连续交通流模型及数值模拟
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
连续交通流模型及数值模拟
[摘要]本文对现有的交通流宏观模型进行了研究,总结了各种模型的思想、优缺点以及适用条件,在此基础上,选取了Payne 模型离散格式进行数值模拟,选取了某段高速公路的交通流作为模拟对象,展现了Payne 模型模拟交通流的可行性。
[关键字] 连续交通流;离散格式;数值模拟
0 引言
交通流理论研究加深了人们对复杂多体系统远离平衡态时演变规律的认识,促进了统计物理、非线性动力学、应用数学、流体力学、交通工程学等学科的交叉和发展等多学科的交叉渗透和相互发展。交通流理论研究的对象是离散态物质,是一个复杂的非线性体系,对这类物质运动规律的描述,尚无成熟的理论。
在宏观的连续流模型中,交通流被比拟为连续的流体介质,即将流量、速度和密度等集聚变量视为时间和空间的连续函数。模型包含时间和空间的状态方程,考虑了车辆的加速度、惯性和可压缩性,能够合理准确描述交通流的动态特性,相比微观模型有更大的优势。连续流交通流模型通常用密度(k )、速度(u )、流量(q )三个变量来描述[1]。
1 连续交通流模型
LWR 模型
1955年,Lighthill&Whitham 提出了第一个交通流的流体力学模型——流体运动学模型[2],随后独立地提出了类似的交通流理论。LWR 模型用k(x,t)和u(x,t)表示t 时刻位于x 处的交通流密度和平均速度,他们满足流体力学的连续方程:
(),k q g x t t x
∂∂+=∂∂ (1-1) 此方程反映了车辆数守恒,其中g(x,t)是流量产生率,对没有进出匝道的公路,g(x,t)=0, 对进口匝道,g(x,t)>0,对出口匝道,g(x,t)=0。k 为交通密度,也称为交通流量;x ,t 分别为空间测度和时间测度。设u 为空间平均速度,则存在以下关系:
q k u =⋅ (1-2)
对于平均速度u(x,t),假设平衡速度——密度关系:
()(,)(,)e u x t u k x t = (1-3)
以上3个方程构成了完整的一阶连续交通流模型,LWR 模型的优点是简单明了,可以采用流体力学和应用数学中的成熟工具进行分析,而且可以描述诸如交通阻塞形成和消散之类的交通现象,但是,由于该模型的速度是由平衡速度密度关系决定,并且没有考虑加速度和惯性影响,因此不适用于描述本质上处于非平衡态的交通现象,例如车辆上、下匝道的交通、“幽灵式”交通阻塞、交通迟滞、时走时停的交通等。于是,后来的学者们引进了高阶连续介质模型,考虑了加速度和惯性影响,将动量方程代替方程(1-3)。
Payne 模型
Pipes 于1953年提出交通流加速度的一般表达式:
2
du u u du k
u k dt t x dt x
∂∂∂⎛⎫=+=-⋅ ⎪∂∂∂⎝⎭ (1-4)
1971年,Payne 根据LWR 模型的思想,假设交通流速度是动态变化的,在引用连续性方
程时,引进运动方程,导出高阶连续模型[3]。Payne 从车辆跟驰理论的概念提出平均速度u 与密度k 存在以下关系:
()(),,r e u x t T u k x x t +=+∆⎡⎤⎣⎦ (1-5)
并取0.5/x k ∆=,r T ——车辆跟驰理论在的延滞时间,对上式分别作关于r T 和x ∆的Taylor 展开,得到:
() e r r
u k u
du u u k u dt t x kT x T γ-∂∂∂=+=-+
∂∂∂ (1-6) 上式中,-0. 5
0e
u k
γ∂=>∂:预期指数,将平衡速度()e u k 简写成e u 。 从而建立了由如下三个方程构成的Payne 模型: ()
e r r
u k u
u u k u t x kT x T γ-∂∂∂+=-+
∂∂∂ (1-6) ()
,k q
g x t t x
∂∂+=∂∂ (1-7) q k u =⋅ (1-2)
式(1—6)的右边第一项为期望项,反映驾驶员对前方交通状态改变的反应过程;第二项式弛豫项,描述车流速度在r T 时间内向平衡速度的调整,最优速度函数和其他参数通过道路实测和参数辨识确定。
1979年,Payne 编制了著名的FREFLO 软件,有史以来第一次将交通流仿真模型应用于工程实践。但Payne 模型并未充分考虑整个弛豫过程,而只是将其定为一个常数的弛豫时间,即使处于平衡状态时,弛豫时间变为零,在实际应用中,出现了一些问题。Rathi 等人指出,使用Payne 模型,车流速度到平衡态速度的调节过程过于缓慢。Ross 也发现,当道路拓扑特性和交通量在短时间内突变时,由于车流速度调整到平衡速度过程缓慢,无法捕捉到实际交通流动态特性。Castillo 等对Payne 模型进行了线性稳定性分析,发现车辆总是在稳定的范围内行驶,这与实际不符。Payne 本人也发现在高密度情况下,模型可能会遇到稳定性问题,车流密度可能出现大大偏离实际的高密度问题。后来的研究者在payne 模型的基础上,不断加入新的项,构成了各自的模型。
Kuhne 模型
1984年,引入交通流的粘性影响,基于Navier-Stokes 方程建立如下方程:
()()2202e r u u k u u k u
u c t x T k x x
ν-∂∂∂∂+=--+∂∂∂∂ (1-8)
式中: 0c 为直接与车辆跟驰的弹性有关的声速;ν为粘性系数。线性稳定性分析表明,当k 时交通状态是稳定的。而
()
e c u k k c k
∂=-∂ (1-9) 式中:c k 称为临界密度。当k 超过c k 时交通完全瘫痪。该模型可用于超拥挤状态的交通分