半导体物理学 刘恩科 第七版

合集下载

半导体物理学(刘恩科第七版)习题答案(比较完全)

半导体物理学(刘恩科第七版)习题答案(比较完全)

第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E c =0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。

试求:为电子惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2)导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)eVm k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ηηηηηηηη因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC===ηsN k k k p k p m dkE d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-==ηηηηη所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。

解:根据:tkhqE f ∆∆== 得qE k t -∆=∆ηsat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππηη补充题1分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图)Si 在(100),(110)和(111)面上的原子分布如图1所示:(a )(100)晶面 (b )(110)晶面(c )(111)晶面补充题2一维晶体的电子能带可写为)2cos 81cos 87()22ka ka ma k E +-=η(, 式中a 为 晶格常数,试求(1)布里渊区边界; (2)能带宽度;(3)电子在波矢k 状态时的速度;(4)能带底部电子的有效质量*n m ;(5)能带顶部空穴的有效质量*p m解:(1)由0)(=dkk dE 得 a n k π=(n=0,±1,±2…) 进一步分析an k π)12(+= ,E (k )有极大值,214221422142822/1083.7342232212414111/1059.92422124142110/1078.6)1043.5(224141100cm atom a a a cm atom a a a cm atom a a ⨯==⨯+⨯+⨯⨯==⨯⨯+⨯+⨯=⨯==⨯+-):():():(222)mak E MAXη=( ank π2=时,E (k )有极小值所以布里渊区边界为an k π)12(+=(2)能带宽度为222)()ma k E k E MIN MAX η=-( (3)电子在波矢k 状态的速度)2sin 41(sin 1ka ka ma dk dE v -==ηη (4)电子的有效质量)2cos 21(cos 222*ka ka mdkEd m n-==η能带底部 an k π2=所以m m n 2*= (5)能带顶部 an k π)12(+=, 且**n p m m -=,所以能带顶部空穴的有效质量32*mm p =第二章习题1. 实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。

半导体物理学 刘恩科 第七版 完整课后题答案

半导体物理学 刘恩科 第七版 完整课后题答案

半导体物理学刘恩科第七版完整课后题答案 Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E c =0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ (1)禁带宽度;(2) 导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)2. 晶格常数为的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。

解:根据:tkh qE f ∆∆== 得qE k t -∆=∆补充题1分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图) Si 在(100),(110)和(111)面上的原子分布如图1所示: (a )(100)晶面 (b )(110)晶面(c )(111)晶面补充题2一维晶体的电子能带可写为)2cos 81cos 87()22ka ka ma k E +-= (,式中a 为 晶格常数,试求(1)布里渊区边界; (2)能带宽度;(3)电子在波矢k 状态时的速度;(4)能带底部电子的有效质量*n m ;(5)能带顶部空穴的有效质量*p m解:(1)由0)(=dk k dE 得 an k π=(n=0,1,2…) 进一步分析an k π)12(+= ,E (k )有极大值,ank π2=时,E (k )有极小值所以布里渊区边界为an k π)12(+=(2)能带宽度为222)()ma k E k E MIN MAX =-( (3)电子在波矢k 状态的速度)2sin 41(sin 1ka ka ma dk dE v -==(4)电子的有效质量能带底部 an k π2=所以m m n2*= (5)能带顶部 an k π)12(+=, 且**n p m m -=,所以能带顶部空穴的有效质量32*mm p =半导体物理第2章习题1. 实际半导体与理想半导体间的主要区别是什么答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。

半导体物理学(刘恩科)第七版-完整课后题答案)

半导体物理学(刘恩科)第七版-完整课后题答案)

半导体物理学(刘恩科)第七版-完整课后题答案)第⼀章习题1.设晶格常数为a 的⼀维晶格,导带极⼩值附近能量(k)和价带极⼤值附近能量(k)分别为:220122*********)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。

试求:为电⼦惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2)导带底电⼦有效质量; (3)价带顶电⼦有效质量;(4)价带顶电⼦跃迁到导带底时准动量的变化解:(1)eV m k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ηηηηηηηη因此:取极⼤值处,所以⼜因为得价带:取极⼩值处,所以:在⼜因为:得:由导带:043222*83)2(1m dk E d mk k C nC===η sN k k k p k p m dk E d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===?=-=-=?=-==ηηηηη所以:准动量的定义:2. 晶格常数为0.25的⼀维晶格,当外加102,107的电场时,试分别计算电⼦⾃能带底运动到能带顶所需的时间。

解:根据:t khqE f== 得qE k t -?=?ηsat sat 137192821911027.810106.1)0(1027.810106.1)0(----?=??--==--=ππηη补充题1分别计算(100),(110),(111)⾯每平⽅厘⽶内的原⼦个数,即原⼦⾯密度(提⽰:先画出各晶⾯内原⼦的位置和分布图)在(100),(110)和(111)⾯上的原⼦分布如图1所⽰:(a )(100)晶⾯(b )(110)晶⾯(c )(111)晶⾯补充题2214221422142822/1083.7342232212414111/1059.92422124142110/1078.6)1043.5(224141100cmatom a a a cm atom a a a cm atom a a ?==?+?+??==??+?+?=?==?+-):():():(⼀维晶体的电⼦能带可写为)2cos 81cos 87()22ka ka ma k E +-=η(,式中a 为晶格常数,试求(1)布⾥渊区边界;(2)能带宽度;(3)电⼦在波⽮k 状态时的速度;(4)能带底部电⼦的有效质量*n m ;(5)能带顶部空⽳的有效质量*p m 解:(1)由0)(=dk k dE 得 an k π=(0,1,2…)进⼀步分析an k π)12(+= ,E (k )有极⼤值,222)ma k E MAXη=(ank π2=时,E (k )有极⼩值所以布⾥渊区边界为an k π)12(+= (2)能带宽度为222)()ma k E k E MINMAXη=-((3)电⼦在波⽮k 状态的速度)2sin 41(sin 1ka ka ma dk dE v -==ηη(4)电⼦的有效质量)2cos 21(cos 222*ka ka m dkEd m n-==η能带底部 an k π2=所以m m n 2*=(5)能带顶部 an k π)12(+=,且**n p m m -=,所以能带顶部空⽳的有效质量32*mm p=半导体物理第2章习题1. 实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原⼦严格按周期性排列并静⽌在格点位置上,实际半导体中原⼦不是静⽌的,⽽是在其平衡位置附近振动。

半导体物理学(刘恩科)第七版-完整课后题答案

半导体物理学(刘恩科)第七版-完整课后题答案

第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E c =0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。

试求:为电子惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2) 导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)eV m k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC===sN k k k p k p m dk E d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-== 所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。

解:根据:t k hqE f ∆∆== 得qEk t -∆=∆ sat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππ补充题1分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图)Si 在(100),(110)和(111)面上的原子分布如图1所示:(a )(100)晶面 (b )(110)晶面(c )(111)晶面补充题2一维晶体的电子能带可写为)2cos 81cos 87()22ka ka ma k E +-= (, 式中a 为 晶格常数,试求(1)布里渊区边界; (2)能带宽度;(3)电子在波矢k 状态时的速度;(4)能带底部电子的有效质量*n m ;(5)能带顶部空穴的有效质量*p m解:(1)由0)(=dk k dE 得 an k π= (n=0,±1,±2…) 进一步分析an k π)12(+= ,E (k )有极大值,214221422142822/1083.7342232212414111/1059.92422124142110/1078.6)1043.5(224141100cm atom a a a cm atom a a a cm atom a a ⨯==⨯+⨯+⨯⨯==⨯⨯+⨯+⨯=⨯==⨯+-):():():(222)mak E MAX =( ank π2=时,E (k )有极小值所以布里渊区边界为an k π)12(+=(2)能带宽度为222)()ma k E k E MIN MAX =-( (3)电子在波矢k 状态的速度)2sin 41(sin 1ka ka ma dk dE v -== (4)电子的有效质量)2cos 21(cos 222*ka ka mdkEd m n-== 能带底部 an k π2=所以m m n 2*= (5)能带顶部 an k π)12(+=, 且**n p m m -=,所以能带顶部空穴的有效质量32*mm p =半导体物理第2章习题1. 实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。

半导体物理学(刘恩科第七版)

半导体物理学(刘恩科第七版)
1
在E ~ E dE空间的状态数等于k空间所包含的 状态数。 即d z g (k ' ) Vk ' g (k ' ) 4k ' dk 2(m m m ) 13 2 1 dz ' t t l ( E Ec ) 2 V g (E) 4 2 dE h 对于si导带底在100个方向,有六个对称的旋转椭球, 锗在( 111 )方向有四个,
(2)m
* nC
2 2 d EC dk 2
3 m0 8
3 k k1 4
* (3)mnV
2 d 2 EV dk 2

k 01
m0 6
(4)准动量的定义:p k 所以:p (k )
3 k k1 4
3 (k ) k 0 k1 0 7.95 10 25 N / s 4
r0 r
h 2 0 0.053nm q 2 m0 h 2 0 r m0 r r0 60nm * * q 2 mn mn
8. 磷化镓的 禁带宽 度 Eg=2.26eV ,相对 介电常数 r=11.1 , 空 穴的有效质量 m*p=0.86m0,m0 为电子的惯性质量,求①受主杂质电离能;②受主束缚的空穴的 基态轨道半径。
第三章习题
1. 计算能量在 E=Ec 到 E E C 解:
g ( E ) 4 (
100h 2 之间单位体积中的量子态数。 2 8m * nL
1 * 3 2m n 2 2 ) ( E E ) V C 2 h dZ g ( E )dE
单位体积内的量子态数Z 0
Ec 100h 2
2. 试证明实际硅、锗中导带底附近状态密度公式为式(3-6) 。

半导体物理学(刘恩科第七版)习题答案

半导体物理学(刘恩科第七版)习题答案

第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E c =0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。

试求:为电子惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2)导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)eVm k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC===sN k k k p k p m dk E d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-== 所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。

解:根据:t k hqE f ∆∆== 得qEkt -∆=∆ sat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππ补充题1分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图)Si 在(100),(110)和(111)面上的原子分布如图1所示:(a )(100)晶面 (b )(110)晶面(c )(111)晶面补充题2一维晶体的电子能带可写为)2cos 81cos 87()22ka ka ma k E +-= (, 式中a 为 晶格常数,试求(1)布里渊区边界; (2)能带宽度;(3)电子在波矢k 状态时的速度;(4)能带底部电子的有效质量*n m ;(5)能带顶部空穴的有效质量*p m解:(1)由0)(=dk k dE 得 an k π= (n=0,±1,±2…) 进一步分析an k π)12(+= ,E (k )有极大值,214221422142822/1083.7342232212414111/1059.92422124142110/1078.6)1043.5(224141100cm atom a a a cm atom a a a cm atom a a ⨯==⨯+⨯+⨯⨯==⨯⨯+⨯+⨯=⨯==⨯+-):():():(222)mak E MAX =( ank π2=时,E (k )有极小值所以布里渊区边界为an k π)12(+=(2)能带宽度为222)()ma k E k E MIN MAX =-( (3)电子在波矢k 状态的速度)2sin 41(sin 1ka ka ma dk dE v -== (4)电子的有效质量)2cos 21(cos 222*ka ka mdkEd m n-== 能带底部 an k π2=所以m m n 2*= (5)能带顶部 an k π)12(+=, 且**n p m m -=,所以能带顶部空穴的有效质量32*mm p =第二章习题1. 实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。

半导体物理学 刘恩科 第七版

半导体物理学 刘恩科 第七版

p E 2m0
i ( K r t )
2
p K E hv
(r, t ) Ae
半导体器件
半导体中电子的运动
薛定谔方程及其解的形式
V ( x) V ( x sa) d ( x) V ( x) ( x) E ( x) 2 2m0 dx ikx k ( x ) uk ( x ) e
半导体器件
点缺陷
弗仓克耳缺陷
间隙原子和空位成对出现
肖特基缺陷
只存在空位而无间隙原子
间隙原子和空位这两种点缺陷受温度影响较 大,为热缺陷,它们不断产生和复合,直至 达到动态平衡,总是同时存在的。 空位表现为受主作用;间隙原子表现为施主 作用
半导体器件
点缺陷
替位原子(化合物半导体)
1 1 3 a 解:(a) r ( 3a) 2 4 8
4 3 8 r 3 3 (b) 0.34 3 a 16
半导体器件
间隙式杂质、替位式杂质
杂质原子位于晶格原子间的间隙位置, 该杂质称为间隙式杂质。
间隙式杂质原子一般比较小,如Si、Ge、
GaAs材料中的离子锂(0.068nm)。
3、电子所处能级越低越稳定。 ( )
4、无论是自由电子还是晶体材料中的电子,他们 在某处出现的几率是恒定不变的。 ( )
5、分别叙述半导体与金属和绝缘体在导电过程中 的差别。
半导体器件
半导体中E(K)与K的关系
在导带底部,波数 k 0 ,附近 k 值很小, 将 E (k ) 在 k 0 附近泰勒展开
杂质原子取代晶格原子而位于晶格点处, 该杂质称为替位式杂质。
替位式杂质原子的大小和价电子壳层结构

半导体物理学 刘恩科 第七版

半导体物理学 刘恩科 第七版

半导体器件
原子的能级的分裂
原子能级分裂为能带
半导体器件
Si的能带 (价带、导带和带隙〕
半导体器件
半导体的能带结构
导带 Eg
价带
价带:0K条件下被电子填充的能量的能带
导带:0K条件下未被电子填充的能量的能带
带隙:导带底与价带顶之间的能量差
半导体器件
自由电子的运动
微观粒子具有波粒二象性
p m0u
p E 2m0
i ( K r t )
2
p K E hv
(r, t ) Ae
半导体器件
半导体中电子的运动
薛定谔方程及其解的形式
V ( x) V ( x sa) d ( x) V ( x) ( x) E ( x) 2 2m0 dx ikx k ( x ) uk ( x ) e
EC
B
EA
EA EV
P型半导体
受主能级
半导体器件
半导体的掺杂
Ⅲ、Ⅴ族杂质在Si、Ge晶体中分别为受 主和施主杂质,它们在禁带中引入了能 级;受主能级比价带顶高 EA,施主能级 比导带底低 ED,均为浅能级,这两种 杂质称为浅能级杂质。 杂质处于两种状态:中性态和离化态。 当处于离化态时,施主杂质向导带提供 电子成为正电中心;受主杂质向价带提 供空穴成为负电中心。
考试90%
半导体器件
半导体物理学
一.半导体中的电子状态
二.半导体中杂质和缺陷能级
三.半导体中载流子的统计分布
四.半导体的导电性
五.非平衡载流子
六.pn结
七.金属和半导体的接触 八.半导体表面与MIS结构 九.半导体异质结构
半导体器件
半导体概要

半导体物理学(刘恩科)第七版-完整课后题答案

半导体物理学(刘恩科)第七版-完整课后题答案

第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E c =0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。

试求:为电子惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2) 导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)eV m k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC===sN k k k p k p m dk E d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-== 所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。

解:根据:t k hqE f ∆∆== 得qEk t -∆=∆ sat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππ补充题1分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图)Si 在(100),(110)和(111)面上的原子分布如图1所示:(a )(100)晶面 (b )(110)晶面(c )(111)晶面补充题2一维晶体的电子能带可写为)2cos 81cos 87()22ka ka ma k E +-= (, 式中a 为 晶格常数,试求(1)布里渊区边界; (2)能带宽度;(3)电子在波矢k 状态时的速度;(4)能带底部电子的有效质量*n m ;(5)能带顶部空穴的有效质量*p m解:(1)由0)(=dk k dE 得 an k π= (n=0,±1,±2…) 进一步分析an k π)12(+= ,E (k )有极大值,214221422142822/1083.7342232212414111/1059.92422124142110/1078.6)1043.5(224141100cm atom a a a cm atom a a a cm atom a a ⨯==⨯+⨯+⨯⨯==⨯⨯+⨯+⨯=⨯==⨯+-):():():(222)mak E MAX =( ank π2=时,E (k )有极小值所以布里渊区边界为an k π)12(+=(2)能带宽度为222)()ma k E k E MIN MAX =-( (3)电子在波矢k 状态的速度)2sin 41(sin 1ka ka ma dk dE v -== (4)电子的有效质量)2cos 21(cos 222*ka ka mdkEd m n-== 能带底部 an k π2=所以m m n 2*= (5)能带顶部 an k π)12(+=, 且**n p m m -=,所以能带顶部空穴的有效质量32*mm p =半导体物理第2章习题1. 实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。

半导体物理学(刘恩科)第七版-完整课后题答案

半导体物理学(刘恩科)第七版-完整课后题答案

第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E c =0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。

试求:为电子惯性质量,nm a ak 314.0,1==π〔1〕禁带宽度;(2) 导带底电子有效质量; (3)价带顶电子有效质量;〔4〕价带顶电子跃迁到导带底时准动量的变化 解:〔1〕eV m k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC===sN k k k p k p m dk E d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-== 所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。

解:根据:tkhqE f ∆∆== 得qE k t -∆=∆sat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππ补充题1分别计算Si 〔100〕,〔110〕,〔111〕面每平方厘米内的原子个数,即原子面密度〔提示:先画出各晶面内原子的位置和分布图〕Si 在〔100〕,〔110〕和〔111〕面上的原子分布如图1所示:〔a 〕(100)晶面 〔b 〕(110)晶面〔c 〕(111)晶面补充题2一维晶体的电子能带可写为)2cos 81cos 87()22ka ka ma k E +-= (, 式中a 为 晶格常数,试求〔1〕布里渊区边界; 〔2〕能带宽度;〔3〕电子在波矢k 状态时的速度;〔4〕能带底部电子的有效质量*n m ;〔5〕能带顶部空穴的有效质量*p m解:〔1〕由0)(=dk k dE 得 an k π= 〔n=0,±1,±2…〕 进一步分析an k π)12(+= ,E 〔k 〕有极大值,214221422142822/1083.7342232212414111/1059.92422124142110/1078.6)1043.5(224141100cm atom a a a cm atom a a a cm atom a a ⨯==⨯+⨯+⨯⨯==⨯⨯+⨯+⨯=⨯==⨯+-):():():(222)mak E MAX=( ank π2=时,E 〔k 〕有极小值所以布里渊区边界为an k π)12(+=(2)能带宽度为222)()ma k E k E MIN MAX =-( (3〕电子在波矢k 状态的速度)2sin 41(sin 1ka ka ma dk dE v -== 〔4〕电子的有效质量)2cos 21(cos 222*ka ka mdkEd m n-==能带底部 an k π2=所以m m n 2*= (5)能带顶部 an k π)12(+=, 且**n p m m -=,所以能带顶部空穴的有效质量32*mm p =半导体物理第2章习题1. 实际半导体与理想半导体间的主要区别是什么?答:〔1〕理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。

半导体物理学刘恩科第8版与第七版区别

半导体物理学刘恩科第8版与第七版区别

半导体物理学是研究半导体材料和器件的物理性质和应用的学科。

在半导体物理学的领域中,刘恩科的《半导体物理学》一直是该领域的经典教材之一。

而在不同的版本中,教材内容与理论研究的发展息息相关,因此第八版与第七版在内容上可能会出现一些区别。

本文将就半导体物理学刘恩科第八版与第七版的区别进行分析和比较。

一、章节内容调整在第八版中,可能会对一些章节的顺序和内容进行了重新的调整。

由于半导体物理学领域的研究不断更新和拓展,一些新的理论和实验成果可能会被纳入新版教材中。

第八版可能会涉及一些新的研究成果和理论。

相比之下,第七版的内容可能相对较为陈旧,未能包含最新的研究成果。

二、理论模型更新随着半导体物理学领域的不断发展,一些经典的理论模型可能会被新的模型所取代。

第八版可能会对一些半导体物理学的经典理论进行了修订和更新,使之更符合最新的研究成果和实验数据。

相比之下,第七版可能基于一些相对陈旧的理论模型进行教学讲解。

三、实验数据更新半导体物理学领域的研究离不开大量的实验数据支撑,随着实验技术的不断进步,新的实验数据可能会对理论研究产生重大影响。

第八版可能会引入一些新的实验数据,并对这些数据进行解读和分析。

相比之下,第七版可能未能包含这些最新的实验数据和分析。

四、教学方法更新随着教育教学理念的更新和发展,教学方法也在不断更新和改进。

第八版可能会采用一些新的教学方法,如引入多媒体教学、案例教学等方式,使得学生更容易理解和掌握半导体物理学的知识。

相比之下,第七版可能未采用这些新的教学方法,学习起来可能相对较为传统和单一。

半导体物理学刘恩科第八版与第七版在内容和教学方法上可能会存在一些区别。

随着半导体物理学领域的不断发展和更新,教材内容也需要与时俱进,引入新的理论和实验成果,采用新的教学方法,以更好地适应新的学习需求和教育教学理念。

希望学生们在学习半导体物理学的过程中,能够选择适合自己的教材,全面掌握半导体物理学的知识。

在第八版与第七版中,对半导体物理学中的一些重要概念和理论进行了深入的扩展和更新。

半导体物理学第七版刘恩科编著

半导体物理学第七版刘恩科编著
? 间隙式杂质
? 杂质原子小于晶体原子
? 杂质浓度:单位体积内的杂质原子数
1 杂质存在的方式
(1)间隙式→杂质位于组成半导体的元 素或离子的格点之间的间隙位置。
? 间隙式原子的半径一般比较小。
2r ? 1 a ? 3 ? r= 3 a
4
8
43
8? ? r
?
3 a3
? 0.34
?在金刚石型晶体中,一个晶胞内的原子只占晶 胞体积的 34%,空隙占 66%。 ?Li +在硅、锗、砷化镓中是间隙式杂质。
离价带顶较远,形成深能级,称为深能级杂质。 ? 深能级杂质能够产生多次电离,每次电离均对应一个能级。
Impurity-doped Silicon
Ec ED
EEvA
Ec
△E D
E Ev
DE
D
(1)浅能级杂质
△E D<<Eg △E A<<Eg
(2)深能级杂质
△EA EA EA
△E D≮Eg
△EA≮Eg
到导带Ec成为导带电子,该杂质电离后成为正电 中心(正离子)。这种杂质称为施主杂质。
施主杂质
束缚态:杂质未电离,中性
离化态:杂质电离成为正电 中心,释放电子
杂质电离能:△ E D=E C-E D
△ED=EC-ED
ED
EC
Eg
EV
2.1.3受主杂质、受主能级 Acceptor impurity and acceptor level
???
(2)
Impurity-doped Silicon
正、负电荷所处介质的介电常数为:? ? ? 0 ? r
电势能 U(r) ? ? q 2

半导体物理学(刘恩科、朱秉 升)第七版-最全课后题答案

半导体物理学(刘恩科、朱秉    升)第七版-最全课后题答案
式中a为 晶格常数,试求 (1)布里渊区边界; (2)能带宽度; (3)电子在波矢k状态时的速度; (4)能带底部电子的有效质量;
(5)能带顶部空穴的有效质量
解:(1)由 得 (n=0,1,2…) 进一步分析 ,E(k)有极大值,
时,E(k)有极小值 所以布里渊区边界为 (2)能带宽度为 (3)电子在波矢k状态的速度 (4)电子的有效质量 能带底部 所以 (5)能带顶部 , 且, 所以能带顶部空穴的有效质量
20. 制造晶体管一般是在高杂质浓度的n型衬底上外延一层n型外延层, 再在外延层中扩散硼、磷而成的。
(1)设n型硅单晶衬底是掺锑的,锑的电离能为0.039eV,300K时的EF 位于导带下面0.026eV处,计算锑的浓度和导带中电子浓度。
(2)设n型外延层杂质均匀分布,杂质浓度为4.61015cm-3,计算300K 时EF的位置及电子和空穴浓度。
8. 利用题 7所给的Nc 和NV数值及Eg=0.67eV,求温度为300K和500K 时,含施主浓度ND=51015cm-3,受主浓度NA=2109cm-3的锗中电子及
空穴浓度为多少?
9.计算施主杂质浓度分别为1016cm3,,1018 cm-3,1019cm-3的硅在室温下 的费米能级,并假定杂质是全部电离,再用算出的的费米能 级核对 一下,上述假定是否在每一种情况下都成立。计算时,取施主能级 在导带底下的面的0.05eV。
17. 施主浓度为1013cm3的n型硅,计算400K时本征载流子浓度、多子浓 度、少子浓度和费米能级的位置。
18. 掺磷的n型硅,已知磷的电离能为0.044eV,求室温下杂质一 半电离时费米能级的位置和浓度。
19. 求室温下掺锑的n型硅,使EF=(EC+ED)/2时锑的浓度。已知锑的 电离能为0.039eV。

2024年半导体物理学刘恩科第七版-第七章-金半接触

2024年半导体物理学刘恩科第七版-第七章-金半接触
由于半导体表面存在表面态的缘故
施主表面态:释放电子呈正电性; 受主表面态:接受电子呈负电性;
表面态具有表面能级,距价带顶q0
电子正好填满q0以下所有表 面态时,表面电中性;
q0以下所有表面态空着时,表面带 正电,呈施主; q0以上表面态被电子填满时,表面 带负电,呈受主;
对n型半导体,EF高于q0,如果q0以上有受主表面态,则基本 被电子填满,带负电。
半导体内单位体积中能量在E~E+dE区间内的电子数 为:
由于
E
Ec
1 2
mn
* 2
dE
dE mn *d
dn
4n0
(
mn *
2k0T
)3
/
2
2
exp(
mn * 2 2k0T
)d
单位体积中,速率在x~ (x+dx)、 y~ (y+dy)、 z~ (z+dz)区间内, 单位截面积、单位时间到达金半界面的电子数为:
高阻区,常称阻挡层。
高电导区,常称反阻挡层。
金属与p型半导体接触时,情况刚好相反。
Vs>0
Vs〈0
1. 能带向下弯曲; 2. 形成p型阻挡层。
1. 能带向上弯曲; 2. 形成p型反阻挡层。
对一定半导体,亲和势一定。 理论上,金属材料不同,功函数Wm不
同,势垒高度也不同。
实际上,虽然金属功函数Wm差别较大 不同,势垒高度差别不大。
因此,选择金属材料不能获得欧姆接触。 实际中,主要利用隧道效应原理实现欧姆接触
金属内部电子逸出成为自由电子所需 要的最小能量为:
半导体中, 使内部电子从半导体逸出 成为自由电子所需要的最小能量为:
Ws为半导体的功函数

半导体物理学(刘恩科)第七版第一章到第七章完整课后题答案

半导体物理学(刘恩科)第七版第一章到第七章完整课后题答案

第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E C (K )=0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。

试求:为电子惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2)导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)eVm k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC===sN k k k p k p m dkE dmk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-== 所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。

解:根据:tkhqE f ∆∆== 得qE k t -∆=∆sat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππ补充题1分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图)Si 在(100),(110)和(111)面上的原子分布如图1所示:(a )(100)晶面 (b )(110)晶面(c )(111)晶面补充题2一维晶体的电子能带可写为)2cos 81cos 87()22ka ka ma k E +-= (, 式中a 为 晶格常数,试求(1)布里渊区边界; (2)能带宽度;(3)电子在波矢k 状态时的速度;(4)能带底部电子的有效质量*n m ;(5)能带顶部空穴的有效质量*p m解:(1)由0)(=dk k dE 得 an k π= (n=0,±1,±2…) 进一步分析an k π)12(+=,E (k )有极大值,214221422142822/1083.7342232212414111/1059.92422124142110/1078.6)1043.5(224141100cm atom a a a cm atom a a a cm atom a a ⨯==⨯+⨯+⨯⨯==⨯⨯+⨯+⨯=⨯==⨯+-):():():(222)mak E MAX=( ank π2=时,E (k )有极小值所以布里渊区边界为an k π)12(+=(2)能带宽度为222)()ma k E k E MIN MAX =-( (3)电子在波矢k 状态的速度)2sin 41(sin 1ka ka ma dk dE v -== (4)电子的有效质量)2cos 21(cos 222*ka ka mdkEd m n-==能带底部 an k π2=所以m m n 2*= (5)能带顶部 an k π)12(+=, 且**n p m m -=,所以能带顶部空穴的有效质量32*mm p =半导体物理第2章习题1. 实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 d 2E 1 ( 2 )k 0 * 代入上式得 2 dk mn
2 2
k E (k ) E (0) * 2mn
半导体器件
自由电子的能量
微观粒子具有波粒二象性
p m0u
p E 2m0
i ( K r t )
2
p K E hv
k E 2m0
2 2
(r, t ) Ae
杂质原子取代晶格原子而位于晶格点处, 该杂质称为替位式杂质。
替位式杂质原子的大小和价电子壳层结构
要求与被取代的晶格原子相近。如Ⅲ、Ⅴ 族元素在Si、Ge晶体中都为替位式杂质。
半导体器件
间隙式杂质、替位式杂质
单位体积中的杂质原子数称为杂质浓度
半导体器件
练习
1、实际情况下k空间的等能面与理想情况下的等 能面分别是如何形状的?它们之间有差别的原因? 2、实际情况的半导体材料与理想的半导体材料有 何不同?
3、杂质和缺陷是如何影响半导体的特性的?
半导体器件
半导体的掺杂
施主:掺入在半导体中的杂质原子,能够向半导体中提供导电的电子, 并成为带正电的离子。如Si中的P 和As
ED
As
ED
EC
EV
N型半导体
半导体器件
施主能级
半导体的掺杂
受主:掺入在半导体中的杂质原子,能够向半导体中提供导电的空穴, 并成为带负电的离子。如Si中的B
半导体器件
f dE dE dt dk
半导体中电子的加速度
1 1 d E 2 * mn dk 2
2
2


mn
*
f a * mn
半导体器件
d 2E 2 dk
有效质量的意义
自由电子只受外力作用;半导体中的电子 不仅受到外力的作用,同时还受半导体内 部势场的作用 意义:有效质量概括了半导体内部势场的 作用,使得研究半导体中电子的运动规律 时更为简便(有效质量可由试验测定)
半导体器件
原子的能级的分裂
原子能级分裂为能带
半导体器件
Si的能带 (价带、导带和带隙〕
半导体器件
半导体的能带结构
导带 Eg
价带
价带:0K条件下被电子填充的能量的能带
导带:0K条件下未被电子填充的能量的能带
带隙:导带底与价带顶之间的能量差
半导体器件
自由电子的运动
微观粒子具有波粒二象性
p m0u
p E 2m0
i ( K r t )
2
p K E hv
(r, t ) Ae
半导体器件
半导体中电子的运动
薛定谔方程及其解的形式
V ( x) V ( x sa) d ( x) V ( x) ( x) E ( x) 2 2m0 dx ikx k ( x ) uk ( x ) e
半导体器件
空穴
只有非满带电子才可导电
导带电子和价带空穴具有导电特性;电子 带负电-q(导带底),空穴带正电+q(价 带顶)
半导体器件
K空间等能面
在k=0处为能带极值
k E (k ) E (0) * 2mn
2 2
导带底附近
k E(k ) E(0) * 2mp
2 2
价带顶附近
2 2
uk ( x) uk ( x na)
半导体器件
布洛赫波函数
固体材料的能带图
固体材料分成:超导体、导体、半导体、绝缘体
半导体器件
半导体、绝缘体和导体
半导体器件
半导体的能带
本征激发
半导体器件
练习
1、什么是共有化运动?
2、画出Si原子结构图(画出s态和p态并注明该能 级层上的电子数)
2
p K E hv
k u m0
(r, t ) Ae
半导体器件
半导体中电子的加速度
半导体中电子在一强度为 E的外加电场作用 下,外力对电子做功为电子能量的变化
u
dE fds fudt
1 dE dk
dk f dt 2 2 du 1 d dE 1 d E dk f d E a ( ) 2 2 dt dt dk dk dt dk 2
3、电子所处能级越低越稳定。 ( )
4、无论是自由电子还是晶体材料中的电子,他们 在某处出现的几率是恒定不变的。 ( )
5、分别叙述半导体与金属和绝缘体在导电过程中 的差别。
半导体器件
半导体中E(K)与K的关系
在导带底部,波数 k 0 ,附近 k 值很小, 将 E (k ) 在 k 0 附近泰勒展开
晶格原子是振动的 材料含杂质 晶格中存在缺陷
点缺陷(空位、间隙原子) 线缺陷(位错) 面缺陷(层错)
半导体器件
与理想情况的偏离的影响
极微量的杂质和缺陷,会对半导体材料 的物理性质和化学性质产生决定性的影 响,同时也严重影响半导体器件的质量。 5 10 1个B原子/ 个Si原子 3 在室温下电导率提高10 倍 3 2 10 cm Si单晶位错密度要求低于
dE 1 d E 2 E (k ) E (0) ( ) k 0 k ( 2 ) k 0 k .... dk 2 dk 1 d E 2 E (k ) E (0) ( 2 ) k 0 k 2 dk
半导体器件
2
2
半导体中E(K)与K的关系
1 d 2E 2 E (k ) E (0) ( 2 ) k 0 k 2 dk
半导体器件
点缺陷
弗仓克耳缺陷
间隙原子和空位成对出现
肖特基缺陷
只存在空位而无间隙原子
间隙原子和空位这两种点缺陷受温度影响较 大,为热缺陷,它们不断产生和复合,直至 达到动态平衡,总是同时存在的。 空位表现为受主作用;间隙原子表现为施主 作用
半导体器件
点缺陷
替位原子(化合物半导体)
单胞
对于任何给定的晶体,可以用来形成其晶体结构的
最小单元
注:(a)单胞无需是唯一的
( b)单胞无需是基本的
半导体器件
晶体结构
三维立方单胞

简立方、
体心立方、
面立方
半导体器件
金刚石晶体结构
原子结合形式:共价键 形成的晶体结构: 构成一个正四 面体,具有 金 刚 石 晶 体 结 构
金刚石结构
半导体器件
半导体概要
微电子学研究领域
•半导体器件物理 •集成电路工艺 •集成电路设计和测试
微电子学发展的特点
向高集成度、低功耗、 高性能高可靠性电路方 向发展 与其它学科互相渗透, 形成新的学科领域: 光电集成、MEMS、生 物芯片
半导体器件
半导体及其基本特性
什么是半导体? 固体材料分成:超导体、导体、半导体、绝缘体
半导体物理学
半导体器件
半导体物理学
教材:
《半导体物理学》(第七版),刘恩科等编著,
电子工业出版社
参考书:
《半导体物理与器件》(第三版),
Donald A.Neamen著,电子工业出版社
半导体器件
半导体物理学
课程考核办法 :
本课采用开卷笔试的考核办法。 总评成绩构比例为:平时成绩10%; 期末
EC
B
EA
EA EV
P型半导体
受主能级
半导体器件
半导体的掺杂
Ⅲ、Ⅴ族杂质在Si、Ge晶体中分别为受 主和施主杂质,它们在禁带中引入了能 级;受主能级比价带顶高 EA,施主能级 比导带底低 ED,均为浅能级,这两种 杂质称为浅能级杂质。 杂质处于两种状态:中性态和离化态。 当处于离化态时,施主杂质向导带提供 电子成为正电中心;受主杂质向价带提 供空穴成为负电中心。
4、计算金刚石型单胞中的原子数。
半导体器件
原子的能级
电子壳层
不同支壳层电子
1s;2s,2p;3s,2p,3d;…
共有化运动
半导体器件
Si原子的能级
电子的能级是量子化的
n=2 8个电子 +14 n=3 四个电子
H 半导体器件
n=1 2个电子 Si
原子的能级的分裂
孤立原子的能级 4个原子能级的分裂
半导体器件
位错
位错是半导体中的一种缺陷,它严重影 响材料和器件的性能。
半导体器件
位错
施主情况 受主情况
半导体器件
练习
1、Ⅲ、Ⅴ族杂质在Si、Ge晶体中为深能级杂质。 ( 2、受主杂质向价带提供空穴成为正电中心。( 3、杂质处于两种状态:( )和( )。 4、空位表现为( )作用,间隙原子表现为( 用。 ) ) )作
E (k ) E (0)
半导体器件2ຫໍສະໝຸດ 2mn*(k x k y k z )
2 2 2
半导体物理学
一.半导体中的电子状态 二.半导体中杂质和缺陷能级 三.半导体中载流子的统计分布 四.半导体的导电性
五.非平衡载流子
六.pn结
七.金属和半导体的接触
八.半导体表面与MIS结构
半导体器件
与理想情况的偏离
半导体器件
K空间等能面
kz 为坐标轴构成 k 空间, 以 kx 、k y 、 k 空间 任一矢量代表波矢 k
k kx k y kz
2 2 2
2
导带底附近
E (k ) E (0)
2
2mn
*
(k x k y k z )
2 2 2
半导体器件
K空间等能面
对应于某一 E ( k ) 值,有许多组不同的 (kx , k y , kz ),这些组构成一个封闭面, 在着个面上能量值为一恒值,这个面称 为等能量面,简称等能面。 等能面为一球面(理想)
相关文档
最新文档