《数据挖掘导论》教材配套教学PPT——第1章 认识数据挖掘
合集下载
第1章 《数据挖掘》PPT绪论
Wisdom
Knowledge
Information
Data
3 of 43
1.1数据挖掘基本概念
第一章 绪论
1.1.1 数据挖掘的概念
数据挖掘、数据库、人工智能
• 数据挖掘是从数据中发掘知识的过程,在这个过程中人工智能和数据库技术可以作 为挖掘工具,数据可以被看作是土壤,云平台可以看作是承载数据和挖掘算法的基 础设施 。在挖掘数据的过程中需要用到一些挖掘工具和方法,如机器学习的方法。 当挖掘完毕后,数据挖掘还需要对知识进行可视化和展现。
21 of 43
1.3数据挖掘常用工具
第一章 绪论
1.3.2 开源工具
• WEKA WEKA 是一个基于JAVA 环境下免费开源的数据挖掘工作平台,集合了大量能承担数据 挖掘任务的机器学习算法,包括对数据进行预处理,分类,回归、聚类、关联规则以及 在新的交互式界面上的可视化。
22 of 43
1.3数据挖掘常用工具
•R • Weka • Mahout • RapidMiner • Python • Spark MLlib
第一章 绪论
20 of 43
1.3数据挖掘常用工具
第一章 绪论
1.3.2 开源工具
•R R是用于统计分析和图形化的计算机语言及分析工具,提供了丰富的统计分析和数据挖 掘功能,其核心模块是用C、C++和Fortran编写的。
为了提高系统的决策支持能力,像ERP、SCM、HR等一些应用系统也逐渐与数据 挖掘集成起来。多种理论与方法的合理整合是大多数研究者采用的有效技术。
12 of 43
1.2 数据挖掘起源及发展历史
第一章 绪论
3 数据挖掘面临的新挑战
随着物联网、云计算和大数据时代的来临,在大数据背景下数据挖掘要面临的挑 战,主要表现在以下几个方面:
Knowledge
Information
Data
3 of 43
1.1数据挖掘基本概念
第一章 绪论
1.1.1 数据挖掘的概念
数据挖掘、数据库、人工智能
• 数据挖掘是从数据中发掘知识的过程,在这个过程中人工智能和数据库技术可以作 为挖掘工具,数据可以被看作是土壤,云平台可以看作是承载数据和挖掘算法的基 础设施 。在挖掘数据的过程中需要用到一些挖掘工具和方法,如机器学习的方法。 当挖掘完毕后,数据挖掘还需要对知识进行可视化和展现。
21 of 43
1.3数据挖掘常用工具
第一章 绪论
1.3.2 开源工具
• WEKA WEKA 是一个基于JAVA 环境下免费开源的数据挖掘工作平台,集合了大量能承担数据 挖掘任务的机器学习算法,包括对数据进行预处理,分类,回归、聚类、关联规则以及 在新的交互式界面上的可视化。
22 of 43
1.3数据挖掘常用工具
•R • Weka • Mahout • RapidMiner • Python • Spark MLlib
第一章 绪论
20 of 43
1.3数据挖掘常用工具
第一章 绪论
1.3.2 开源工具
•R R是用于统计分析和图形化的计算机语言及分析工具,提供了丰富的统计分析和数据挖 掘功能,其核心模块是用C、C++和Fortran编写的。
为了提高系统的决策支持能力,像ERP、SCM、HR等一些应用系统也逐渐与数据 挖掘集成起来。多种理论与方法的合理整合是大多数研究者采用的有效技术。
12 of 43
1.2 数据挖掘起源及发展历史
第一章 绪论
3 数据挖掘面临的新挑战
随着物联网、云计算和大数据时代的来临,在大数据背景下数据挖掘要面临的挑 战,主要表现在以下几个方面:
数据挖掘第一与第二章PPT课件
散的目标变量;回归,用于预测连续的目标变 量。
预测建模可以用来确定顾客对产品促销活 动的反应,预测地球生态系统的扰动,或根据 检查结果判断病人是否患有某种疾病。
14
数据挖掘任务
• 关联分析 用来描述数据中强关联特征的模式。 关联分析的应用包括找出具有相关功
能的基因组、识别用户一起访问的Web页面、 理解地球气候系统不同元素之间的联系等。
12
数据挖掘任务
• 预测vs.描述 • 预测(Prediction)
– 根据其他属性的值,预测特定属性的值 • 描述(Description)
– 导出概括数据中潜在联系的模式
2020年9月29日星期二
13
数据挖掘任务
• 预测建模 涉及以说明自变量函数的方式为目标变量
建立模型。 有两类预测建模任务:分类,用于预测离
– 使用抽样技术或开发并行和分布算法也可以提高可 伸缩程度
2020年9月29日星期二
7
挑战2
• 高维性
– 具有数以百计或数以千计属性的数据集
• 生物信息学:涉及数千特征的基因表达数据 • 不同地区温度测量:如果在一个相当长的时间周期内进
行测量,维度(特征数)的增长正比于测量的次数
– 为低维数据开发的数据分析技术不能很好地处理高 维数据
异常检测的应用包括检测欺诈、网络攻 击、疾病的不寻常模式、生态系统扰动等。
– Jiawei Han的定义
• 从大型数据集中提取有趣的 (非平凡的, 蕴涵的, 先前未知的并且是潜在有用的) 信息或模式
4
数据挖掘技术的定义
• 定义:数据挖掘就是从大量的、不完全的、有 噪声的、模糊的、随机的实际应用数据中,提 取隐含在其中的,人们事先不知道的、但又是 潜在有用的信息和知识的过程.
预测建模可以用来确定顾客对产品促销活 动的反应,预测地球生态系统的扰动,或根据 检查结果判断病人是否患有某种疾病。
14
数据挖掘任务
• 关联分析 用来描述数据中强关联特征的模式。 关联分析的应用包括找出具有相关功
能的基因组、识别用户一起访问的Web页面、 理解地球气候系统不同元素之间的联系等。
12
数据挖掘任务
• 预测vs.描述 • 预测(Prediction)
– 根据其他属性的值,预测特定属性的值 • 描述(Description)
– 导出概括数据中潜在联系的模式
2020年9月29日星期二
13
数据挖掘任务
• 预测建模 涉及以说明自变量函数的方式为目标变量
建立模型。 有两类预测建模任务:分类,用于预测离
– 使用抽样技术或开发并行和分布算法也可以提高可 伸缩程度
2020年9月29日星期二
7
挑战2
• 高维性
– 具有数以百计或数以千计属性的数据集
• 生物信息学:涉及数千特征的基因表达数据 • 不同地区温度测量:如果在一个相当长的时间周期内进
行测量,维度(特征数)的增长正比于测量的次数
– 为低维数据开发的数据分析技术不能很好地处理高 维数据
异常检测的应用包括检测欺诈、网络攻 击、疾病的不寻常模式、生态系统扰动等。
– Jiawei Han的定义
• 从大型数据集中提取有趣的 (非平凡的, 蕴涵的, 先前未知的并且是潜在有用的) 信息或模式
4
数据挖掘技术的定义
• 定义:数据挖掘就是从大量的、不完全的、有 噪声的、模糊的、随机的实际应用数据中,提 取隐含在其中的,人们事先不知道的、但又是 潜在有用的信息和知识的过程.
1-数据挖掘简介PPT课件
数据挖掘案例
基金会数据挖掘案例
基本情况
项目情况:对60人发出家庭箱项目邀请,有11人响应 目标:预测哪些人对家庭箱项目产生响应—建立分类模型 字段信息:捐赠人名、捐赠金额、捐赠次数、区域、职业、 地址、邮编、联系电话、回信时间、性别、年龄等12个字 段信息
Jef is YES!
物以类聚,人以群分
人为地选取细分维度
– 客户价值 – 地域 – 活跃程度 – ……
市场
维度灾难的发生
– 维度增长 – 细分数目指数增长 – 人脑仅能处理有限
的维度
聚类示意
基于欧氏距离的三维空间中的聚类
d(i, j) (| xi x j |2 | yi y j |2 | zi z j |2)
海量
多样性
互联网搜索、手机通 话记录及传感器网络 等造成了数据的多样 性。
数据被创建和移动的 速度越来越快。
特征
高速
易变性
大数据具有多层结构, 意味着大数据会呈现 出多变的形式和类型。
什么是数据挖掘?
数据挖掘是大数据应用的一项关键技术。然而当人类还 在茹毛饮血的上古时代早已进行着数据挖掘的行为
为了快速并准确捕获猎物,人类的祖先必须细心观察猎物的 习性、预测猎物的行为,才能战胜猎物、存活下去
[不分类:答案(2)] 若你的老板想要知道,会来我们店里消费的顾客有那几种类型? 你应该利用下列那一个算法,来解答你老板的困惑? (1) Apriori (2) EM (3) Neural Network (4) Logistic Regression
[不分类:答案(1)] 罗吉斯回归(Logistic Regression)算法,可用来解决何种问题? (1) 分类(Classification) (2) 分群(Clustering) (3) 关联(Association) (4) 序列型样(Sequential Pattern)
数据挖掘基础 数据挖掘概念ppt课件
数据挖掘的数据源包括数据库、数据仓库、Web或其他数据存储库。
层次聚类树树状图
A
B
C
D
E
1.1 数据挖掘概述
1.1.2 数据挖掘常用算法概述
第一章 数据挖掘概念
在面对海量数据时,需要使用一定的算法,才能从中挖掘出有用的信息,下面介绍数 据挖掘中常用的算法。
1. 分类算法 (1) 决策树算法 决策树算法是一种典型的分类算法,首先利用已知分类的数据构造决策树,然后利用 测试数据集对决策树进行剪枝,每个决策树的叶子都是一种分类,最后利用形成的 决策树对数据进行分类。决策树的典型算法有ID3,C4.5,CART等。
1.1 数据挖掘概述
1.1.3 数据挖掘常用工具概述
第一章 数据挖掘概念
2. Clementine(SPSS) 软件 Clementine是SPSS所发行的一种资料探勘工具,集成了分类、聚类和关联规则
等算法,Clementine提供了可视化工具,方便用户操作。其通过一系列节点来执行 挖掘过程,这一过程被称作一个数据流,数据流上面的节点代表了要执行的操作。 Clementine的资料可视化能力包含散布图、平面图及Web分析。
1.1 数据挖掘概述
第一章 数据挖掘概念
1.1.3 数据挖掘常用工具概述
1. Weka软件
Weka(Waikato Environment for Knowledge Analysis)的全名是怀卡托智能 分析环境,是一款免费与非商业化的数据挖掘软件,基于Java环境下开源的机器学 习与数据挖掘软件。Weka的源代码可在其官方网站下载。它集成了大量数据挖掘算 法,包括数据预处理、分类、聚类、关联分析等。用户既可以使用可视化界面进行 操作,也可以使用Weka提供的接口,实现自己的数据挖掘算法。图形用户界面包括 Weka Knowledge Flow Environment和Weka Explorer。用户也可以使用Java语 言调用Weka提供的类库实现数据挖掘算法,这些类库存在于weka.jar中。
层次聚类树树状图
A
B
C
D
E
1.1 数据挖掘概述
1.1.2 数据挖掘常用算法概述
第一章 数据挖掘概念
在面对海量数据时,需要使用一定的算法,才能从中挖掘出有用的信息,下面介绍数 据挖掘中常用的算法。
1. 分类算法 (1) 决策树算法 决策树算法是一种典型的分类算法,首先利用已知分类的数据构造决策树,然后利用 测试数据集对决策树进行剪枝,每个决策树的叶子都是一种分类,最后利用形成的 决策树对数据进行分类。决策树的典型算法有ID3,C4.5,CART等。
1.1 数据挖掘概述
1.1.3 数据挖掘常用工具概述
第一章 数据挖掘概念
2. Clementine(SPSS) 软件 Clementine是SPSS所发行的一种资料探勘工具,集成了分类、聚类和关联规则
等算法,Clementine提供了可视化工具,方便用户操作。其通过一系列节点来执行 挖掘过程,这一过程被称作一个数据流,数据流上面的节点代表了要执行的操作。 Clementine的资料可视化能力包含散布图、平面图及Web分析。
1.1 数据挖掘概述
第一章 数据挖掘概念
1.1.3 数据挖掘常用工具概述
1. Weka软件
Weka(Waikato Environment for Knowledge Analysis)的全名是怀卡托智能 分析环境,是一款免费与非商业化的数据挖掘软件,基于Java环境下开源的机器学 习与数据挖掘软件。Weka的源代码可在其官方网站下载。它集成了大量数据挖掘算 法,包括数据预处理、分类、聚类、关联分析等。用户既可以使用可视化界面进行 操作,也可以使用Weka提供的接口,实现自己的数据挖掘算法。图形用户界面包括 Weka Knowledge Flow Environment和Weka Explorer。用户也可以使用Java语 言调用Weka提供的类库实现数据挖掘算法,这些类库存在于weka.jar中。
[理学]厦门大学数据挖掘之第1章 数据挖掘概述PPT课件
11.08.2020
3
教学目的
数据挖掘(Data Mining)就是从大量的、不完全的、有噪声的、模 糊的、随机的数据中,提取隐含在其中的、人们事先不知道的、但又 是潜在有用的信息和知识的过程。它是涉及机器学习、模式识别、统 计学、人工智能、数据库管理及数据可视化等学科的边缘学科。
用统计的观点看,它可以看成是通过计算机对大量的复杂数据 集的自动探索性分析。作为一种独立于应用的技术,一经出现立即受 到广泛的关注。
第七章理解一些其它的数据挖掘技术。模糊聚类、神 经网络、时序稠密数据集的挖掘技术等。
为了满足实际的需要,我们将利用所讲授的方法, 对某地区中国移动通讯用户消费数据库、某大学大学生 隐形教育调查资料和上证指数收盘价信息进行剖析,以 便让学生充分地领悟到数据挖掘的理论和实际价值。
11.08.2020
11.08.2020
7
第六章介绍挖掘大型数据库中的关联规则。讲授关 联规则的意义和量度,维布尔关联规则,多层关联规则, 由关联规则到相关分析。另外,引入相应分析作为数据 挖掘中关联规则的提升,介绍相应分析适应性检验的基 本思想及方法,及相应分析适应性的分层量度方法。利 用可视化方法对所多度相应分析方法进行了验证。
第四章介绍Rough集的基本模型及有关概念。这一章讲授知识的分 类观点和概念的边界观点,知识的约简和决策表的约简。以统计 思想与Rough集理论相结合,介绍对事务性数据库的统计描述,对 事务性数据库事务项及属性项压缩的方法,构建事务性数据库列 联表示的模型的思想。并利用所介绍的方法进行实证分析。
第五章重点介绍数据挖掘中的聚类问题。讲授数据的排序与有向 聚类问题。介绍聚类分析数据类型衍生的思想,并对聚类分析方 法进行了比较和检验。让学生在实际应用中认识到其方法的可靠 性与稳定性。
数据挖掘课件.
欺骗性检测和管理(1)
应用
广泛应用于医疗系统, 零售系统,信用卡服务, 电信(电 话卡欺骗行为), 等等. 利用历史性数据建立欺骗性行为模型并使用数据挖掘 帮助识别同类例子 汽车保险:检测出那些故意制造车祸而索取保险金的 人 来路不明钱财的追踪: 发现可疑钱财交易(美国财政部 的财政犯罪执行网) 医疗保险: 检测出潜在的病人,呼叫医生和证明人
了解应用领域:
相关的预备知识和应用目标
创建一个目标数据集:数据选择 数据清理和预加工(可能占用60%精力) 数据变换:
发现有用的特征,维/变量的变换,常量的表示
汇总,分类,关联,聚集
选择数据挖掘功能
选择挖掘算法 数据挖掘:搜索兴趣模式 模式评估和知识表达
可视化,变形,去掉冗余模式等等
其他应用
文本挖掘(新闻组,电子邮件,文件) 和WEB分 析 智能询问回答
市场分析和管理(1)
用于分析的数据从何来?
信用卡交易,信誉卡,折扣券,用户投诉电话,公众 生活方式调查。 找出具有相同特征(兴趣,收入水平,消费习惯等等) 的“模式”顾客群。 从单独银行账户向联合银行账户的转变。例如:结婚 不同产品之间的销售关联关系 在此关联信息上进行预测
数据挖掘功能(2)
分类和预测
找出描述并区分数据类和概念的模型(或函数)以便 能够使用模型预测类标记未知的对象类。 例如:依据气候划分国家类型或者依据每里的耗油量 划分汽车类型。 表示形式:判定树,分类规则,神经网络。 预测:预测某些未知的或空缺的数据值。 类标记未知:把数据聚类或分组成新的类,例如:把 房子聚类来找出房子的分布模式。 聚类依据以下原则:最大化类内的相似性和最小化类 间的相似性。
大数据高职系列教材之数据挖掘基础PPT课件:第1章 数据挖掘概念
1.1 数据挖掘概述
1.1.2 数据挖掘常用算法概述
第一章 数据挖掘概念
(3) 支持向量机 支持向量机(Support Vector Machine,SVM)是建立在统计学理论的VC维理论和
结构风险最小原理基础上的,它在解决小样本、非线性及高维模式识别中表现出许 多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。支持向量机算 法将在后面章节做详细介绍。
第一章 数据挖掘概念
1. 什么是测量误差和数据收集误差 测量误差是测量中测量结果与实际值之间的差值叫误差。 数据收集误差是指收集数据时遗漏数据对象或属性值,或包含了其他数据对象等情况。
2. 什么是噪声 噪声是从物理角度而言,噪声是波形不规则的声音。
1.2 数据探索
1.2.2 数据质量
第一章 数据挖掘概念
第一章 数据挖掘概念
1.3 数据挖掘的应用
第一章 数据挖掘概念
1. 算法延展性
算法延展性即为算法弹性,随着数据产生、采集技术的快速进步,以GB、TB、PB(1GB=1024MB, 1TB=1024GB,1PB=1024TB)为单位的数据集越来越普遍。
2. 高维性
在以前的数据库构成中只有少量属性的数据集,现在大数据集群构成中是具有成百上千属性的数据集。
1.2 数据探索
1.2.1 数据概述
1. 属性 (1)区分属性可通过属性可能取值的个数来判断。 (2)非对称的属性 2. 数据集的一般特性
数据集一般具有三个特性,分别是维度、稀疏性、 分辨率三个,它们对数据挖掘有重要影响。 3. 较常见的数据类型
第一章 数据挖掘概念
1.2 数据探索
1.2.2 数据质量
1.3 数据挖掘的应用
1.3.3 数据挖掘的应用场景
数据挖掘PPT全套课件
记录数据
记录(数据对象)的汇集,每个记录包含固定的数 据字段(属性)集
Tid Refund Marital Taxable Status Income Cheat
1 Yes 2 No 3 No 4 Yes 5 No 6 No 7 Yes 8 No 9 No 10 No
10
Single 125K No
和三维结构的DNA数据)
数据库技术、 并行技术、分 布式技术
数据挖掘的任务
预测 – 使用已知变量预测未知变量的值.
描述 – 导出潜在联系的模式(相关、趋势、聚类、异
常).
数据挖掘的任务
分类 [预测] 聚类 [描述] 关联分析 [描述] 异常检测 [预测]
分类 例子
Tid Refund Marital Taxable Status Income Cheat
矿石硬度、{好, 较好,最好}、 成绩
中值、百分位、 秩相关、游程 检验、符号检 验
日历日期、摄氏、 均值、标准差、
华氏温度
皮尔逊相关、
t和F检验
绝对温度、货币 量、计数、年龄 、质量、长度、 电流
几何平均、调 和平均、百分 比变差
属性类 型
标称
变换 任何一对一变换
序数
值的保序变换
新值 = f(旧值)
– (1)统计学的抽样、估计、假设检验
– (2)人工智能、模式识别、机器学习
的搜索算法/建摸技术、学习理论
– (3)最优化、进化算法、
信息论、信号处理、 可视化、信息检索
统计学
人工智能、 机器学习
– (4)数据库技术、并行计算
和模式识别
、分布式计算
传统的方法可能不适合
数据挖掘
《数据挖掘》课件
NumPy、Pandas、 Matplotlib等,能够方便地进 行数据处理、建模和结果展示
。
Python的易读性和灵活性使得 它成为一种强大的工具,可以 快速地开发原型和实现复杂的 算法。
Python在数据挖掘中主要用于 数据清洗、特征工程、机器学 习模型训练和评估等任务。
R在数据挖掘中的应用
01
等。
02
数据挖掘技术
聚类分析
聚类分析的定义
聚类分析是一种无监督学习方法 ,用于将数据集中的对象分组, 使得同一组(即聚类)内的对象 尽可能相似,而不同组的对象尽
可能不同。
常见的聚类算法
包括K-means、层次聚类、 DBSCAN等。
聚类分析的应用
在市场细分、模式识别、数据挖 掘、统计学等领域有广泛应用。
04
Spark提供了Spark SQL、Spark MLlib和Spark GraphX等组件,可以进行结构化和非结构化数据的 处理、机器学习、图计算等任务。
Tableau在数据可视化中的应用
01 02 03 04
Tableau是一款可视化数据分析工具,能够帮助用户快速创建各种图 表和仪表板。
Tableau提供了直观的界面和强大的功能,支持多种数据源连接和数 据处理方式。
03
到了广泛应用。
数据挖掘的应用场景
商业智能
通过数据挖掘技术,企业可以 对市场趋势、客户行为等进行 深入分析,从而制定更好的商
业策略。
金融
金融机构可以利用数据挖掘技 术进行风险评估、客户细分和 欺诈检测等。
医疗
数据挖掘在医疗领域的应用包 括疾病诊断、药物研发和患者 管理等。
科学研究
数据挖掘在科研领域的应用包 括基因组学、天文学和气候学
。
Python的易读性和灵活性使得 它成为一种强大的工具,可以 快速地开发原型和实现复杂的 算法。
Python在数据挖掘中主要用于 数据清洗、特征工程、机器学 习模型训练和评估等任务。
R在数据挖掘中的应用
01
等。
02
数据挖掘技术
聚类分析
聚类分析的定义
聚类分析是一种无监督学习方法 ,用于将数据集中的对象分组, 使得同一组(即聚类)内的对象 尽可能相似,而不同组的对象尽
可能不同。
常见的聚类算法
包括K-means、层次聚类、 DBSCAN等。
聚类分析的应用
在市场细分、模式识别、数据挖 掘、统计学等领域有广泛应用。
04
Spark提供了Spark SQL、Spark MLlib和Spark GraphX等组件,可以进行结构化和非结构化数据的 处理、机器学习、图计算等任务。
Tableau在数据可视化中的应用
01 02 03 04
Tableau是一款可视化数据分析工具,能够帮助用户快速创建各种图 表和仪表板。
Tableau提供了直观的界面和强大的功能,支持多种数据源连接和数 据处理方式。
03
到了广泛应用。
数据挖掘的应用场景
商业智能
通过数据挖掘技术,企业可以 对市场趋势、客户行为等进行 深入分析,从而制定更好的商
业策略。
金融
金融机构可以利用数据挖掘技 术进行风险评估、客户细分和 欺诈检测等。
医疗
数据挖掘在医疗领域的应用包 括疾病诊断、药物研发和患者 管理等。
科学研究
数据挖掘在科研领域的应用包 括基因组学、天文学和气候学
《数据挖掘导论》课件
05
数据挖掘工具与软件
Weka
总结词
Weka是一款流行的开源数据挖掘工具,提供了丰富的数据预处理、分类、聚类和可视化功能。
详细描述
Weka提供了友好的用户界面和命令行接口,支持多种数据格式和数据源。它包含了多种算法,如决策树、朴素 贝叶斯、聚类和关联规则挖掘等,并提供了强大的可视化工具,如分类器性能曲线和关联规则挖掘结果的可视化 。
04
数据挖掘过程
定义问题
总结词
明确数据挖掘的目标和问题
详细描述
在数据挖掘过程中,首先需要明确数据挖掘的目标和要解决的问题。这需要对业务需求 和数据环境进行深入了解,以便确定挖掘的主题和目标。
数据收集
总结词
收集相关数据
详细描述
根据定义的问题,收集相关的数据。这可能 涉及到从各种数据源中提取、购买或共享数 据,并确保数据的准确性和完整性。
建立完善的数据安全防护机制,防止 数据泄露、篡改和破坏,确保数据完 整性。
高维数据挖掘
高维数据的降维处理
由于高维数据存Байду номын сангаас维度灾难问题,需 要进行降维处理,提取关键特征进行 挖掘。
高维数据的可视化分析
通过可视化技术将高维数据呈现出来 ,帮助用户更好地理解和分析数据。
时序数据挖掘
时序数据的趋势分析
对时序数据进行趋势分析,预测未来发展趋势,为决 策提供支持。
包括分类、聚类、回归和预测等。Azure ML Studio还提供了强大的可扩展性和集成 能力,可以与其他Azure服务和自定义代码
进行集成。
06
数据挖掘的挑战与未来发 展
数据隐私与安全
数据隐私保护
在数据挖掘过程中,应确保数据隐私 不被侵犯,采取加密、匿名化等技术 手段保护用户隐私。
数据挖掘第1章引言PPT课件
5
Evolution of Database Technology
1960s:
P2
Data collection, database creation, IMS and network DBMS
1970s:
Relational data model, relational DBMS implementation
1980s:
RDBMS, advanced data models (extended-relational, OO, deductive, etc.)
1950s-1990s, computational science Over the last 50 years, most disciplines have grown a third, computational branch (e.g. empirical, theoretical, and computational ecology, or physics, or linguistics.) Computational Science traditionally meant simulation. It grew out of our inability to find closed-form solutions for complex mathematical models.
We are drowning in data, but starving for knowledge! “Necessity is the mother of invention”—Data mining—Automated
analysis of massive data sets
2020/9/29
《数据挖掘导论》课件
详细描述
KNIME是一款基于可视化编程的数据挖掘工具,用户 可以通过拖拽和连接不同的数据流模块来构建数据挖掘 流程。它提供了丰富的数据挖掘和分析功能,包括分类 、聚类、关联规则挖掘、时间序列分析等,并支持多种 数据源和输出格式。
Microsoft Azure ML
总结词
云端的数据挖掘工具
详细描述
Microsoft Azure ML是微软Azure云平台上的数据挖掘工具,它提供了全面的数据挖掘和分析功能, 包括分类、聚类、关联规则挖掘、预测建模等。它支持多种数据源和输出格式,并提供了强大的可扩 展性和灵活性,方便用户在云端进行大规模的数据挖掘任务。
03
数据挖掘过程
数据准备
01
数据清洗
去除重复、错误或不完整的数据, 确保数据质量。
数据集成
将多个来源的数据整合到一个统一 的数据集。
03
02
数据转换
将数据从一种格式或结构转换为另 一种,以便于分析。
数据归一化
将数据缩放到特定范围,以消除规 模差异。
04
数据探索
数据可视化
通过图表、图形等展示数据的分布和关系。
序列模式挖掘
总结词
序列模式挖掘是一种无监督学习方法,用于 发现数据集中项之间具有时间顺序关系的有 趣模式。
详细描述
序列模式挖掘广泛应用于股票市场分析、气 候变化研究等领域。常见的序列模式挖掘算 法包括GSP、PrefixSpan等。这些算法通过 扫描数据集并找出项之间具有时间顺序关系 的模式,如“股票价格在某段时间内持续上
高维数据挖掘
高维数据的降维
高维数据的聚类和分类
利用降维技术如主成分分析、线性判 别分析等,将高维数据降维到低维空 间,以便更好地理解和分析数据。
大数据本科系列教材PPT课件之《数据挖掘》:第1章 绪论
1.3.1 商用工具
• SAS Enterprise Miner Enterprise Miner是一种通用的数据挖掘工具,按照“抽样-探索-修改-建模-评价”的方 法进行数据挖掘,它把统计分析系统和图形用户界面(GUI)集成起来,为用户提供了用 于建模的图形化流程处理环境。
19 of 43
1.3数据挖掘常用工具
3 of 43
1.1数据挖掘基本概念
第一章 绪论
1.1.1 数据挖掘的概念
数据挖掘的定义
• 数据挖掘(Data Mining,DM),是从大量的、有噪声的、不完全的、模糊和随机 的数据中,提取出隐含在其中的、人们事先不知道的、具有潜在利用价值的信息和 知识的过程。
• 这个定义包含以下几层含义: ✓ 数据源必须是真实的、大量的、含噪声的; ✓ 发现的是用户感兴趣的知识; ✓ 发现的知识要可接受、可理解、可运用; ✓ 不要求发现放之四海皆准的知识,仅支持特定的问题
•R • Weka • Mahout • RapidMiner • Python • Spark MLlib
第一章 绪论
21 of 43
1.3数据挖掘常用工具
第一章 绪论
1.3.2 开源工具
•R R是用于统计分析和图形化的计算机语言及分析工具,提供了丰富的统计分析和数据挖 掘功能,其核心模块是用C、C++和Fortran编写的。
8 of 43
1.1数据挖掘基本概念
第一章 绪论
1.1.3 大数据挖掘的特性
• 在大数据时代,数据的产生和收集是基础,数据挖掘是关键,即数据挖掘是大数据 中最关键、最有价值的工作。
大数据挖掘的特性:
• 应用性 • 工程性 • 集合性
9 of 43
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 数据实例(Instance)
– 用于有指导学习的样本数据
• 训练实例(Training Instance)
– 用于训练的实例
• 检验实例(Test Instance)
– 分类模型建立完成后,经过检验实例进行检验,判断模型是否 能够很好地应用在未知实例的分类或预测中。
2022年3月23日星期三
第10页,共65页
Knowledge)
2022年3月23日星期三
第21页,共65页
1.4 专家系统
清华大学出版社
专家系统(Expert System)
• 一种具有“智能”的计算机软件系统。 • 能够模拟某个领域的人类专家的决策过程,解决那些需要人类专家
处理的复杂问题。 • 一般包含以规则形式表示的领域专家的知识和经验,系统就是利用
• 决策树有很多算法(第2章)
Sore-throat Yes Cooling-effect
Not good
Unknown Good
No
Cold Type=Viral (3/0)
Cold Type=Bacterial (4/1)
Cold Type=Viral (2/0)
Cold Type=Bacterial (1/0)
Sore-
throat 咽痛
Cooling-
effect 退热效果
Group 群体发病
Cold-type 感冒类型
1
Yes
2
No
3
Yes
4
Yes
5
No
6
No
7
No
8
Yes
9
Yes
10
Yes
No
Yes
Yes
Yes
Yes
No
No
Yes
Yes
No
No
Yes
No
No
No
Yes
Yes
Yes
Yes
Yes
No
No
2、数据仓库
– 数据仓库(Data Warehouse)是面向决策支持而不是日常事务处理 而设计的。
3、平面文件
– 一些数据量较小的数据集可以存储在如Excel电子表格、.csv、.arff等 平面文件中。
2022年3月23日星期三
第27页,共65页
1.5.2 挖掘数据
清华大学出版社
• 选择一种数据挖掘技术或算法,将数据提交给数据挖 掘工具,应用该算法建立模型。
2022年3月23日星期三
第5页,共65页
1.2 机器学习
1.2.1 概念学习
清华大学出版社
• 通过对大量实例进行训练,从中发现经验化规律的过程。 • 机器学习结果的通常表现形式为概念。 • 机器最擅长的是学习概念。 • 概念(Concept)
– 具有某些共同特征的对象、符号或事件的集合。
• 概念可以从三个不同的角度来看待
• 决策树一般都可以被翻译为一个产生式规则集合。 • 产生式规则的格式为:
– IF 前提条件 THEN 结论
• 图1.1翻译为4条产生式规则
(1)IF Sore-throat = No THEN Cold-type = Viral (2)IF Sore-throat = Yes & Cooling-effect = Good THEN Cold-type = Viral (3)IF Sore-throat = Yes & Cooling-effect = Not good THEN Cold-type = Bacterial (4)IF Sore-throat = Yes & Cooling-effect = Unknown THEN Cold-type = Bacterial
2022年3月23日星期三
第15页,共65页
清华大学出版社
1.2.4 无指导的聚类(Unsupervised Clustering)
• 无指导(监督)聚类
– 一种无指导(无教师)的学习;
• 在学习训练之前,无预先定义好分类的实例,数据实例 按照某种相似性度量方法,计算实例之间的相似程度, 将最为相似的实例聚类在一个组——簇(Cluster)中, 再解释和理解每个簇的含义,从中发现聚类的意义。
– 样本角度中的概念是将某个概念中的典型实例组成一个集合, 使用该集合来描述概念定义。
2022年3月23日星期三
第8页,共65页
清华大学出版社
1.2.2 归纳学习(Induction-Based Learning)
• 基于归纳的学习
– 机器学习方式 – 人类学习最重要方式之一
• 人类通过对事物的特定实例的观察,对所掌握的已有 经验材料研究。
算法、EM算法等。 – K-means算法是一种最为常用和易用的算法。
• 指定初始簇
– K-means(K-均值)算法在聚类前指定一个初始的簇的个数, 本例指定为2。
2022年3月23日星期三
第18页,共65页
聚类结果
清华大学出版社
• 聚类为两个簇,每个簇有5个实例,分别为
– Cluster0 = {1,3,4,8,9} – Cluster1 = {2,5,6,7,10}
2022年3月23日星期三
第19页,共65页
1.3 数据查询
数据查询(Data Query)
清华大学出版社
• 通过数据查询语言在数据中找出所需要的数据或信息。
• 什么时候使用数据挖掘,什么时候使用数据查询呢?
– 获取浅知识或多维知识(Multidimensional Knowledge) – 获取数据中潜在的、隐藏的信息或知识——隐含知识(Hidden
(1)准备数据,包括准备训练数据和检验数据 (2)选择一种数据挖掘技术或算法,将数据提交给数据挖掘软件 (3)解释和评估结果 (4)模型应用
数据准备
数据挖掘
数据解释和评估
传统数据库/数据仓库/平面文件
数据挖掘技术和算法
2022年3月23日星期三
图1.3 数据挖掘实验过程示意图
模型应用 第26页,共65页
• 归纳学习
– 从归纳中获取和探索新知识,并以概念的形式表现出来的学习。
2022年3月23日星期三
第9页,共65页
清华大学出版社
1.2.3 有指导的学习(Supervised Learning)
• 定义
– 通过对大量已知分类或输出结果值的实例进行训练,调整分类 模型的结构,达到建立能够准确分类或预测未知模型的目的。 这种基于归纳的概念学习过程被称为有指导(监督)的学习。
这些知识和方法进行推理和判断,从而解决该领域中实际问题。 • 专家(Expert)
– 有能力解决领域中复杂问题的人通常被称为该领域中的专家(Expert)
2022年3月23日星期三
第23页,共65页
清华大学出版社
专家系统方法 与 数据挖掘方法
人类领域专家
知识工程师
数据
专家系统创建工具
数据挖掘工具
规则: IF Sore-throat = No THEN Cold-type = Viral
【例1.1】
给定如表1.1所示的数据集T,使用有指导的学习方 法建立分类模型,对未知类别的实例进行分类。
表1.1 感冒诊断假想数据集
清华大学出版社
表1.1 感冒诊断假想数据集
序号
Increased -lym 淋巴细胞升高
Leukocytosis 白细胞升高
Fever 发烧
Acute-
onset 起病急
• 每个簇的概念结构可以表示为一个产生式规则
(1)IF Increased -lym = Yes & Cooling-effect =Good THEN Cluster = 0 (rule accuracy = 4/4 = 100%,rule coverage = 4/5 = 80%) (2)IF Sore-throat = Yes & Cooling-effect = Not good THEN Cluster = 1 (rule accuracy = 4/4 = 100%,rule coverage = 4/5 = 80%)
规则: IF Sore-throat = No THEN Cold-type = Viral
2022年3月23日星期三
图1.2 专家系统方法vs 数据挖掘方法
第24页,共65页
1.5 数据挖掘的过程
KDD过程
清华大学出版社
• 数据挖掘是KDD过程中的一个阶段(第3章) • 一次数据挖掘实验分为4个步骤
2022年3月23日星期三
第7页,共65页
1.2.1 概念学习
清华大学出版社
1、传统角度(Classical View)
– 所有概念都有明确的定义。
2、概率角度(Probabilistic View)
– 对个别样本实例进行概括性描述,概括性说明构成了概率角度 中的概念。
3、样本角度(Exemplar View)
Acute-
onset 起病急
Sore-
throat 咽痛
Cooling-
effect 退热效果
Group Cold-type 群体发病 感冒类型
No
Yes
Yes
No
No
Not good
No
?
Yes
No
Yes
No
Yes
Good
No
?
2022年3月23日星期三
第14页,共65页
产生式规则
清华大学出版社
图1.1 感冒类型诊断C4.5决策树
2022年3月23日星期三
第13页,共65页
分类未知实例