足(B)A幺元律B封闭率C结合律D都不对21、南开大学每年出的杂志,收录数学文化课的学生优秀读书报告:数学之美22、下列公式中不对称的是(A)A.勾股定理B海伦定理C正玄定理D都不对23、为了庆祝毕达哥拉斯定理的发现,当时的毕达哥拉斯学派宰了什么:牛24、《几何学》的作者是:笛卡尔25、直角三角形的两直角边的平方和等于斜边的平方这一定理在西方叫做毕达哥拉斯定理26、1820-1870年是现代数学的(C)A.形成阶段 B.繁荣阶段 C.酝酿阶段 D.衰落阶段27、下列不属于形式的公理化方法在逻辑上所要满足的要求的是:客观性28、数学文化这个词最早出现于(C)A.1986 B. 1974 C.1990 D.199629、大多数植物的花瓣数都符合(C)A.黄金分割 B.素数分割C裴波那契数列 D.都不对1、保持平面上任意两点间距离不变的运动是保距变换:对2、父女关系与夫妻关系是一种对称关系:不是,错3、之有数学专业的人在需要数学素养:错4、不懂数学的人也可以搞社会学:错5、数学的研究对象和具体的自然科学的研究对象很不一样,具有、、、:对6、近代数学时期是公元17世纪到19世纪,和工业革命、天文、航天业的发展有关。

以数学文化背景的高考数学命题

以数学文化背景的高考数学命题

数学文化背景的高考试题背景一:杨辉三角杨辉三角,又称贾宪三角形,帕斯卡三角形,是二项式系数在三角形中的一种几何排列。

下图的表在我国南宋数学家杨辉1261年所著的《详解九章算法》一书里就出现了。

1.如图,一个类似杨辉三角的数阵,则(1)第9行的第2个数是66;(2)若第n(n≥2)行的第2个数为291,则n=18.2.中国古代数学史曾经有自己光辉灿烂的篇章,其中“杨辉三角”的发现就是十分精彩的一页.而同杨辉三角齐名的世界著名的“莱布尼茨三角形”如图所示,从莱布尼茨三角形可以看出:排在第10行从左边数第3个位置上的数值是()A.B.C.D.3.[2006湖北L-15]将杨辉三角(如图(1))中的每一个数都换成分数,就得到一个如图(2)所示的分数三角形,称为莱布尼茨三角形.从莱布尼茨三角形可以看出:,其中x=r+1.背景二:古希腊多边形数教材背景:必修⑤数列引入1.[2009湖北L-W-10]古希腊人常用小石子在沙滩上摆成各种形状来研究数。

比如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似的,称图2中的1,4,9,16,…这样的数为正方形数。

下列数中既是三角形数又是正方形数的是A.289B.1024C.1225D.13782.[2012湖北W-17]传说古希腊毕达哥拉斯学派的数学家经常在沙滩上面画点或用小石子表示数。

他们研究过如图所示的三角形数:将三角形数1,3, 6,10,…记为数列{a n },将可被5整除的三角形数按从小到大的顺序组成一个新数列{b n },可以推测:(Ⅰ)b 2012是数列{an}中的第______项;(Ⅱ)b 2k-1=______。

(用k 表示)3.[2013湖北L-14]古希腊毕达哥拉斯学派的数学家研究过各种多边形数。

如三角形数1,3,6,10,…,第n 个三角形数为()2111222n n n n +=+。

记第n 个k 边形数为(),N n k ()3k ≥,以下列出了部分k 边形数中第n 个数的表达式:三角形数 ()211,322N n n n =+ 正方形数 ()2,4N n n =五边形数 ()231,522N n n n =-六边形数 ()2,62N n n n =- ……可以推测(),N n k 的表达式,由此计算()10,24N = 。

高考数学文化试题及答案

高考数学文化试题及答案

高考数学文化试题及答案1. 根据勾股定理,直角三角形的斜边的平方等于两直角边的平方和。

如果直角三角形的两直角边分别为3和4,那么斜边的长度是多少?A. 5B. 6C. 7D. 8答案:A2. 圆周率π是一个无限不循环小数,它在数学和科学中有着广泛的应用。

请问π的近似值是多少?A. 3.14B. 3.14159C. 22/7D. 44/13答案:B3. 黄金分割是指将一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比,这个比值用希腊字母φ表示。

请问φ的近似值是多少?A. 0.618B. 1.618C. 0.618 + 1D. 1.618 + 1答案:B4. 复数是实数和虚数的结合体,形式为a+bi,其中a和b是实数,i 是虚数单位,满足i^2=-1。

如果复数z=2+3i,那么z的共轭复数是什么?A. 2-3iB. 2+3iC. -2-3iD. -2+3i答案:A5. 函数f(x)=x^2在区间[-1,1]上的最大值和最小值分别是多少?A. 最大值:1,最小值:0B. 最大值:1,最小值:-1C. 最大值:0,最小值:-1D. 最大值:0,最小值:1答案:A6. 几何级数是指每一项都是前一项的固定倍数的数列。

如果一个几何级数的首项是2,公比是3,那么它的第五项是多少?A. 486B. 729C. 972D. 1458答案:B7. 矩阵是数学中的一种重要工具,用于表示和处理线性方程组。

如果矩阵A=\[\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}\],那么矩阵A的行列式是多少?A. 2B. -2C. 5D. -5答案:B8. 概率论是研究随机事件发生可能性的数学分支。

如果一个袋子里有5个红球和3个蓝球,随机抽取一个球,抽到红球的概率是多少?A. 5/8B. 3/8C. 5/3D. 3/5答案:A9. 微积分是高等数学中的一个重要分支,它包括微分和积分两个部分。

高考数学文化的深度考查典型试题及解析

高考数学文化的深度考查典型试题及解析

高考数学文化的深度考查典型试题及解析1.【2019年新课标Ⅰ卷】我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A. 516B. 1132C. 2132D. 11162.我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,问次一尺各重几何?”意思是:“现有一根金杖,长5尺,一头粗,一头细,在粗的一端截下1尺,重4斤;在细的一端截下1尺,重2斤;问依次每一尺各重多少斤?”设该金杖由粗到细是均匀变化的,其重量为M ,现将该金杖截成长度相等的10段,记第i 段的重量为()1,2,,10i a i =,且1210a a a <<<,若485i a M =,则i =A. 4B. 5C. 6D. 73. 【2019年新课标Ⅱ卷】2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日2L 点的轨道运行.2L 点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,2L 点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程: 121223()()M M M R r R r r R+=++. 设r R α=,由于α的值很小,因此在近似计算中34532333(1)ααααα++≈+,则r 的近似值为 A.21M R M B. 212M R M C. 2313M R M D. 2313M R M 4. 古希腊亚历山大时期的数学家怕普斯(Pappus ,约300~约350)在《数学汇编》第3卷中记载着一个定理:“如果同一平面内的一个闭合图形的内部与一条直线不相交,那么该闭合图形围绕这条直线旋转一周所得到的旋转体的体积等于闭合图形面积乘以重心旋转所得周长的积”如图,半圆O 的直径6AB cm =,点D 是该半圆弧的中点,那么运用帕普斯的上述定理可以求得,半圆弧与直径所围成的半圆面(阴影部分个含边界)的重心G 位于对称轴OD 上,且满足OG = 。

2021高考数学一轮复习:专项突破 提素养·数学文化

2021高考数学一轮复习:专项突破 提素养·数学文化

专项突破提素养·数学文化1.[干支纪年法]干支纪年法源于中国,中国自古便有十天干与十二地支.十天干即甲、乙、丙、丁、戊、己、庚、辛、壬、癸;十二地支即子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.干支纪年法是按顺序将一个天干和一个地支相配,排列起来,天干在前,地支在后,天干由“甲”起,地支由“子”起.例如,第一年为“甲子”,第二年为“乙丑”,第三年为“丙寅”,…,排列到“癸酉”后,天干回到“甲”重新开始,即“甲戌”,“乙亥”,然后地支回到“子”重新开始,即“丙子”,以此类推.已知1949年为“己丑”年,那么到中华人民共和国成立80周年时为() A.丙酉年 B.戊申年 C.己亥年 D.己酉年2.[高斯算法]德国数学家高斯在年幼时进行的1+2+3+…+100的求和运算中体现了倒序相加法的原理,该原理基于所给数据前后对应项的和呈现一定的规律而产生,此方法也称为高斯算法.现有函数f (x)=2x3m+6 057(m>0),则f (1)+f (2)+f (3)+…+f (m+2 018)等于()A.m+2 0183B.2m+4 0363C.m+4 0366D.2m+4 03763.[2020贵阳四校联考]中国古代数学名著《算法统宗》中有一道题:“今有七人差等均钱,甲乙均七十七文,戊己庚均七十五文.”意思是甲、乙、丙、丁、戊、己、庚七个人分钱,他们所分钱数构成等差数列,甲、乙两人共分77文,戊、己、庚三人共分75文.问:丙、丁两人各分多少文钱?()A.丙分34文,丁分31文B.丙分37文,丁分40文C.丙分40文,丁分37文D.丙分31文,丁分34文4.[2020湖北八校第一次联考]鲁班锁是中国古代传统的土木建筑固定结合器,也是广泛流传于中国民间的智力玩具,它起源于中国古代建筑的榫卯结构.这种三维的拼插器具内部的凹凸部分(即榫卯结构)啮合,外观则是严丝合缝的十字几何体,十分巧妙.鲁班锁的种类各式各样,其中,六根和九根的鲁班锁最为著名.某种九根的鲁班锁由如图2 - 1所示的九根木榫拼成,每根木榫都是由一根正四棱柱状的木条挖出一些凹槽制成的.若九根正四棱柱的底面边长均为1,六根短条的高均为3,三根长条的高均为5,现将拼好的鲁班锁(如图2 - 2)放进一个圆柱形容器内,使其最高的一个正四棱柱形木榫的上、下底面分别在圆柱的两个底面内,则该圆柱形容器的体积(容器壁的厚度忽略不计)的最小值为()图2 - 1图2 - 2A.1354π B.652π C.135π D.1254π5.[幻方]我国古代的《洛书》中记载着世界上最古老的一个幻方(如图2 - 3(1)所示).将1,2,…,9填入3×3的方格内(如图2 - 3(2)所示),使三行、三列及两条对角线上的三个数字之和都等于15,这个方阵叫作3阶幻方.一般地,将连续的正整数1,2,3,…,n2填入n×n的方格中,使得每行、每列及两条对角线上的数字之和都相等,这个方阵叫作n(n≥3)阶幻方.记n阶幻方的对角线上的数的和为N n,如N3=15,那么N9= ()(1)(2)图2 - 3A.41B.45C.369D.3216.[刍童]“刍童”是中国古代的一个数学名词,关于“刍童”体积计算的描述,《九章算术》注曰:“倍上袤,下袤从之.亦倍下袤,上袤从之.各以其广乘之,并,以高若深乘之,皆六而一.”其计算方法是:将上底面的长乘二,与下底面的长相加,再与上底面的宽相乘;将下底面的长乘二,与上底面的长相加,再与下底面的宽相乘;把这两个数值相加,与高相乘,再取其六分之一.已知一个“刍童”的下底面是周长为18的矩形,上底面矩形的长为3,宽为2,“刍童”的高为3,则该“刍童”的体积的最大值为()A.392B.752C.39D.60187.[割圆术]刘徽(约公元225年—295年)是魏晋期间伟大的数学家,是中国古典数学理论的奠基人之一.他提出的“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”(即割圆术)蕴含了极限思想.割圆术的核心思想是将一个圆的内接正n边形等分成n个等腰三角形(图2 - 4为n=9时的情形),当n变得很大时,这n个等腰三角形的面积之和近似等于圆的面积.运用割圆术的思想,得到sin 2°的近似值为()图2 - 4A.π90B.π180C.π270D.π360答案及解析1.D 易知到2029年,中华人民共和国成立80周年.从1949年到2029年经过80年,且1949年为“己丑”年,80÷10=8,则2029年对应的天干为己;80÷12=6……8,则2029年对应的地支为酉.故选D .2.A 设x +y =m +2 019,则f (x )+f (y )=2x3m+6 057+2y3m+6 057=2(x+y)3m+6 057=2(m+2 019)3(m+2 019)=23. 所以f (1)+f (2)+f (3)+…+f (m +2 018)=12{[f (1)+f (m +2 018)]+[f (2)+f (m +2 017)]+…+[f (m +2 018)+f (1)]} =12×23×(m +2 018)=m+2 0183.故选A .3.A 解法一 设甲、乙、丙、丁、戊、己、庚所分钱数依次是a 1,a 2,a 3,a 4,a 5,a 6,a 7,公差为d ,根据题意可得{a 1+a 2=77,a 5+a 6+a 7=75,即{a 1+a 1+d =77,a 1+4d +a 1+5d +a 1+6d =75,解得{a 1=40,d =-3,所以丙所分钱数a 3=a 1+2d =34(文),丁所分钱数a 4=a 1+3d =31(文),故选A .解法二 依题意,设甲、乙、丙、丁、戊、己、庚所分钱数分别为a - 3d ,a - 2d ,a - d ,a ,a +d ,a +2d ,a +3d ,则{a -3d +a -2d =77,a +d +a +2d +a +3d =75,解得{a =31,d =-3,所以丙所分钱数为a - d =34(文),丁所分钱数为a =31(文),故选A .4.B 设圆柱的底面半径为r ,用平行于圆柱底面的平面截圆柱和鲁班锁中间横向最长木条,截面如图D 2 - 1所示,图D 2 - 1记截面圆的圆心为O ,连接OA ,过点O 作OC ⊥AB 于点C ,则OA 2=OC 2+AC 2,即r 2=(12)2+(52)2=132,所以该圆柱形容器的体积的最小值为πr 2·5=652π,故选B.5.C 根据题意得,幻方对角线上的数成等差数列,则根据等差数列的性质可知对角线上的首尾两个数相加恰好等于1+n 2. 根据等差数列的求和公式得N n =n(1+n 2)2,则N 9=9×(1+92)2=369.故选C .6.B 设下底面的长为x (92≤x <9),则下底面的宽为18-2x 2=9 - x.由题可知上底面矩形的长为3,宽为2,“刍童”的高为3,所以其体积V =16×3×[(3×2+x )×2+(2x +3)(9 - x )]= - x 2+17x 2+392,故当x =92时,体积取得最大值,最大值为 - (92)2+172×92+392=752.故选B .7.A 将一个单位圆等分成180个扇形,则每个扇形的圆心角度数均为2°.因为这180个扇形对应的等腰三角形的面积之和近似等于单位圆的面积,所以180×12×1×1×sin 2°=90sin 2°≈π,所以sin 2°≈π90,所以选A.。

21高考数学文科全国一轮复习考点考法精练:主题二 提素养·数学文化 含解析

21高考数学文科全国一轮复习考点考法精练:主题二 提素养·数学文化 含解析

主题二提素养·数学文化1.[干支纪年法]干支纪年法源于中国,中国自古便有十天干与十二地支.十天干即甲、乙、丙、丁、戊、己、庚、辛、壬、癸;十二地支即子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.干支纪年法是按顺序将一个天干和一个地支相配,排列起来,天干在前,地支在后,天干由“甲”起,地支由“子”起.例如,第一年为“甲子”,第二年为“乙丑”,第三年为“丙寅”,…,排列到“癸酉”后,天干回到“甲”重新开始,即“甲戌”,“乙亥”,然后地支回到“子”重新开始,即“丙子”,以此类推.已知1949年为“己丑”年,那么到中华人民共和国成立80周年时为()A.丙酉年B.戊申年C.己亥年D.己酉年2.[高斯算法]德国数学家高斯在年幼时进行的1+2+3+…+100的求和运算中体现了倒序相加法的原理,该原理基于所给数据前后对应项的和呈现一定的规律而产生,此方法也称为高斯算法.现有函数f (x) =2x3m+6 057(m>0),则f (1)+f (2)+f (3)+…+f (m+2 018)等于()A.m+2 0183B.2m+4 0363C.m+4 0366D.2m+4 03763.[中国剪纸]中国剪纸是一种用剪刀或刻刀在纸上剪刻花纹,用于装点生活或配合其他民俗活动的民间艺术,蕴含了数学美和丰富的文化信息.现有一幅剪纸的设计图(如图2-1),其中的4个圆均过正方形的中心,且内切于正方形的邻边,图2-1若在该正方形内任取一点,则该点取自阴影部分的概率为()A.(3 - 2√2)(π - 2)2B.π16C.(3 - 2√2)(π - 2)D.π84.[影壁]影壁,也称照壁,古称萧墙,是我国传统建筑中用于遮挡视线的墙壁.如图2-2是一面影壁的示意图,该图形是由一个正八边形和一个正方形组成的,该正八边形的边长和中间正方形的边长相等,图2-2在该示意图内随机取一点,则此点取自阴影部分的概率是()A.√2 - 12B.√22C.2√23D.√2+145.[幻方]我国古代的《洛书》中记载着世界上最古老的一个幻方(如图2-3(1)所示).将1,2, (9)入3×3的方格内(如图2-3(2)所示),使三行、三列及两条对角线上的三个数字之和都等于15,这个方阵叫作3阶幻方.一般地,将连续的正整数1,2,3,…,n2填入n×n的方格中,使得每行、每列及两条对角线上的数字之和都相等,这个方阵叫作n(n≥3)阶幻方.记n阶幻方的对角线上的数的和为N n,如N3 =15,那么N9 =()图2-3A.41B.45C.369D.3216.[刍童]“刍童”是中国古代的一个数学名词,关于“刍童”体积计算的描述,《九章算术》注曰:“倍上袤,下袤从之.亦倍下袤,上袤从之.各以其广乘之,并,以高若深乘之,皆六而一.”其计算方法是:将上底面的长乘二,与下底面的长相加,再与上底面的宽相乘;将下底面的长乘二,与上底面的长相加,再与下底面的宽相乘;把这两个数值相加,与高相乘,再取其六分之一.已知一个“刍童”的下底面是周长为18的矩形,上底面矩形的长为3,宽为2,“刍童”的高为3,则该“刍童”的体积的最大值为()A.392B.752C.39D.60187.[割圆术]刘徽(约公元225年—295年)是魏晋期间伟大的数学家,是中国古典数学理论的奠基人之一.他提出的“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”(即割圆术),蕴含了极限思想.割圆术的核心思想是将一个圆的内接正n边形等分成n个等腰三角形(图2-4为n =9时的情形),当n变得很大时,这n个等腰三角形的面积之和近似等于圆的面积.运用割圆术的思想,得到sin 2°的近似值为()图2-4A.π90B.π180C.π270D.π360主题二提素养·数学文化1.D易知到2029年,中华人民共和国成立80周年.从1949年到2029年经过80年,且1949年为“己丑”年,80÷10=8,则2029年对应的天干为2.A因为函数f(x)=2x3m+6 057(m>0),所以f(1)+f(2)+f(3)+…+f(m+2 018)=23m+6 057+2×23m+6 057+…+2(m+2 018)3m+6 057=2×(m+2 018)(1+m+2 018)23m+6 057=(m+2 018)(m+2 019)3(m+2 019)=m+2 0183.3.C设正方形的顶点分别为A,B,C,D,中心为O,四个圆的圆心分别为O1,O2,O3,O4,其中一个切点为E,连接AC,BD,O2E,如图D 2 - 1所示,设正方形的边长为2,4个圆的半径为r,图D 2 - 1则BE=O2E=O2O=r,所以BO2=√2r.因为BO 2+O 2O =BO =12BD =√2,所以√2r +r =√2,得r =2 - √2.将如图D 2 - 1中的阴影部分看作8个弓形,易得每一个弓形所对圆心角为π2,则阴影部分的面积为8×[14π×(2 - √2)2 − 12×(2 - √2)2]=4(3 - 2√2)(π - 2).又正方形的面积为4,故所求概率P =4(3 - 2√2)(π - 2)4=(3 - 2√2)(π - 2).故选C .4.A 设正八边形的边长为√2a ,则其面积S =(2+√2)a ×√2a +2×12(√2a +2a +√2a )×a =(4√2+4)a 2. 又中间正方形的面积为2a 2,故在题中示意图内随机取一点,此点取自阴影部分的概率P =2√2=√2 - 12.故选A .则根据等差数列的性质可知对角线上的首尾两个数相加恰好等于1+n 2. 根据等差数列的求和公式得N n =n(1+n 2)2,则N 9=9×(1+92)2=369.故选C .6.B 设下底面的长为x (92≤x <9),则下底面的宽为18 - 2x 2=9 - x.由题可知上底面矩形的长为3,宽为2,“刍童”的高为3,所以其体积V =16×3×[(3×2+x )×2+(2x +3)(9 - x )]= - x 2+17x 2+392,故当x =92时,体积取得最大值,最大值为 - (92)2+172×92+392=752.故选B .7.A 将一个单位圆等分成180个扇形,则每个扇形的圆心角度数均为2°.因为这180个扇形对应的等腰三角形的面积之和近似等于单位圆的面积,所以180×12×1×1×sin 2°=90sin 2°≈π,所以sin 2°≈π90,所以选A.。

2023高考题数学文化试题

2023高考题数学文化试题

2023高考题数学文化试题2023年高考题数学文化试题数学一直以来都是学生们心中的拦路虎,尤其是对于高中生来说,数学的难度增加了不少。

2023年的高考数学文化试题也不例外,考查了许多复杂的数学问题,让考生们感受到了数学的魅力和挑战性。

首先,试题中出现了一道关于平面几何的问题。

考生们需要证明一个给定的三角形是等腰三角形。

这道题考查了考生对于几何形状和性质的理解和应用能力。

通过构造辅助线、运用角平分线的性质等方法,考生们可以得到结论并完成证明。

这道题目对于考生们的思维能力和逻辑推理能力提出了较高的要求。

其次,试题中还涉及了一道关于概率的问题。

考生们需要计算一个事件发生的概率,并将结果化为最简形式。

这道题目考查了考生们对于概率概念的理解和概率计算的能力。

通过列出样本空间、计算有利事件的个数、总事件的个数以及简化计算结果等方法,考生们可以得到最终的结果。

这道题目对于考生们的计算能力和逻辑思维能力提出了一定的挑战。

此外,试题中还出现了一道关于函数的问题。

考生们需要求解一个函数的零点和极值点,并画出函数的图像。

这道题目考查了考生们对于函数性质的理解和函数运算的能力。

通过求解方程、求导、研究函数的增减性和凹凸性等方法,考生们可以得到函数的零点和极值点,并画出函数的图像。

这道题目对于考生们的数学运算能力和图像分析能力提出了一定的要求。

最后,试题中还涉及了一道关于数列的问题。

考生们需要求解一个数列的通项公式,并计算数列的和。

这道题目考查了考生们对于数列性质的理解和数学计算的能力。

通过观察数列的规律、构造递推式、计算数列的和等方法,考生们可以得到数列的通项公式和数列的和。

这道题目对于考生们的观察和计算能力提出了一定的考验。

综上所述,2023年高考数学文化试题涉及了几何、概率、函数和数列等多个数学领域的知识和技能。

这些题目考查了考生们的思维能力、逻辑推理能力、计算能力和分析能力等方面的综合素质。

通过解答这些问题,考生们可以加深对于数学知识的理解和应用,提高数学解决问题的能力。

2020 年文化素质数学答案与解析

2020 年文化素质数学答案与解析

2020 年重庆市高等职业教育分类考试文化素质测试(数学)答案及解析一、选择题:1.由并集的概念可得,A ∪B={-1,0,1},选D2. 把对数式log a 8=3化为指数式得:a 3=8=23,∴a=2,选B3.不等式│2x+1|<3变为:-3<2x+1<3,解得:-2<x<1,所以选A4.由诱导公式,sin()sin 33ππ-=-=-,所以选A 。

5.二次函数的图像是抛物线,且二次项系数a=1>0,所以抛物线开口向上,又对称轴方程为:112212b x a -=-=-=⨯,所以函数在区间1[,)2+∞上是增函数,选D 。

6.由余弦定理有:2222223cos22a c b B ac +-===,所以∠B=4π,选B 。

7.由不等式的基本性质,选A8.分两步:第一步,从5男生中任选2人,有C 52=10种不同的选法;第二步,从3女生中任选1人,有C 31=3种不同的选法;由分步计数原理,共有10×3=30种不同的选法,所以选C 。

9.∵f(x)为奇函数,∴f(-x)=-f(x); ∵g(x)为偶函数,∴g(-x)=g(x);∴f(-x)g(-x)=-f(x)g(x),即f(x)g(x)为奇函数,所以选C 。

10.由题意,右焦点为知焦点在x 轴上,且c =∴a 2-b 2=5,所以排除选项B ,A ,C ,故选D 。

二.解答题11.解:(1)由等比数列通项公式得,a 2=a 1q, 即1182a =⋅,解得a 1=16 817811116()28a a q -∴==⨯=(2)等比数列前n 项公式为:1116(1)(1)1232(1)11212n n n n a q S q --===--- 由题意,S k =31,即132(1)312k -=,解得k=5 12.解::(1)在方程4x -3y +12=0中,当y=0时,x=-3;x=0时,y=4故 A 、B 的坐标分别为(-3,0)、(0,4)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学题----文化素养型1.《算数书》竹简于上世纪八十年代在省江陵县家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也.又以高乘之,三十六成一.该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式V ≈136L 2h .它实际上是将圆锥体积公式中的圆周率π近似取为3.那么,近似公式V ≈275L 2h 相当于将圆锥体积公式中的π近似取为( ) A.227 B.258 C.15750 D. 355113解析:由题意可知:L =2πr ,即r =L2π,圆锥体积V =13Sh =13πr 2h =13π·⎝ ⎛⎭⎪⎫L 2π2h =112πL 2h ≈275L 2h ,故112π≈275,π≈258,故选B. 【答案】B2.如图,正方形ABCD 的图形来自中国古代的太极图.正方形切圆中的黑色部分和白色部分位于正方形的中心成中心对称,在正方形随机取一点,则此点取自黑色部分的概率是()A .14B .π8C .12D .π4【解析】设正方形边长为2,则圆半径为1 则正方形的面积为224⨯=,圆的面积为2π1π⨯=,图中黑色部分的概率为π2 则此点取自黑色部分的概率为ππ248=故选B【答案】B4.《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马P-ABCD中,侧棱PD⊥底面ABCD,且PD=CD,过棱PC的中点E,作EF⊥PB交PB于点F,连接DE、DF、BD、BE.(1)证明:PB⊥平面DEF.试判断四面体DBEF是否为鳖臑.若是,写出其每个面的直角(只需写出结论);若不是,说明理由;(2)若面DEF与面ABCD所成二面角的大小为π3,求DCBC的值.解析:法一(1)证明因为PD⊥底面ABCD,所以PD⊥BC,由底面ABCD为长方形,有BC⊥CD,而PD∩CD=D,所以BC⊥平面PCD.而DE⊂平面PCD,所以BC⊥DE.又因为PD=CD,点E是PC的中点,所以DE⊥PC.而PC∩BC=C,所以DE⊥平面PBC.而PB⊂平面PBC,所以PB⊥DE.又PB⊥EF,DE∩EF=E,所以PB⊥平面DEF.由DE⊥平面PBC,PB⊥平面DEF,可知四面体BDEF的四个面都是直角三角形,即四面体BDEF 是一个鳖臑,其四个面的直角分别为∠DEB ,∠DEF ,∠EFB ,∠DFB .(2)解 如图,在面PBC ,延长BC 与FE 交于点G ,则DG是平面DEF 与平面ABCD 的交线.由(1)知,PB ⊥平面DEF ,所以PB ⊥DG .又因为PD ⊥底面ABCD ,所以PD ⊥DG ,而PD ∩PB =P ,所以DG ⊥平面PBD . 故∠BDF 是面DEF 与面ABCD 所成二面角的平面角,设PD =DC =1,BC =λ,有BD =1+λ2, 在Rt △PDB 中,由DF ⊥PB ,得∠DPF =∠FDB =π3, 则tan π3=tan ∠DPF =BD PD=1+λ2=3,解得λ= 2. 所以DC BC =1λ=22. 故当面DEF 与面ABCD 所成二面角的大小为π3时,DC BC=22. 法二 (1)证明 如图,以D 为原点,射线DA ,DC ,DP分别为x ,y ,z 轴的正半轴,建立空间直角坐标系.设PD =DC =1,BC =λ,则D (0,0,0),P (0,0,1),B (λ,1,0),C (0,1,0),PB →=(λ,1,-1),点E 是PC 的中点,所以E ⎝ ⎛⎭⎪⎫0,12,12,DE →=⎝ ⎛⎭⎪⎫0,12,12, 于是PB→·DE →=0,即PB ⊥DE . 又已知EF ⊥PB ,而DE ∩EF =E ,所以PB ⊥平面DEF .因PC→=(0,1,-1),DE →·PC →=0,则DE ⊥PC , 所以DE ⊥平面PBC .由DE⊥平面PBC,PB⊥平面DEF,可知四面体BDEF的四个面都是直角三角形,即四面体BDEF是一个鳖臑,其四个面的直角分别为∠DEB,∠DEF,∠EFB,∠DFB.(2)解由PD⊥平面ABCD,所以DP→=(0,0,1)是平面ABCD的一个法向量;由(1)知,PB⊥平面DEF,所以BP→=(-λ,-1,1)是平面DEF的一个法向量.若面DEF与面ABCD所成二面角的大小为π3,则cos π3=⎪⎪⎪⎪⎪⎪BP→·DP→|BP→|·|DP→|=⎪⎪⎪⎪⎪⎪1λ2+2=12,解得λ= 2.所以DCBC=1λ=22.故当面DEF与面ABCD所成二面角的大小为π3时,DCBC=22.5.宋元时期杰出的数学家朱世杰在其数学巨著《四元玉鉴》卷中“菱草形段”第一个问题,“今有菱草六百八十束,欲令‘落一形’(同垛)之,问底子(每层三角形边菱草束数,等价于层数)几何?”中探讨了“垛积术”中的落一形垛(“落一形”即是指顶上一束,下一层三束,再下一层6束,…,成三角锥的堆垛,故也称三角垛,如图,表示第二层开始的每层菱草束数),则本问题中三角垛底层菱草总束数为________.解析:由题意,第n层菱草数为1+2+…+n=n(n+1)2,∴1+3+6+…+n(n+1)2=680,即为12⎣⎢⎡⎦⎥⎤16n (n +1)(2n +1)+12n (n +1)=16n (n +1)(n +2)=680, 即有n (n +1)(n +2)=15×16×17,∴n =15,∴n (n +1)2=120.【答案】1206.九韶是我国南宋时期的数学家,普州(现省安岳县)人,他在所著的《数书九章》中提出的多项式求值的九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用九韶算法求多项式值的一个实例,若输入n ,x 的值分别为3,2,则输出v 的值为( )A.35B.20C.18D.9i =2时,得v =4;当i =1时,得v =2×4+1=9;当i =0时,得v =2×9+0=18;当i =-1时,直接输出v =18,即输出的v 值为18,故选C.【答案】C7.《九章算术》是我国古代容极为丰富的数学名著,书中有如下问题:“今有委米依垣角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋墙角处堆放米(如图1­1,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )图1­1A .14斛B .22斛C .36斛D .66斛[解析] 由题意,题中图形为四分之一圆锥,设圆锥的底面半径为R ,则由πR 2=8得R =16π,所以V 米=14V 圆锥=14×13×π×⎝ ⎛⎭⎪⎫16π2×5=3203π≈3209(立方尺),所以3209÷1.62≈21.95≈22(斛).【答案】B8.如图1­3所示的程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a ,b 分别为14,18,则输出的a =( )图1­3A .0B .2C .4D .14[解析] 逐一写出循环:a =14,b =18→a =14,b =4→a =10,b =4→a =6,b =4→a =2,b =4→a =2,b =2,结束循环.故选B. 【答案】B9.鸡兔同笼是中国古代著名趣题之一。

大约在1500年前 ,《子算经》中就记鸡兔同笼载了这个有趣的问题。

书中是这样叙述的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡和兔同在一个笼子里,从上面数有35个头;从下面数有94只脚。

问笼中各有几只鸡和兔?下列程序框图是计算鸡兔同笼的的算法,则判断框①处可填入的是 ( )【解析】根据程序框图结合鸡兔同笼的提问,n 表示鸡的个数,m表示兔的个数,鸡从1故选C.【答案】C10.由无理数引发的数学危机一直延续到19世纪.直到1872年,德国数学家戴德金从连续性的要求出发,用有理数的“分割”来定义无理数(史称戴德金分割),并把实数理论建立在严格的科学基础上,才结束了无理数被认为“无理”的时代,也结束了持续2000多年的数学史上的第一次大危机.所谓戴德金分割,是指将有理数集Q 划分为两个非空的子集M 与N ,且满足,M 中的每一个元素都小于N 中的每一个元素,则称(M,N )为戴德金分割试判断,对于任一戴德金分割(M ,N ),下列选项中,不可能成立的是( )A .M 没有最大元素,N 有一个最小元素B .M 没有最大元素,N 也没有最小元素C .M 有一个最大元素,N 有一个最小元素D .M 有一个最大元素,N 没有最小元素【解析】因为M 与N 满足,M 为(-∞的子集,N 为∞)的子集,或M 为(-∞的子集,N 为∞)的子集,此时M 没有最大值,N 没有最小值,若分界点为1,M 为(-∞,1]的子集,N 为(1,+ ∞)的子集时M 有最大值1,N 没有最小值,若M 为(-∞,1)的子集,N 为[1,+ ∞)的子集,则M 没有最大值,N 有最小值1,综上可知选C.【答案】C12.我国南宋时期的数学家九韶在他的著作《数书九章》中提出了计算多项式()11n n n n f x a x a x --=++ 10a x a ++L 的值的九韶算法,即将()f x 改写成如下形式: ()()()12(n n n f x a x a x a x --=+++L L 10)a x a ++,首先计算最层一次多项式的值,然后由向外逐层计算一次多项式的值.这种算法至今仍是比较先进的算法.将九韶算法用程序框图表示如下图,则在空白的执行框应填入( )i v vx a =+ ()i v v x a =+ i v a x v =+ ()i v a x v =+ 【解析】九韶算法的过程是01(1,2,,)n kk n k v a k n v v a --=⎧=⎨=+⎩L ,这个过程用循环结构来实现,应该在题图中的空白执行框填入i v vx a =+,选A.【答案】A13.“欧几里得算法”是有记载的最古老的算法,可追溯至公元前300年前,上面的程序框图的算法思路就是来源于“欧几里得算法”,执行该程序框图(图中“aMODb ”表示除以的余数),若输入的,a b 分别为675,125,则输出的a =( )A. 0B. 25C. 50D. 75【解析】当675,125,100,125,100,a b c aMODb a b ======此时100,c = 否, 12510025,100,25,c MOD a b ==== 否, 100250,25,0,0c MOD a b c =====是,输出25a = ,选B.【答案】B14.我国南北朝时的数学著作《邱建算经》有一道题为:“今有十等人,每等一人,宫赐金以等次差降之,上三人先入,得金四斤,持出,下四人后入得金三斤,持出,中间三人未到者,亦依等次更给,问各得金几何?”则在该问题中,等级较高的二等人所得黄金比等级较低的八等人和九等人两人所得黄金之和( )A. 多712斤B. 少712斤C. 多16斤D. 少16斤【答案】D15.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地.”则该人最后一天走的路程为()A. 24里B. 12里C. 6里D. 3里【答案】C16.我国古代著名的思想家庄子在《庄子·天下篇》中说:“一尺之棰,日取其半,万世不竭.”用现代语言叙述为:一尺长的木棒,每日取其一半,永远也取不完. 这样,每日剩下的部分都是前一日的一半. 如果把“一尺之棰”看成单位“”,那么剩下的部分所成的数列的通项公式为()A. B. C. D.【解析】由“一尺长的木棒,每日取其一半。

相关文档
最新文档