信号与系统(刘树棠译)第三章PPT课件
信号与系统第三章PPT课件
.
它们都是傅里叶级数收敛的充分条件。相当广泛的 信号都能满足Dirichlet条件,因而用傅里叶级数表 示周期信号具有相当的普遍适用性。
几个不满足Dirichlet条件的信号
.
三.Gibbs现象 满足 Dirichlet 条件的信号,其傅里叶级数是如
• “非周期信号都可以用正弦信号的加权积分来 表示”——傅里叶的第二个主要论点
.
傅立叶分析方法的历史
古巴比伦人 “三角函数和” 描述周期性过程、预测天体运
动
1748年 欧拉 振动弦的形状是振荡模的线性组合
1753年 D·伯努利 弦的实际运动可用标准振荡模的线性组合来表示
1759年 拉格朗日 不能用三角级数来表示具有间断点的函数
x[k]h[nk]
x[k]h[n k]
k
.
对时域的任何一个信号 x ( t ) 或者 x ( n ) ,若能将其
表示为下列形式: x(t) a 1 es1 t a 2 es2 t a 3 es3 t
由于 es1t H(s1)es1t
es2t H(s2)es2t
es3t H(s3)es3t
利用齐次性与可加性,有
k
例: y(t)x(t3) ❖ 系统输入为 x(t) ej2t
系统 H(s) ? y(t) ?
H(s) h(t)estdt
❖ 系统输入为 x(t)cos(4t)cos(7t)
系统 y(t) ?
.
*问题:究竟有多大范围的信号可以用复指数信号的 线性组合来表示?
.
3.3 连续时间周期信号的傅里叶级数表示
第k次谐波 e jk 0t 的周期为
西安交大--信号与系统课件:刘树棠--西安交大
t
t
4、能量信号和功率信号 一个信号的能量和功率是这样定义的: 设信号电压或电流为 x(t),则它在电阻为 1 Ω 上的瞬时功率为 在 t1 ≤ t ≤ t2 内消耗的总能量为 E = 平均功率为 P =
p (t ) = x (t )
2
∫
t2 t1
x ( t ) dt
2
1 t 2 − t1
∫
t2 t1
X (t)
x (t − t0 )
x (t + t
0
)
相对 x (t )而 言
0 t 0
t
0
t0
0
t
(a) 信号x(t)
(b)延时 t 0 图三 连续信号的平移
(c)超前 t 0
2、对离散信号x[n],(设 n 0 为正整数)
则x[n- n 0]是将x[n]沿n轴正方向平移 n 0个序号,如图四(b)所示。 x[n+ n 0]是将x[n]沿n轴负方向平移 n 0 个序号,如图四(c)所示。
x (t )
2
dt
当 T = (t 2 − t1 ) → ∞ 时,总能量E和平均功率P变为
E∞ = lim ∫
t2
T →∞ t 1
x (t ) dt
2
,
1 P∞ = lim T →∞ T
∫
t2
t1
x (t ) dt
2
1)、能量信号 E∞ lim =0 信号的能量E满足: 0 < E∞ <∞ ,而 P∞ = T →∞ 2T 2 )、功率信号 0< P 信号的平均功率P满足: ,而 E∞ = ∞ ∞ <∞
3、奇信号与偶信号 按信号是关于原点对称或关于坐标纵轴对称 坐标纵轴对称来分,又可分为奇信号与偶信号 坐标纵轴对称 1)、奇信号 x(t)=-x(-t) 或 x[n]=-x[-n] 2)、偶信号 x(t)=x(-t) 或 x[n]=x[-n]。
信号与系统ppt课件
02
时不变:系统的特性不随时间变 化。
系统的数学模型为非线性微分方 程或差分方程。
03
频域分析方法不适用,需采用其 他方法如几何法、状态空间法等
。
04
时变系统
系统的特性随时间变 化,即系统在不同时 刻的响应具有不同的 特性。
时域分析方法:积分 方程、微分方程等。
系统的数学模型为时 变微分方程或差分方 程。
信号与系统PPT课件
目录
CONTENTS
• 信号与系统概述 • 信号的基本特性 • 系统分析方法 • 系统分类与特性 • 系统应用实例
01
CHAPTER
信号与系统概述
信号的定义与分类
总结词
信号是传输信息的一种媒介,具有时间和幅度的变化特性。
详细描述
信号是表示数据、文字、图像、声音等的电脉冲或电磁波,它可以被传输、处理和记录。根据不同的特性,信号 可以分为模拟信号和数字信号。模拟信号是连续变化的物理量,如声音、光线等;数字信号则是离散的二进制数 据,如计算机中的数据传输。
04
CHAPTER
系统分类与特性
线性时不变系统
线性
系统的响应与输入信号的 线性组合成正比,即输出 =K*输入+常数。
时不变
系统的特性不随时间变化 ,即系统在不同时刻的响 应具有相同的特性。
频域分析方法
傅里叶变换、拉普拉斯变 换等。
非线性时不变系统
01
系统的响应与输入信号的非线性 关系,即输出不等于K*输入+常 数。
系统的定义与分类
总结词
系统是由相互关联的元素组成的整体,具有输入、输出和转 换功能。
详细描述
系统可以是一个物理装置、生物体、组织或抽象的概念,它 能够接收输入、进行转换并产生输出。根据不同的分类标准 ,系统可以分为线性系统和非线性系统、时不变系统和时变 系统等频域分析方法将信号和系统从时间域转换到频率域,通过分析系统的频率响应 来了解系统的性能,如系统的幅频特性和相频特性,这种方法特别适用于分析 周期信号和非周期信号。
信号与系统ppt课件
结果解释
对实验结果进行解释,说明实验结果所反映 出的系统特性。
总结归纳
对实验过程和结果进行总结归纳,概括出实 验的重点内容和结论。
06
总结与展望
信号与系统的总结
信号与系统是通信、电子、生物医学工程等领域的重 要基础课程,其理论和方法在信号处理、图像处理、
数据压缩等领域有着广泛的应用。
信号与系统的主要内容包括信号的时域和频域表示、 线性时不变系统、调制与解调、滤波器设计等。
信号与系统ppt课件
目录
• 信号与系统概述 • 信号的基本特性 • 系统的基本特性 • 信号与系统的应用 • 信号与系统的实验与实践 • 总结与展望
01
信号与系统概述
信号的定义与分类
信号的定义
信号是传递信息的一种方式,可以表示声音、图像、文字等。在通信系统中, 信号是传递信息的载体。
信号的分类
系统的分类
根据系统的复杂程度,可以分为线性系统和非线性系统;根据系统的稳定性,可以分为稳定系统和不稳定系统; 根据系统的时域特性,可以分为时域系统和频域系统。
信号与系统的重要性
01
信号是信息传递的载体,系统 是实现特定功能的整体,因此 信号与系统在信息处理中具有 非常重要的地位。
02
在通信系统中,信号的传输和 处理是实现信息传递的关键环 节,而系统的设计和优化直接 影响到通信系统的性能和可靠 性。
03
信号可以用数学函数来表示,其中离散信号常用序列
表示,连续信号常用函数表示。
信号的时域特性
01
02
03
信号的幅度
信号的幅度是表示信号强 弱的量,通常用振幅来表 示。
信号的相位
信号的相位是表示信号时 间先后顺序的量,通常用 角度来表示。
信号与系统ppt
3t) 3 (t
3) dt
0
(6)(t 3 2t 2 3) (t 2) (23 2 22 3) (t 2) 19 (t 2)
(7)e4t (2 2t) e4t 1 (t 1) 1 e4(-1) (t 1) 1 e4 (t 1)
2
2
2
(8)e2t u(t) (t 1) e2(-1)u(1) (t 1) 0 (t 1) 0
表征作用时间极短,作用值很大的物理现象的数学模型。
④ 冲激信号的作用:A. 表示其他任意信号
B. 表示信号间断点的导数
二、奇异信号
2. 冲激信号
(4) 冲激信号的极限模型
f (t) 1
g (t) 1
2
t
t
h (t) 2
t
1/
(t) lim f (t) lim g (t) lim h (t)
(t
π )dt 4
(2)23e5t (t 1)dt
(3)46e2t (t 8)dt (4)et (2 2t)dt
(5)22(t 2
3t) ( t
3
1)dt
(6)(t 3 2t 2 3) (t 2)
(7)e4t (2 2t) (8)e2t u(t) (t 1)
1. 在冲激信号的抽样特性中,其积分区间不一定 都是(,+),但只要积分区间不包括冲
激信号(tt0)的t=t0时刻,则积分结果必为零。
2.对于(at+b)形式的冲激信号,要先利用冲激信 号的展缩特性将其化为(t+b/a) /|a|形式后,
方可利用冲激信号的抽样特性与筛选特性。
二、奇异信号
3. 斜坡信号
定义:
r(t
)
t 0
信号与系统PPT全套课件
T T
T
f (t ) dt
f (t ) dt
2
2
(1.1-1)
1 P lim T 2T
T
T
( 1.1-2 )
上两式中,被积函数都是f ( t )的绝对值平方,所以信号能量 E 和信号功率P 都是非负实数。 若信号f ( t )的能量0 < E < , 此时P = 0,则称此信号 为能量有限信号,简称能量信号(energy signal)。 若信号f ( t )的功率0 < P < , 此时E = ,则称此信 号为功率有限信号,简称功率信号(power signal)。 信号f ( t )可以是一个既非功率信号,又非能量信号, 如单位斜坡信号就是一个例子。但一个信号不可能同时既是 功率信号,又是能量信号。
1.3 系统的数学模型及其分类
1.3.1 系统的概念 什么是系统( system )?广义地说,系统是由若干相互作用 和相互依赖的事物组合而成的具有特定功能的整体。例如, 通信系统、自动控制系统、计算机网络系统、电力系统、水 利灌溉系统等。通常将施加于系统的作用称为系统的输入激 励;而将要求系统完成的功能称为系统的输出响应。 1.3.2 系统的数学模型 分析一个实际系统,首先要对实际系统建立数学模型,在数 学模型的基础上,再根据系统的初始状态和输入激励,运用 数学方法求其解答,最后又回到实际系统,对结果作出物理 解释,并赋予物理意义。所谓系统的模型是指系统物理特性 的抽象,以数学表达式或具有理想特性的符号图形来表征系 统特性。
2.连续信号和离散信号 按照函数时间取值的连续性划分,确定信号可分为连续时 间信号和离散时间信号,简称连续信号和离散信号。 连续信号( continuous signal)是指在所讨论的时间内,对 任意时刻值除若干个不连续点外都有定义的信号,通常用f ( t ) 表示。 离散信号(discrete signal)是指只在某些不连续规定的时刻 有定义,而在其它时刻没有定义的信号。通常用 f(tk) 或 f(kT) [简写 f(k )] 表示,如图1.1-2所示。图中信号 f (tk) 只在t k = -2, -1, 0, 1, 2, 3,…等离散时刻才给出函数值。
《信号与系统》第03章
ak [ ∫ e j ( k − n )ω0t dt ]
0
T
由此可得
1 T − jnω0t an = ∫ x(t )e dt T 0
(3.36)
该式给出了确定系数的关系式。 若
∫
T
表示在任何一个T区间上的积分,则可表示为
1 an = T
∫
T
x ( t ) e − jn ω 0 t d t
(3.37)
+ a− k e
− jkω0 t
]
再利用
ak * = a− k 的关系,可得
∞
x ( t ) = a 0 + ∑ [ a k e jk ω 0 t + a k ∗ e − jk ω 0 t ]
k =1
x = a − jb
(3.30)
注意到上式括号内的两项互为共轭,所以有
x ( t ) = a 0 + ∑ 2 ℜ e a k e jk ω 0 t
k = ±2
一次谐波分量; 这两项频率都是基波频率的两倍,因此合起来称为二次谐 波分量。
k 依此类推,
= ± N 的项就称为N次谐波分量。
将连续时间周期信号表示为成谐波关系的复指数信号的线性组合,这就是连续 时间傅里叶级数。由于这种形式的傅里叶级数是以复指数函数为基底的,所以也 称为指数形式的傅里叶级数。 *表示共轭a-j b 与a +j b
x (t ) =
k = −∞
∑
+∞
ake
jk ω 0 t
=
k = −∞
∑
+∞
ake
jk ( 2 π / T ) t
(3.25)
那么,x (t)也一定是以T为周期的。这表明完全可以用成谐波关系的复指数信号 的线性组合来表示连续时间周期性信号。 式中, k = 0 这一项是一个常数,因而称直流分量;
《信号与系统》课程讲义课件
常用方法包括:状态方程建立、状态变量求解、状态轨迹绘制等。
04
线性时不变系统
线性时不变系统的定义与性质
线性时不变系统的定义
一个系统如果其输出信号是输入信号的线性变换,并且在时间上保持不变,则称其为线性时不变系统 。
信号的能量特性
能量密度
能量
单位时间内信号所携带的能量。能量密度 反映了信号在单位时间内所包含的能量大 小。
信号在整个时间或空间范围内所携带的总 能量。能量是衡量信号总体“大小”的参 数。
功率密度
功率
单位时间内信号所消耗的功率。功率密度 反映了信号在单位时间内所消耗的能量速 率。
信号在整个时间或空间范围内所消耗的总 功率。功率是衡量信号总体“强度”的参 数。
系统的复频域分析方法
01
通过拉普拉斯变换将系统从时间域转换到复频域进行
分析,研究系统的传递函数和极点、零点分布。
02
复频域分析方法适用于分析具有积分环节的动态系统
,能够揭示系统的稳定性和性能边界。
03
常用方法包括:传递函数分析、根轨迹分析、稳定性
分析等。
系统的状态变量分析方法
通过状态方程和输出方程描述系统的动态行为,将系统从输入输出描述转 换为状态变量描述。
信号的频域特性
频率
信号中包含的各种频率成分的集合。 频率是描述信号中波动快慢的参数。
频谱
信号中各个频率成分的幅度和相位信 息。频谱分析可以揭示信号中的频率 成分和变化规律。
带宽
信号所占据的频率范围。带宽反映了 信号中包含的最高和最低频率之间的 差值。
《信号与系统教案》课件
《信号与系统教案》PPT课件第一章:信号与系统概述1.1 信号的概念与分类信号的定义信号的分类:连续信号、离散信号、随机信号等1.2 系统的概念与分类系统的定义系统的分类:线性系统、非线性系统、时不变系统、时变系统等1.3 信号与系统的研究方法解析法数值法图形法第二章:连续信号及其运算2.1 连续信号的基本性质连续信号的定义与图形连续信号的周期性、奇偶性、能量与功率等性质2.2 连续信号的运算叠加运算卷积运算2.3 连续信号的变换傅里叶变换拉普拉斯变换Z变换第三章:离散信号及其运算3.1 离散信号的基本性质离散信号的定义与图形离散信号的周期性、奇偶性、能量与功率等性质3.2 离散信号的运算叠加运算卷积运算3.3 离散信号的变换离散时间傅里叶变换离散时间拉普拉斯变换离散时间Z变换第四章:线性时不变系统的特性4.1 线性时不变系统的定义与性质线性时不变系统的定义线性时不变系统的性质:叠加原理、时不变性等4.2 线性时不变系统的转移函数转移函数的定义与性质转移函数的绘制方法4.3 线性时不变系统的响应输入信号与系统响应的关系系统的稳态响应与瞬态响应第五章:信号与系统的应用5.1 信号处理的应用信号滤波信号采样与恢复5.2 系统控制的应用线性系统的控制原理PID控制器的设计与应用5.3 通信系统的应用模拟通信系统数字通信系统第六章:傅里叶级数6.1 傅里叶级数的概念傅里叶级数的定义傅里叶级数的使用条件6.2 傅里叶级数的展开周期信号的傅里叶级数展开非周期信号的傅里叶级数展开6.3 傅里叶级数的应用周期信号分析信号的频谱分析第七章:傅里叶变换7.1 傅里叶变换的概念傅里叶变换的定义傅里叶变换的性质7.2 傅里叶变换的运算傅里叶变换的计算方法傅里叶变换的逆变换7.3 傅里叶变换的应用信号分析与处理图像处理第八章:拉普拉斯变换8.1 拉普拉斯变换的概念拉普拉斯变换的定义拉普拉斯变换的性质8.2 拉普拉斯变换的运算拉普拉斯变换的计算方法拉普拉斯变换的逆变换8.3 拉普拉斯变换的应用控制系统分析信号的滤波与去噪第九章:Z变换9.1 Z变换的概念Z变换的定义Z变换的性质9.2 Z变换的运算Z变换的计算方法Z变换的逆变换9.3 Z变换的应用数字信号处理通信系统分析第十章:现代信号处理技术10.1 数字信号处理的概念数字信号处理的定义数字信号处理的特点10.2 现代信号处理技术快速傅里叶变换(FFT)数字滤波器设计数字信号处理的应用第十一章:随机信号与噪声11.1 随机信号的概念随机信号的定义随机信号的分类:窄带信号、宽带信号等11.2 随机信号的统计特性均值、方差、相关函数等随机信号的功率谱11.3 噪声的概念与分类噪声的定义噪声的分类:白噪声、带噪声等第十二章:线性系统理论12.1 线性系统的状态空间描述状态空间模型的定义与组成线性系统的性质与方程12.2 线性系统的传递函数传递函数的定义与性质传递函数的绘制方法12.3 线性系统的稳定性分析系统稳定性的定义与条件劳斯-赫尔维茨准则第十三章:非线性系统13.1 非线性系统的基本概念非线性系统的定义与特点非线性系统的分类13.2 非线性系统的数学模型非线性微分方程与差分方程非线性系统的相平面分析13.3 非线性系统的分析方法描述法映射法相平面法第十四章:现代控制系统14.1 现代控制系统的基本概念现代控制系统的定义与特点现代控制系统的设计方法14.2 模糊控制系统模糊控制系统的定义与原理模糊控制系统的结构与设计14.3 神经网络控制系统神经网络控制系统的定义与原理神经网络控制系统的结构与设计第十五章:信号与系统的实验与实践15.1 信号与系统的实验设备与原理信号发生器与接收器信号处理实验装置15.2 信号与系统的实验项目信号的采样与恢复实验信号滤波实验信号分析与处理实验15.3 信号与系统的实践应用通信系统的设计与实现控制系统的设计与实现重点和难点解析信号与系统的基本概念:理解信号与系统的定义、分类及其研究方法。
信号与系统 课件 ppt
02
信号的基本性质
信号的时域特性
信号的幅度
描述信号在某一时刻的强度。
信号的频率
描述信号周期性变化的快慢程度。
信号的相位
描述信号在某一时刻相对于参考相位的偏移 。
信号的周期
描述信号重复变化的时间间隔。
信号的频域特性
01
02
03
幅度谱
描述信号在不同频率下的 幅度大小。
相位谱
描述信号在不同频率下的 相位偏移。
信号的叠加原理线性性质若两个信号来自足线性性质,则它们的和也是信号 。
独立性
两个信号之和的图形与它们各自的图形没有交点 。
叠加原理的应用
在电路中,多个信号源共同作用产生的电流可以 叠加。
信号的相加与相乘
信号相加
两个信号的图形在时间上对齐,求和后得到一个新的信号。
信号相乘
两个信号相乘得到一个新的信号,称为卷积。
感谢您的观看
THANKS
卷积的性质
两个信号相乘后,其卷积的图形与两个信号分别作图形变换后的 图形有类似形状。
信号的频谱合成与分解
频谱的概念
01
一个周期信号可以分解为多个不同频率的正弦波的和。
傅里叶级数
02
将周期信号分解为正弦波的级数,其中每个正弦波都有一个特
定的频率。
频谱分析
03
通过傅里叶变换将时域信号转换为频域信号,可以观察到信号
信号与系统 课件
目录
CONTENTS
• 信号与系统概述 • 信号的基本性质 • 系统的基本性质 • 信号与系统的基本分析方法 • 信号的合成与分解 • 系统的响应与稳定性分析
01
信号与系统概述
信号的定义与分类
信号与系统分析PPT全套课件 (3)可修改全文
f (2t)
倒相
f (t)
f (t)
1.3 信号时域变换
例1-8
1.4 信号时域运算
相加
f1(t)
f2 (t)
fn (t)
相乘 f1(t)
f2 (t)
y(t) f1(t) f2 (t) fn (t) y(t) f1(t) f2 (t)
1.4 信号时域运算
数乘
f (t)
a
y(t) af (t)
y
(
k
)
(0
)
y (k) (0 )
y y
(0
(k)
) (0
)
y zi
(0
y
(k zi
)
) (0
y )
zs (0
y
(k zs
) ) (0
)
在零输入条件下,且系统的内部结构和参数 不发生变化时,有:
y(0 y (k )
) (0
)
yzi (0
y
(k zi
)
) (0
)
3.初始状态和初始值的确定
A1 y1(t) A2 y2 (t)
y(t)
y(t t0 )
1.7 线性时不变系统的性质
微分性
f (t)
df (t) dt
积分性
f (t)
t
f ( )d
系统 系统
y(t)
dy(t) dt
y(t)
t
y( )d
1.8 信号与系统分析概述
1.8.1 基本内容与方法
确定信号和线性时不变系统
建立与求解系统的数学模型
2.2.2 零输入响应与零状态响应
1.零输入响应 2.零状态响应
信号与系统PPT课件
精选ppt课件最新
20
离散周期信号举例1
例 判断正弦序列f(k) = sin(βk)是否为周期信号,若是, 确定其周期。
解 f (k) = sin(βk) = sin(βk + 2mπ) , m = 0,±1,±2,…
s i nβ k
m
2π β
sin[β(k
mN)]
式中β称为数字角频率,单位:rad。由上式可见:
解 (1)sin(3πk/4) 和cos(0.5πk)的数字角频率分别为 β1 = 3π/4 rad, β2 = 0.5π rad 由于2π/ β1 = 8/3, 2π/ β2 = 4为有理数,故它们的周期 分别为N1 = 8 , N2 = 4,故f1(k) 为周期序列,其周期为 N1和N2的最小公倍数8。 (2)sin(2k) 的数字角频率为 β1 = 2 rad;由于2π/ β1 = π为无理数,故f2(k) = sin(2k)为非周期序列 。
仅当2π/ β为整数时,正弦序列才具有周期N = 2π/ β。
当2π/ β为有理数时,正弦序列仍为具有周期性,但其周期
为N= M(2π/ β),M取使N为整数的最小整数。
当2π/ β为无理数时,正弦序列为非周期序列。
精选ppt课件最新
21
结论
由上面几例可看出: ①连续正弦信号一定是周期信号,而正弦序列不一定是 周期序列。 ②两连续周期信号之和不一定是周期信号,而两周期序 列之和一定是周期序列。
精选ppt课件最新
22
4.能量信号与功率信号
将信号f (t)施加于1Ω电阻上,它所消耗的瞬时功率为| f (t) |2, 在区间(–∞ , ∞)的能量和平均功率定义为
(1)信号的能量E (2)信号的功率P
信号与系统 全套课件完整版ppt教学教程最新最全
t
y(t)
f()df( 1)(t)
1.2.3 信号的相加、相乘及综合变换 1.相加
信号相加任一瞬间值,等于同一瞬间相加信号瞬时值的和。即
y (t)f1 (t)f2 (t) ...
1.2.3 信号的相加、相乘及综合变换 2.相乘
信号相乘任一瞬间值,等于同一瞬间相乘信号瞬时值的积。即
离散时间系统是指输入系统的信号是离散时间信号,输出也是离散 时间信号的系统,简称离散系统。如图连续时间系统与离散时间系统(b) 所示。
1.3.1 系统的定义及系统分类 2. 线性系统与非线性系统
线性系统是指具有线性特性的系统,线性特性包括齐次性与叠加性。线 性系统的数学模型是线性微分方程和线性差分方程。
2.1.2 MATLAB语言的特点
1、友好的工作平台和编程环境 2、简单易用的程序语言 3、强大的科学计算机数据处理能力 4、出色的图形处理功能
1、友好的工作平台和编程环境
MATLAB由一系列工具组成。这些工具方 便用户使用MATLAB的函数和文件,其中 许多工具采用的是图形用户界面。
新版本的MATLAB提供了完整的联机查询、 帮助系统,极大的方便了用户的使用。简 单的编程环境提供了比较完备的调试系统, 程序不必经过编译就可以直接运行,而且 能够及时地报告出现的错误及进行出错原 因分析。
y (t)f1 (t) f2 (t) ...
1.2.3 信号的相加、相乘及综合变换 3.综合变换 在信号分析的处理过程中,通常的情况不是以上某种单一信号的运算,往
往都是一些信号的复合变换,我们称之为综合变换。
1.3 系统
1.3.1 系统的定义及系统分类
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.V. OPPENHEIM, et al.
第3章 周期信号的 傅里叶级数表示
Fourier Series Representation
of Periodic Signals
-
1
本章内容:
Ⅰ. 周期信号的频域分析 Ⅱ. LTI系统的频域分析 Ⅲ. 傅立叶级数的性质
-
2
3.0 引言 Introduction
• 时域分析方法的基础 : 1)信号在时域的分解。 2)LTI系统满足线性、时不变性。
• 从分解信号的角度出发,基本信号单元必须满 足两个要求:
1.本身简单,且LTI系统对它的响应能简便得到。 2.具有普遍性,能够用以构成相当广泛的信号。
-
3
3.1历史的回顾 (A Historical Perspective)
0
数, 为傅a立k 叶级数的系数。
这表明用傅里叶级数可以表示连续时间周期信号,
即: 连续时间周期信号可以分解成无数多个复指数谐
波分量。
例1:
x(t)cos0t
1ej0t 2
1ej0t 2
-
10
显然该信号中,有两个谐波分量,
a
1
为 1相应分量 2
的加权因子。
例2: x(t)co s 0 t2co s3 0 t
三.傅里叶级数的其它形式
若 x 是( t )实信号,则有 x(t)x(t),于是
x ( t) k a k e jk 0 t * k a k e jk 0 t k a k e jk 0 t k a k e jk 0 t
ak ak 或 ak* ak
-
14
若令ak Akejk 则 a 为0 实数
x ( t) A k e jk e jk 0 t a 0 1A k e j( k 0 t k ) A k e j(k 0 t k )
k
k
k 1
a0 [A kejk0tejk A kejk0tejk] k1
a k * a k A k e jk A k e j k
• “非周期信号都可以用正弦信号的加权积分来 表示”——傅里叶的第二个主要论点
-
6
结论:
• 复指数函数 e 、s t 是z n 一切LTI系统的特征函
数。 H ( s ) 、 H 分( z )别是LTI系统与复指数信号相对
应的特征值。
H(s) h(t)estdt
H(z) h(n)zn
k
❖只有复指数函数才能成为一切LTI系统的特征函数。
1[ej0tej0t]ej30tej30t 2
在该信号中,有四个谐波分量,即 k1,3,
时对应的谐波分量。
傅里叶级数表明:连续时间周期信号可以按傅立叶
级数被分解成无数多个复指数谐波分量的线性组合。
-
11
二.频谱(Spectral)的概念
信号集 k中( t )的每一个信号,除了成谐波关系外,
每个信号随时间 的变t 化规律都是一样的,差别仅
一. 连续时间傅里叶级数
成谐波关系的复指数信号集: k(t){ejk0t}
其中每个信号都是以 2 为周期的,它们的公共
周期为 ,2 且该集合k中 所0 有的信号都是彼此独
立的。
0
如果将该信号集中所有的信号线性组合起来,有
-
9
x(t)
akejk0t
k
显然 x (也t ) 是以 为2 周 期的。该级数就是傅里叶级
仅是频率不同。
在傅里叶级数中,各个信号分量(谐波分量) 间的区别也仅仅是幅度(可以是复数)和频率不 同。因此,可以用一根线段来表示某个分量的幅 度,用线段的位置表示相应的频率。
-
12
分量e j 0 t 可表示为
1
0
cos0t
1(ej0t 2
ej0t)
1
1
2
2
0 0
0
因此,当把周期信号 x ( t )表示为傅里叶级数
任何科学理论, 科学方法的建立都是经过许多 人不懈的努力而来的, 其中有争论, 还有人为之 献出了生命。 历史的经验告诉我们, 要想在科学 的领域有所建树,必须倾心尽力为之奋斗。今天
我们将要学习的傅立叶分析法,也经历了曲折漫
长的发展过程,刚刚发布这一理论时,有人反对,
也有人认为不可思议。但在今天,这一分析方法
对时域的任何一个信号 x ( t或) 者 x (,若n ) 能将其表示
为下列形式:
x(t) a 1 es1 t a 2 es2 t a 3 es3 t
-
7
利用系统的齐次性与叠加性
由于 es1t H(s1)es1t
es2t H(s2)es2t
es3t H(s3)es3t 所以有
x ( t ) y ( t ) a 1 H ( s 1 ) e s 1 t a 2 H ( s 2 ) e s 2 t a 3 H ( s 3 ) e s 3 t
在许多领域已发挥了巨大的作用。
-
4
傅里叶生平
• 1768年生于法国
• 1807年提出“任何 周期信号都可以用正 弦函数的级数来表示”
• 拉格朗日反对发表
• 1822年首次发表 “热的分析理论”
1768—1830
• 1829年狄里赫利第 一个给出收敛条件
-
5
傅里叶的两个最重要的贡献——
• “周期信号都可以表示为成谐波关系的正弦信 号的加权和”——傅里叶的第一个主要论点
即: x(t) akeskt
k
同理: x(n) akZkn
k
Page130:例3.1
y(t) akH(sk)eskt
k
y(n) akH(Zk)Zkn
k
*问题:究竟有多大范围的信号可以用复指数信号的
线性组合来表示?
-
8
3.3 连续时间周期信号的傅里叶级数表示
Fourier Series Representation of Continuous-Time Periodic Signals
即: Ak Ak
k k
表明 a 的k 模关于 偶k 对称,幅角关于 奇k 对称。
-
15
x(t)a 0 [A kejk 0 tej kA kejk 0 tejk] k 1
a02 Akcos(k0tk) k1
x(t) akejk0t时,就可以将 x ( t ) 表示为 k
a
a 1
0
a1
a a 2 3
a2 a3
0 0
-
这样绘出的图 称为频谱图
13
频谱图其实就是将
a
随频率的分布表示出来,
k
即 ak ~关 系。由于信号的频谱完全代表了信号,
研究它的频谱就等于研究信号本身。因此,这种表
示信号的方法称为频域表示法。