什么是氧化铝陶瓷基板 氧化铝陶瓷基板都有哪一些种类

什么是氧化铝陶瓷基板 氧化铝陶瓷基板都有哪一些种类
什么是氧化铝陶瓷基板 氧化铝陶瓷基板都有哪一些种类

什么是氧化铝陶瓷基板氧化铝陶瓷基板都有哪一些种类

氧化铝陶瓷基板在很多行业发挥重要的作用,近几年的增长非常快,无论是高校、研发机构、还是产品终端企业都开启了陶瓷基板pcb的研发和生产。氧化铝陶瓷基板是陶瓷基板的一种,导热性好、绝缘性、耐压性都很不错,因为受欢迎。今天小编来分享一下:什么是氧化铝陶瓷基板以及氧化铝陶瓷基板都有哪些种类。

一,什么是氧化铝陶瓷基板

氧化铝陶瓷基板核心成分是三氧化二铝陶瓷为主体的陶瓷材料,氧化铝陶瓷有较好的传导性、机械强度和耐高温性。需要注意的是需用超声波进行洗涤。氧化铝陶瓷基板是一种用途广泛的陶瓷基板,因为其优越的性能,在现代社会的应用已经越来越广泛,满足于日用和特殊性能行业领域的需要。

氧化铝陶瓷分为普通型、纯高型两种:

普通型氧化铝陶瓷基板系按Al2O3含量不同分为99瓷、95瓷、90瓷、85瓷等品种,有时Al2O3含量在80%或75%者也划为普通氧化铝陶瓷系列。其中99氧化铝瓷材料用于制作高温坩埚、耐火炉管及特殊耐磨材料,如陶瓷轴承、陶瓷密封件及水阀片等;95氧化铝瓷主要用作耐腐蚀、耐磨部件;85瓷中由于常掺入部分滑石,提高了电性能与机械强度,可与钼、铌、钽等金属封接,有的用作电真空装置器件高纯型氧化铝陶瓷基板系Al2O3含量在99.9%以上的陶瓷材料,由于其烧结温度高达1650—1990℃,透射波长为1~6μm,一般制成熔融玻璃以取代铂坩埚;利用其透光性及可耐碱金属腐蚀性用作钠灯管;在电子工业中可用作集成电路基板与高频绝缘材料。

氧化铝陶瓷基板导热率

氧化铝陶瓷基板的导热率很高,一般在30W~50W 不等,板材厚度越薄,导热更

好,板厚越厚则导热相对稍低。但是整理的导热效果是普通PCB板的100倍甚至更多。

氧化铝陶瓷基板膨胀系数

氧化铝陶瓷基板因为是陶瓷基材质,所属无机材料,硬度较大。耐压,膨胀系数低,一般不易变形。

更多氧化铝陶瓷基板优势咨询金瑞欣特种电路。

二,氧化铝陶瓷基板的种类主要分为以下几类:

1,薄膜氧化铝陶瓷基板

一般采用是DPC薄膜工艺制作的三氧化二铝陶瓷基板,主要精密度较高,可以加工精密线路。一般成品率不是很高,打样较多,大批量较少。

, 2,厚膜氧化铝陶瓷基板

厚膜氧化陶瓷基板一般采用的厚膜工艺技术制作,也叫DBC工艺,制作过程相对薄膜氧化铝陶瓷基板更容易,费用方面性价比比薄膜氧化铝陶瓷基板高许多。,但是可以实现批量生产。

3,透明氧化铝陶瓷基板

透明氧化铝陶瓷基板是主要是因为采用微晶玻璃晶体制作的,看上去就像透明的“玻璃”一般,又称半透明氧化铝陶瓷(semi-transparent alumina ceramics)或透明多晶氧化铝陶瓷(transparent polycrystalline alumina ceramics)。

主晶相为α-A12O3。密度3.98g/cm3以上。直线透光率90%~95%以上。介电常数大于9.8。介电损耗角正切值小于2.5×10-4(1GC),抗弯强度大于350~380MPa。击穿强度6.0~6.4kV/mm。热膨胀系数(6.5~8.5)×10-6/℃。高温下具有良好耐碱金属蒸气腐蚀性。原料为纯度99.99%以上的Al2O3,添加少量纯氧化镁、三氧化二镧、或三氧化二钇等添加剂,采用连续等静压成型,气氛烧结或热压烧结,严格控制晶粒大

小,可获得高致密透明陶瓷。用于制造高压钠灯的发光管(工作寿命可超过2万h)。也可用作微波集成电路基片、轴承材料、耐磨表面材料和红外光学元件材料等。

4,氧化铝陶瓷基板基片

氧化铝陶瓷基片--也叫氧化铝陶瓷基板

陶瓷基片,又称陶瓷基板,是以电子陶瓷为基的,对膜电路元件及外贴切元件形成一个支撑底座的片状材料。陶瓷基片具有耐高温、电绝缘性能高、介电常数和介质损耗低、热导率大、化学稳定性好、与元件的热膨胀系数相近等主要优点,但陶瓷基片较脆,制成的基片面积较小,成本高。

实际生产和开发应用的陶瓷基片材料有Al2O3、AlN、SiC、BeO、BN、氧化锆和玻璃陶瓷等。Al2O3陶瓷基片虽然热导率不高(20W/m.K),但因其生产工艺相对简单,成本较低,价格便宜,成为目前广泛应用的陶瓷基片.

一般采用流延成型法制备氧化铝陶瓷基片,96%氧化铝陶瓷基片材料中添加了合适的矿物原料作为助熔剂,烧成温度低到1580℃~1600℃,产品密度即可达3.75g/cm3以上。对于尺寸精度要求较高的产品,可以在烧成后,以激光加工方法,在基片上划线、打孔,精度达到±0.05mm,纯度:96%,颜色:乳白色尺寸:100x100x1.0mm以内,可以根据客户的要求切割;表面粗糙度:< 0.01um(抛光后);<1um(毛坯)。

5,覆铜氧化铝陶瓷基板

覆铜陶瓷基板简称陶瓷覆铜板,Centrotherm DBC(Direct Bonding Copper)。陶瓷覆铜板具有陶瓷的高导热、高电绝缘、高机械强度、低膨胀等特性,又兼具无氧铜的高导电性和优异焊接性能,且能像PCB线路板一样刻蚀出各种图形。覆铜陶瓷基板,Centrotherm DBC(Direct Bonding Copper)具有优良的导热特性,高绝缘性,大电

流承载能力,优异的耐焊锡性及高附着强度并可像PCB一样能刻蚀出各种线路图形。覆铜陶瓷基板应用于电力电子、大功率模块、航天航空等领域。

6,DBC覆铜氧化铝陶瓷基板

采用DBC工艺制作的覆铜陶瓷基板,金属化一般覆铜或者镀金/镍钯金。

7,氧化铝陶瓷电路基板

顾名思义就是用氧化铝陶瓷基板做的电路板,一般基材用氧化铝陶瓷基板,

在其一面或者双面做线路层,加工打孔等加工需求。

8,氧化铝陶瓷印刷基板

氧化铝陶瓷印刷基板,和氧化铝陶瓷基板类似,更多是通过印刷把线路蚀刻到氧化铝陶瓷基板上面。

9,氧化铝多层陶瓷基板

就是用氧化铝陶瓷基板做多层板,一面或者双面做线路层或者其他需求。

10,led氧化铝陶瓷基板(氧化铝陶瓷led基板)

11,99(99%)氧化铝陶瓷基板

99氧化铝陶瓷基板是根据氧化铝陶瓷基板的核心成分含量的纯度的多少而命名的氧化铝陶瓷基板,顾问成为99氧化铝陶瓷基板。

12,氧化铝陶瓷基板PCB

用氧化铝基板做的电路板,也叫叫氧化铝陶瓷基板PCB。

13 ,电阻氧化铝陶瓷基板

一般需要做电阻,客户对氧化铝陶瓷基板做电阻的要求比较突出。

14,国内氧化铝陶瓷基板

15,进口氧化铝陶瓷基板

通过这些,相信你对什么是氧化铝陶瓷基板以及氧化铝陶瓷基板的种类应该是有一个明确和清晰的认识。更多氧化铝陶瓷基板的知识咨询金瑞欣特种电路技术有限公司。

七个方面让你全面了解氧化铝陶瓷基板的优势和应用

七个方面让你全面了解氧化铝陶瓷基板的优势和应用 氧化铝陶瓷基板在消费电子、汽车电子、LED照明等行业已经应用非常广泛,那么氧化铝陶瓷基板在行业应用科研创新方面起到了非常很重要的作用。今天我们就来全面分析一下氧化铝陶瓷基板。 首先了解什么是氧化铝陶瓷基板? 氧化铝陶瓷是一种以氧化铝(Al2O3)为主体的陶瓷材料,用于厚膜集成电路。氧化铝陶瓷有较好的传导性、机械强度和耐高温性。需要注意的是需用超声波进行洗涤。氧化铝陶瓷是一种用途广泛的陶瓷,因为其优越的性能,在现代社会的应用已经越来越广泛,满足于日用和特殊性能的需要。 其次:氧化铝陶瓷基板的结构和分类 氧化铝陶瓷基板的结构构成主要是:氧化铝(Al2O3)。普通型氧化铝陶瓷系按Al2O3含量不同分为99瓷、95瓷、90瓷、85瓷等品种,有时Al2O3含量在80%或75%者也划为普通氧化铝陶瓷系列。其中99氧化铝瓷材料用于制作高温坩埚、耐火炉管及特殊耐磨材料,如陶瓷轴承、陶瓷密封件及水阀片等;95氧化铝瓷主要用作耐腐蚀、耐磨部件;85瓷中由于常掺入部分滑石,提高了电性能与机械强度,可与钼、铌、钽等金属封接,有的用作电真空装置器件。 再次:氧化铝陶瓷基板的优缺点 1.硬度大 经中科院上海硅酸盐研究所测定,其洛氏硬度为HRA80-90,硬度仅次于金刚石,远远超过耐磨钢和不锈钢的耐磨性能。 2.耐磨性能极好

经中南大学粉末冶金研究所测定,其耐磨性相当于锰钢的266倍,高铬铸铁的171.5倍。根据我们十几年来的客户跟踪调查,在同等工况下,可至少延长设备使用寿命十倍以上。 3.重量轻 其密度为3.5g/cm3,仅为钢铁的一半,可大大减轻设备负荷。 氧化铝陶瓷主要技术指标 氧化铝陶瓷含量≥92% 密度≥3.6g/cm3 洛氏硬度≥80HRA 抗压强度≥850Mpa 断裂韧性KΙC≥4.8MPa·m1/2 抗弯强度≥290MPa 导热系数30~50W/m.K 热膨胀系数:7.2×10-6m/m.K 4,缺点: 比较易碎:相对与氮化铝陶瓷基板来说,更容易碎 导热没有氮化铝更好:氮化铝陶瓷基板导热可以到190~260W,氧化铝一般是25W~50W 五,氧化铝陶瓷基板导热 氧化铝陶瓷基板有较好的传导性、机械强度和耐高温性。氧化铝陶瓷基板的导热率差不多在45W/(m·K)左右。一般看到的就是这基板的覆铜对导热率也会有一定的影响,陶瓷板覆铜工艺也分很多种,有高温熔合陶瓷基板(HTFC)、低温共烧陶瓷基板

氧化铝陶瓷的制备与应用

论文题目:氧化铝陶瓷的制备与应用 学院:材料科学与工程学院 专业班级:材料化学2班 学号:20090488 姓名:王杰 日期:2011-10-19

氧化铝陶瓷的制备与应用 摘要:氧化铝陶瓷是用途最广泛的陶瓷材料中的一种,它可用作机器及设备制造中的耐腐蚀材料、化工专业中的抗腐蚀材料、电工及电子技术中的绝缘材料、热工技术中的耐高温材料以及航空、国防等领域中的某些特种材料。 Abstract: the alumina ceramics is the most widely use of one of the ceramic material, it can be used as the machine and equipment manufacture of corrosion resistant material, chemical corrosion materials in the professional, electrical and electronic technology of thermal insulation materials, high temperature resistant materials and technologies in the aerospace, defense, etc to some of the special material. 关键词:氧化铝陶瓷耐磨性机械强度耐化学腐蚀 Keywords: alumina ceramics Wear resistance Mechanical strength Chemical corrosion-resistant 氧化铝陶瓷是一种用途广泛的陶瓷。因为其优越的性能,在现代社会的应用已经越来越广泛,满足于日用和特殊性能的需要。[1] 1.硬度大经中科院上海硅酸盐研究所测定,其洛氏硬度为HRA80-90,硬度仅次于金刚石,远远超过耐磨钢和不锈钢的耐磨性能。 2.耐磨性能极好经中南大学粉末冶金研究所测定,其耐磨性相当于锰钢的266倍,高铬铸铁的171.5倍。根据我们十几年来的客户跟踪调查,在同等工况下,可至少延长设备使用寿命十倍以上。

多孔氧化铝陶瓷的研究进展

多孔氧化铝陶瓷的研究进展 李环亭1 孙晓红1 陈志伟1,2 (1国家陶瓷与耐火材料产品质量监督检验国家质检中心 山东淄博 255063) (2山东理工大学分析测试中心 山东淄博 255049) 摘 要 综合论述了国内外多孔氧化铝陶瓷的制备方法及性能的研究进展,并对目前存在的问题及将来的研究方向进行了展望。 关键词 多孔氧化铝陶瓷 制备方法 性能 Research Progress of Porous A lumina Ceramics Li Huanting1,Sun Xiaohon g1,Chen Zhiwei1,2(1National Quality Supervision and Inspection Center for Ceramics and Refractories,Shan dong,Zibo,255063)(2Analysis and Testing Center of Shandong Uni versity of Technology,Shandong,Zibo,255049) Abstract:The paper reviewed the research progress of porous alumina ceramics home and broad.The preparation methods and the proer ties were summaried.Finally,the research direction in the future is given on the porous alumina ceramics. Key words:Porous alu mina ceramics;Preparation methods;Properties 前言 多孔氧化铝陶瓷是指以氧化铝为骨料,通过在材料成形与高温烧结过程中,内部形成大量彼此相通或闭合的微孔或孔洞。较高的孔隙率的特性,使其对液体和气体介质具有有选择的透过性,较低的热传导性能,再加上陶瓷材料固有的耐高温、抗腐蚀、高的化学稳定性的特点,使其在气体和液体过滤、净化分离、化工催化载体、生物植入材料、吸声减震和传感器材料等众多领域有着广泛的应用前景。多孔氧化铝陶瓷上述优异的性能和低廉的制造成本,引起了科学界的高度关注。笔者就目前国内外多孔氧化铝陶瓷的制备方法、性能的研究进展进行综述。 1 多孔氧化铝陶瓷的制备方法 多孔氧化铝陶瓷的制备工艺主要包括孔结构的形成,坯体的成形和坯体的烧结3个方面。关于孔结构形成的方法既有传统的通过机械挤出成孔法、颗粒堆积形成气孔法、添加造孔剂成孔法、发泡工艺成孔法、有机泡沫浸渍成孔法[1],也有新型的铝板阳极氧化法、溶胶-凝胶法等。关于坯体成形工艺主要有模压成形法[2]、凝胶注模成形法[3]、固体粒子烧结法[4]、挤压成形法[5]等。如何得到高的气孔率,且能较好地控制孔径及其分布、形状、三维排列等,则需要选择合适的方法和工艺。下面介绍几种氧化铝多孔陶瓷常用的制备方法。 1.1 造孔剂成孔+凝胶注模法+高温烧结法 造孔剂成孔法是将一定量的造孔剂添加到陶瓷坯料中,造孔剂在坯体中会占据一定的空间,经过低温烧结后,造孔剂离开基体形成气孔得到多孔陶瓷。造孔剂的种类分为有无机和有机两大类。无机造孔剂有碳酸铵、碳酸氢铵、氯化铵等高温可分解的盐类,以及煤粉、碳粉等;有机造孔剂主要是天然纤维、高分子聚合物[6]和有机酸等,如淀粉、尼龙纤维等。目前应用较多的是加入有机造孔剂,且效果较好。由于造孔剂颗粒的大小及形状决定最终成孔的大小和形状,且造孔剂 基金项目:山东省科技攻关项目(耐火材料快速分析方法研究及应用,项目编号:2006GG1108097-06;陶瓷原料综合评价方法建立及应用研究,项目编号2007GG10003047)

氧化铝陶瓷

氧化铝陶瓷的制备.性能.用途及发展材料科学与技术是当代文明的三大支柱之一和全球新技术革命的三个标志之一,在当今高科技的发展中起着基础和先导作用。对新材料的研究是社会发展的需要。 随着陶瓷制造工艺的不断进步,特别是对陶瓷烧结过程、显微结构的深入研究,人们已制造出玻璃相含量非常低甚至几乎不含玻璃相而由许多微小晶粒结合成的结晶态陶瓷。由于微晶氧化铝陶瓷具有稳定的理化性能和十分优异的电性能,近年来在各个领域得到了较为广泛的应用,成为先进陶瓷材料中异军突起的一种重要陶瓷材料。 在陶瓷材料中,氧化铝陶瓷是使用最为广泛的材料之一。氧化铝陶瓷具有机械强度高,绝缘电阻大,硬度高,耐磨、耐腐蚀及耐高温等一系列优良性能,其广泛应用于陶瓷、纺织、石油、化工、建筑及电子等各个行业,是目前氧化物陶瓷中用途最广、产销量最大的陶瓷新材料。 通常氧化铝陶瓷分为2大类,一类是高铝瓷,另一类是刚玉瓷. 氧化铝陶瓷的制备.性能.用途及发展如下: 一、材料制备 氧化铝陶瓷制品成型方法常采用的有:干压、注浆、挤出、等静压(干法、湿法)、注凝、流延、热压铸、离心注浆等。不同的产品,因其形状、尺寸、造型复杂与精度各异,需要采用合理的成型方法。1.原料来源: 氧化铝在地壳中含量非常丰富,在岩石中平均含量为15.34%,是自然

界中仅次于SiO2存量的氧化物。一般应用于陶瓷工业的氧化铝主要有2大类,一类是工业氧化铝,另一类是电熔刚玉。 2.制备工艺: 原料配料→研磨加工→制粉(制浆、制泥)→成型(半干压、滚制、等静压、注浆、离心注浆、热压铸、挤出)干燥→制粉→热压烧结→烧成→检选(冷加工)→包装入库→出厂 3.工艺条件对氧化铝烧结性能 氧化铝陶瓷制备环节中的各工艺条件都对它的烧结和显微结构有极大影响。这些制备环节包括:粉体的制备过程、粒径与粒度分布、成型方法、生坯密度、烧结温度、升温速率、保温时间、烧成气氛等。 4.氧化铝陶瓷工业 (1).工业氧化铝 工业氧化铝一般是以含铝量高的天然矿物铝土矿(主要矿物组成为铝的氢氧化物,如一水硬铝石(xAl2O3·H2O)、一水软铝石、三水铝石等氧化铝的水化物组成)和高岭土为原料,通过化学法(主要是碱法,多采用拜尔法——碱石灰法)处理,除去硅、铁、钛等杂质制备出氢氧化铝,再经煅烧而制得,其矿物成分绝大部分是x-Ai2O3。工业氧化铝是白色松散的结晶粉末,颗粒是由许多粒径<0.1μm的x-Ai2O3晶体组成的多孔球形聚集体,其孔隙率约为30%,平均粒径40~70μm。 工业氧化铝的3项主要杂质成分中,Na2O及Fe2O3将降低氧化铝瓷件的电性能,Na2O的含量应<0.5%~0.6%,Fe2O3含量应<0.04%。另外,在电真空瓷件中,工业氧化铝不得含有氯化物、氟化物等,因为它们能

陶瓷基板的发展概况

陶瓷基板在L E D电子领域应用现状与发展简要分析 摘要:陶瓷基板材料以其优良的导热性和气密性,广泛应用于功率电子、电子封装、混合微电子与多芯片模块等领域。本文简要介绍了目前陶瓷基板的现状与以后的发展。 关键词: 前文摘要:陶瓷基板材料以其优良的导热性和气密性,广泛应用于功率电子、电子、混合微电子与多模块等领域。本文简要介绍了目前陶瓷基板的现状与以后的发展。 1 塑料和陶瓷材料的比较 塑料尤其是环氧树脂由於比较好的经济性,至目前为止依然占据整个电子市场的统治地位,但是许多特殊领域比如高温、线膨胀系数不匹配、气密性、稳定性、机械性能等方面显然不适合,即使在环氧树脂中添加大量的有机溴化物也无济于事。 相对于塑料材料,陶瓷材料也在电子工业扮演者重要的角色,其电阻高,高频特性突出,且具有热导率高、化学稳定性佳、热稳定性和熔点高等優點。在电子线路的设计和制造非常需要这些的性能,因此陶瓷被广泛用于不同厚膜、薄膜和电路的基板材料,还可以用作绝缘体,在热性能要求苛刻的电路中做导热通路以及用来制造各种电子元件。 2 各种陶瓷材料的比较 2.1 Al2O3 到目前为止,氧化铝基板是电子工业中最常用的基板材料,因为在机

械、热、电性能上相對於大多数其他氧化物陶瓷,強度及化學穩定性高,且原料来源丰富,适用于各种各样的技术制造以及不同的形状。 2.2 BeO 具有比金属铝还高的热导率,应用于需要高热导的场合,但温度超过300℃后迅速降低, 最重要的是由于其毒性限制了自身的发展。 2.3 AlN AlN有两个非常重要的性能值得注意:一个是高的热导率,一个是与Si相匹配的膨胀系数。缺點是即使在表面有非常薄的氧化层也会对热导率产生影响,只有对材料和工艺进行严格控制才能制造出一致性较好的AlN基板。目前大规模的AlN生产技术国内还是不成熟,相对于Al2O3,AlN价格相对偏高许多,这个也是制约其发展的瓶颈。 综合以上原因,可以知道,氧化铝陶瓷由于比较优越的综合性能,在目前微电子、功率电子、混合微电子、功率模块等领域还是处于主导地位而被大量运用。 3 陶瓷基板的制造 制造高純度的陶瓷基板是很困难的,大部分陶瓷熔点和硬度都很高,这一点限制了陶瓷机械加工的可能性,因此陶瓷基板中常常掺杂熔点较低的玻璃用于助熔或者粘接,使最终产品易于机械加工。Al2O3、BeO、AlN基板制备过程很相似,将基体材料研磨成粉直径在几微米左右,与不同的玻璃助熔剂和粘接剂(包括粉体的MgO、CaO)混合,

氧化铝陶瓷制作工艺

氧化铝陶瓷介绍 来自:中国特种陶瓷网发布时间:2005-8-3 11:51:15 氧化铝陶瓷制作工艺简介 氧化铝陶瓷目前分为高纯型与普通型两种。高纯型氧化铝陶瓷系Al2O3含量在99.9%以上的陶瓷材料,由于其烧结温度高达1650—1990℃,透射波长为1~6μm,一般制成熔融玻璃以取代铂坩埚:利用其透光性及可耐碱金属腐蚀性用作钠灯管;在电子工业中可用作集成电路基板与高频绝缘材料。普通型氧化铝陶瓷系按Al2O3含量不同分为99瓷、95瓷、90瓷、85瓷等品种,有时Al2O3含量在80%或75%者也划为普通氧化铝陶瓷系列。其中99氧化铝瓷材料用于制作高温坩埚、耐火炉管及特殊耐磨材料,如陶瓷轴承、陶瓷密封件及水阀片等;95氧化铝瓷主要用作耐腐蚀、耐磨部件;85瓷中由于常掺入部分滑石,提高了电性能与机械强度,可与钼、铌、钽等金属封接,有的用作电真空装置器件。其制作工艺如下: 一粉体制备: 郑州玉发集团是中国最大的白刚玉生产商,和中科院上海硅酸盐研究所成立玉发新材料研究中心研究生产多品种α氧化铝。专注白刚玉和煅烧α氧化铝近30年,因为专注所以专业,联系QQ2596686490,电话156390七七八八一。 将入厂的氧化铝粉按照不同的产品要求与不同成型工艺制备成粉体材料。粉体粒度在1μm?微米?以下,若制造高纯氧化铝陶瓷制品除氧化铝纯度在99.99%外,还需超细粉碎且使其粒径分布均匀。采用挤压成型或注射成型时,粉料中需引入粘结剂与可塑剂,?一般为重量比在10—30%的热塑性塑胶或树脂?有机粘结剂应与氧化铝粉体在150—200℃温度下均匀混合,以利于成型操作。采用热压工艺成型的粉体原料则不需加入粘结剂。若采用半自动或全自动干压成型,对粉体有特别的工艺要求,需要采用喷雾造粒法对粉体进行处理、使其呈现圆球状,以利于提高粉体流动性便于成型中自动充填模壁。此外,为减少粉料与模壁的摩擦,还需添加1~2%的润滑剂?如硬脂酸?及粘结剂PVA。 欲干压成型时需对粉体喷雾造粒,其中引入聚乙烯醇作为粘结剂。近年来上海某研究所开发一种水溶性石蜡用作Al2O3喷雾造粒的粘结剂,在加热情况下有很好的流动性。喷雾造粒后的粉体必须具备流动性好、密度松散,流动角摩擦温度小于30℃。颗粒级配比理想等条件,以获得较大素坯密度。 二成型方法: 氧化铝陶瓷制品成型方法有干压、注浆、挤压、冷等静压、注射、流延、热压与热等静压成型等多种方法。近几年来国内外又开发出压滤成型、直接凝固注模成型、凝胶注成型、离心注浆成型与固体自由成型等成型技术方法。不同的产品形状、尺寸、复杂造型与精度的产品需要不同的成型方法。摘其常用成型介绍: 1干压成型:氧化铝陶瓷干压成型技术仅限于形状单纯且内壁厚度超过1mm,长

陶瓷基板的现状与发展分析

陶瓷基板材料以其优良的导热性和气密性,广泛应用于功率电子、电子封装、混合微电子与多芯片模块等领域。本文简要介绍了目前陶瓷基板的现状与以后的发展。 陶瓷基板材料以其优良的导热性和气密性,广泛应用于功率电子、电子封装、混合微电子与多芯片模块等领域。本文简要介绍了目前陶瓷基板的现状与以后的发展。 1、塑料和陶瓷材料的比较 塑料尤其是环氧树脂由于比较好的经济性,至目前为止依然占据整个电子市场的统治地位,但是许多特殊领域比如高温、线膨胀系数不匹配、气密性、稳定性、机械性能等方面显然不适合,即使在环氧树脂中添加大量的有机溴化物也无济于事。 相对于塑料材料,陶瓷材料也在电子工业扮演者重要的角色,其电阻高,高频特性突出,且具有热导率高、化学稳定性佳、热稳定性和熔点高等优点。在电子线路的设计和制造非常需要这些的性能,因此陶瓷被广泛用于不同厚膜、薄膜或和电路的基板材料,还可以用作绝缘体,在热性能要求苛刻的电路中做导热通路以及用来制造各种电子元件。 2、各种陶瓷材料的比较 2.1 Al2O3 到目前为止,氧化铝基板是电子工业中最常用的基板材料,因为在机械、热、电性能上相对于大多数其他氧化物陶瓷,强度及化学稳定性高,且原料来源丰富,适用于各种各样的技术制造以及不同的形状。 2.2 BeO 具有比金属铝还高的热导率,应用于需要高热导的场合,但温度超过300℃后迅速降低,最重要的是由于其毒性限制了自身的发展。 2.3 AlN AlN有两个非常重要的性能值得注意:一个是高的热导率,一个是与Si相匹配的膨胀系数。缺点是即使在表面有非常薄的氧化层也会对热导率产生影响,只有对材料和工艺进行严格控制才能制造出一致性较好的AlN基板。目前大规模的AlN生产技术国内还是不成熟,

氧化铝陶瓷与金属连接的研究现状

万方数据

万方数据

万方数据

万方数据

周健等Ⅲo对A1203一A1203以及A1203和HAP(羟基磷灰石)生物陶瓷进行了焊接,并借助电镜、电子探针分析了界面结合情况。前者在2MPa、1300℃、保温15min时结合强度达到基体强度。后者在2.5MPa、1200℃、保温15min左右将两类材料焊接在一起。. 蔡杰等¨引采用1’E103型谐振腔分别在1300和1400℃对A1203一A1203进行焊接,认为在1300℃焊接时,虽经长时间保温,焊接效果不理想,在1400℃、保温20min,焊缝消失。如上所述,氧化铝陶瓷一般采用直接焊接,对于高纯度氧化铝陶瓷一般采用低纯氧化铝或玻璃做中间层,目前也有人用溶胶凝胶方法制备的氧化铝做中间层。 目前微波焊接腔体的微波场的均匀区域还不大,改进微波场的分布,提高加热均匀区域,可以提高材料的焊接尺寸。同时增加焊接材料的种类。 7激光焊接 激光焊接陶瓷是近年来发展的新技术,Mittweida公司开发了双束激光焊接陶瓷方法,其原理见图9。 图9双束激光焊接示意图¨引 Fig.9Skd【chofdoublelaserweldiIlg 采用高能束激光焊方法,可快速加热和冷却,配以氮气筛的冷却和温度场调节,诱导和改善复合材料增强相和基体界面反应,而提高接头强度。采用脉冲输入方式,可抑制界面反应,细化组织,减少缺陷,获得良好接头,在操作时对激光功率控制非常重要啪J。用该法焊接的Al:O,陶瓷试样,激光焊接区细晶粒均匀,在电子显微镜下,可以看到晶粒呈片瓦结构,防止了裂纹的产生和扩展。经100次反复加热和冷却后,试样的弯曲强度无明显下降。 8结语 随着Al,O,陶瓷的广泛应用,其连接技术已成为世界各国集中研究的重点,其中钎焊与扩散连接是最常用的连接方法,但都有其局限性。例如:用钎焊方法形成的陶瓷接头的高温性能和抗氧化性能较差;钎焊的界面反应机理现在还处于试验阶段,缺乏系统性和理论性。扩散连接虽然可以减小界面缺陷,并适合大尺寸构件的接合,但易发生试件的变形和损伤等。近来新发展的微波连接能很好地实现接头处均匀连接,避免了开裂的发生,而且由于升温速度极快,陶瓷内部的晶粒不会剧烈长大。而sHs焊接和激光焊接还处于起步阶段,有待于发展。 参考文献 1王颖.AJ:0,陶瓷与Kover合金钎焊工艺研究.哈尔滨工业大学硕士论文,2006:l一50 2Ham咖dJP,DB“dSA,SameUaMLB阳zingo既帅icox-id船tom吨IlsatlowteⅡ聊舶hlr酷.WeldJ,1992;(5):145—1493赵永清.利用化学镀实现A120,陶瓷与金属的连接.焊接技术,1999;(2):16—17 4顾小龙,王大勇,王颖.Al:0,陶瓷/AgCuT∥可伐合金钎焊接头力学性能.材料科学与艺,2007;15(3):366—3695吴铭方.反应层厚度对他03/AgCu7n/n一6m一4V接头强度的影响.稀有金属材料与工程,2000;19(26):419—4226王洪潇.氧化铝陶瓷与金属活性封接技术研究.大连交通大学硕士论文,2006:1—50 7刘军红.复相Al:0,基陶瓷/钢大气中直接钎焊连接界面的微观组织结构.焊接学报,2003;24(6):26—28 8张玮.镍离子注入灿203/1crl8Ni9Ti的钎焊界面成分分析.包头钢铁学院学报,2000;19(3):219—22l 9王大勇,冯吉才,刘会杰.灿:O,/Cu/Al扩散连接工艺参数的优化.材料科学与工艺,2003;11(1):73~76 10陈铮,赵其章,方芳等.陶瓷/陶瓷(金属)部分瞬间液相连接.硅酸盐学报,1999;27(2):186~188 1lMerzh锄ovAG.InterSymposium∞coIIIbus阴dpl嬲一眦syn.ofhigll—te呷.Mater.s明Fr锄cisco,cA,988 12余圣甫等.Al:0,陶瓷/不锈钢自蔓延高温原位合成连接.焊接学报,2004;25(2)119一122 13周健,章桥新,刘桂珍等.微波焊接陶瓷辊棒.武汉工业大学学报,1999;21(3):1~2 14MeekTT,BlalceRD.Ceramic?ce硼icsealsbymicro-w盯ehe砒ing.J.Mat.Sci.L肚.,1986;(5):270~274 15Fukushi眦H。YamanakaT,Ma协uiM.Micmwaveheat—ingof ce姗icsandi协applic砒i叩tojoining.JMat.R∞.,1990;5(2):397—405 16Bi衄erJGP,F唧ieJA,WhitakerPAeta1.Thee妇fect0fcompositi∞ontlIeIIlicn)wavebondirIg0falulIli啪ce捌【nics.JMat.sci.,1998;33(12):3017~3029 17zlI伽Ji蛐,Zh衄gQia喇n,MEIBingchueta1.Mic胁wavejoiIlingof aluIIli腿c廿枷candh”Iroxyl印atitebioce枷c.JWuh粕Univ.ofTech.Mater.Sci.,1999;14(2):46~4918ChenXinm伽,ⅡuW嘶.HigllFrequencyHeatillgDie.1ectricTechnology.BeijiIlg:scie眦ePr鹤s,1979:l一30 19C蛐G,K0caI【M.h咿ssinjoiniIlgofadv锄cedmate—rials.htematioIlalMaterialsRevie啪,1998;43(1):卜4420广赖明夫.金属基复合材料。结合.溶接会志,1996;65(4):l692一l698 (编辑吴坚) 宇航材料工艺2008年第4期 万方数据

氧化铝陶瓷的发展与应用

氧化铝陶瓷的发展与应用 前言 氧化铝陶瓷具有机械强度高,绝缘电阻大,硬度高,耐磨、耐腐蚀及耐高温等一系列优良性能,其广泛应用于陶瓷、纺织、石油、化工、建筑及电子等各个行业,是目前氧化物陶瓷中用途最广、产销量最大的陶瓷新材料。 通常氧化铝陶瓷分为2 大类,一类是高铝瓷,另一类是刚玉瓷。高铝瓷是以Al2O3 和 SiO2 为主要成分的陶瓷,其中Al2O3 的含量在45 %以上,随着Al2O3 含量的增多,高铝瓷的各项性能指标都有所提高。由于瓷坯中主晶相的不同,又分为刚玉瓷、刚玉—莫来石瓷、莫来石瓷等。根据Al2O3 含量的不同,习惯上又称为75瓷、80 瓷、85 瓷、90 瓷、92 瓷、95 瓷、99 瓷等。高铝瓷的用途极为广泛,除了用作电真空器件和装置瓷外,还大量用来制造厚膜、薄膜电路基板,火花塞瓷体,纺织瓷件,晶须及纤维,磨料、磨具及陶瓷刀,高温结构材料等。目前市场上生产、销售和应用最为广泛的氧化铝陶瓷是Al2O3 含量在90 %以上的刚玉瓷。 1 原料 作为陶瓷原料主要成分之一的氧化铝在地壳中含量非常丰富,在岩石中平均含量为15. 34 % ,是自然界中仅次于SiO2 存量的氧化物。一般应用于陶瓷工业的氧化铝主要有2 大类,一类是工业氧化铝,另一类是电熔刚玉。 1. 1 工业氧化铝 工业氧化铝一般是以含铝量高的天然矿物铝土矿(主要矿物组成为铝的氢氧化物, 如一水硬铝石(xAl2O3·H2O> 、一水软铝石、三水铝石等氧化铝的水化物组成> 和高岭土为原料,通过化学法(主要是碱法,多采用拜尔法———碱石灰法> 处理,除去硅、铁、钛等杂质制备出氢氧化铝,再经煅烧而制得,其矿物成分绝大部分是γ- Al2O3 。 工业氧化铝是白色松散的结晶粉末,颗粒是由许多粒径< 0. 1μm 的γ- Al2O3 晶体组成的多孔球形聚集体,其孔隙率约为30 % ,平均粒径为40~70μm。工业氧化铝含量的质量标准见表1。 表1 工业氧化铝含量的质量标准(质量%> 1 级 2 级 3 级 4 级 5 级 Al2O3> 98. 60 ≮98. 50≮98. 40 ≮98. 30 ≮98. 20 SiO2 ≯0. 02 ≯0. 04 ≯0. 06 ≯0. 08 ≯0. 10 Fe2O3 < 0. 03 ≯0. 04 ≯0. 04 ≯0. 04 ≯0. 04 Na2O ≯0. 50 ≯0. 55 ≯0. 60 ≯0. 60 ≯0. 60 灼减< 0. 80 ≯0. 80 ≯0. 80 ≯0. 80 ≯1. 00 工业氧化铝的3 项主要杂质成分中,Na2O 及Fe2O3 将降低氧化铝瓷件的电性能,Na2O 的含量应<0. 5 %~0. 6 % ,Fe2O3 含量应< 0. 04 %。另外,在电真空瓷件中,工业氧化铝

氧化铝陶瓷基复合材料概述

概述了氧化铝陶瓷基复合材料,并且对其一般的生产工艺金属间、氧化铝陶瓷基复合材料以及其应用领域作了介绍, 前言 氧化铝(Al2O3) 陶瓷材料具有耐高温、硬度大、强度高、耐腐蚀、电绝缘、气密性好等优良性能, 是目前氧化物陶瓷中用途最广、产量最大的陶瓷新材料。但是与其他陶瓷材料一样,该陶瓷具有脆性这一固有的致命弱点,使得目前Al2O3 陶瓷材料的使用范围及其寿命受到了相当大的限制。近年来, 在氧化铝陶瓷中引入金属铝塑性相的Al/Al2O3 陶瓷基复合材料是一个非常活跃的研究领域。 概述 金属间化合物的结构与组成它的两组元不同, 具有序的超点阵结构, 各组元原子占据点阵的固定位置, 最大程度地形成异类原子之间结合。由于其原子的长程有序排列以及金属键和共价健的共存性, 有可能同时兼顾金属的较好塑性和陶瓷的高温强度。在力学性能上, 有序金属间化合物填补了陶瓷和金属之间的材料空白区域。有序金属间化合物中, Ti - Al、Ni - Al、Fe - Al 和Nb-Al系等几个系列的多种铝化物更是特别受到重视。这些铝化物具有优异的抗氧化性、抗硫化腐蚀性和较高的高温强度, 密度较小, 比强度较高。 由于在空气中铝粉极易氧化而在表面形成Al2O3 钝化膜,使Al 粉和Al2O3 颗粒之间表现出很差的润湿性,导致烧结法制备Al/Al2O3 陶瓷材料烧结困难, 影响复合材料的机械性能[5]。挤压铸造和气压浸渍工艺浸渍速度快, 但是预制体中的细小空隙很难进一步填充[ 6], 而后发展的无压渗透工艺操作复杂,助渗剂的选择随意, 且作用机理复杂, 反而增加了工艺控制难度[7]。20世纪80年代初, 美国Lanxide公司提出了一种制备陶瓷基复合材料的新工艺定向金属氧化技术( DirectedMetal Ox-idation, 简称DMOX)。该工艺是在高温下利用一定阻生剂限制金属熔体在其他5个方向的生长, 使金属熔体与氧化剂反应并只单向生长即定向氧化。采用该方法制备的Al/ Al2O3 陶瓷材料在显微结构上表现为由立体连通的-Al2O3 基体与三维网状连通的残余金属和不连续的金属组成, 由于Al2O3 晶间纯净, 骨架强度高于烧结、浸渍等工艺制得的同类材料的强度[ 9]同时, 三维连通的金属铝具有良好的塑性, 从而使该复合材料具有更为良好的综合机械性能。

氧化铝陶瓷

氧化铝陶瓷 氧化铝陶瓷(alumina ceramics)是一种以α- Al2O3为主晶的陶瓷材料。其Al2O3含量一般在75~99.99%之间。通常习惯以配料中Al2O3的含量来分类。Al2O3含量在75%左右的为“75瓷“,含量在85%左右的为“85瓷“,含量在95%左右的为“95瓷“,含量在99%左右的为“99瓷“。 工业Al2O3是由铝钒土(Al2O3·3H2O)和硬水铝石制备的,对于纯度要求不高的,一般通过化学方法来制备。电熔刚玉即是用上述原料加碳在电弧炉内于2000~2400C熔融制得,也称人造刚玉。 Al2O3有许多同质异晶体。根据研究报道过的变体有十多种,但主要有三种,即γ- Al2O3,β- Al2O3,α- Al2O3。Al2O3的晶体转化关系如下图,其结构不同,因此其性质也不同,在1300度以上的高温几乎完全转变为α- Al2O3。 γ- Al2O3,属尖晶石型(立方)结构,氧原子形呈立方密堆积,铝原子填充在间隙中。它的密度小。且高温下不稳定,机电性能差,在自然界中不存在。由于是松散结构,因此可利用它来制造多孔特殊用途材料。 β- Al2O3是一种Al2O3含量很高的多铝酸盐矿物。它的化学组成可以近似地用RO·6 Al2O3和R2O·11 Al2O3来表示(RO指碱土金属氧化物,R2O指碱金属氧化物),其结构由碱金属或碱土金属离子如[NaO]ˉ层和[Al11O12]+类型尖晶石单元交叠堆积而成,氧离

子排列成立方密堆积,Na+完全包含在垂直于C轴的松散堆积平面内,在这个平面内可以很快扩散,呈现离子型导电。 α- Al2O3,属三方晶系,单位晶胞是一个尖的菱面体,在自然办只存在α- Al2O3,如天然刚玉、红宝石、蓝宝石等矿物。α- Al2O3结构最紧密、活 性低、高温稳定。它是三种形态中最稳定的晶型,电学性质最好,具有优良的机电性能。 Al2O3中的化学键是离子键,离子键也称“电价键”,它是由金属原子失去外层电子形成正离子,非金属原子取得电子形成负离子,互相结合形成的。离子键是依靠正负离子间静电引力所产生的化学键,它没有方向性也没有饱和性。A Al2O3陶瓷属于氧化物晶体结构,氧化物结构的结合键以离子键为主,它的分子式通常以AmXn 表示。A(或者B)表示与氧结合的正离子,n为离子数,x表示氧离子,n表示它的数量。大多数氧化物中的氧离子半径大于正离子的半径。所以它们的结构是以大直径的氧离子密堆排列的骨架,组成六方或面心立方点阵,小直径的正离子嵌入骨架的间隙处。这种陶瓷材料具有高的硬度和熔点。 陶瓷体的相组成中,晶相相对含量波动范围很大,通常特种陶瓷中晶相体相对含量较高。晶相对陶瓷材料性质有很大的影响。表中列出了一般陶瓷到特种陶瓷中的刚玉相(α- Al2O3)含量的变化及表现出的性能差异。

哪里有生产氧化铝陶瓷基板厂家

哪里有生产氧化铝陶瓷基板厂家 哪里有生产氧化铝陶瓷基板厂家?选择合适的厂家对于做氧化铝陶瓷基板加工是非常重要的。整体而言,这样的厂家相对集中在广东省一代。广东省相对而言,配套设置比较完善,产品质量,工艺把控相对更好一些。 因陶瓷的导热性好,绝缘性好,耐高温,耐压。很多行业领域为了更好的实现散热和产品功能,采用氧化铝陶瓷基板作为电子硬件。这几年国内生产氧化铝陶瓷基板厂家也不断的在增加,那么生产氧化铝陶瓷基板生产厂家都有哪一些呢? 浙江正天新材料科技有限公司 主要业务是氮化铝(ANI)、氮化硅(Si3N4)陶瓷基板及制品的研发、生产和销售及行业服务,主要用于电机动力系统中电子元件上功率模块内的覆铜陶瓷基板,其产品的热导率高、弯曲强度高,使电力电子模块的寿命延长十倍之多。 宜兴市前锦特陶科技有限公司 宜兴市前锦特陶有限公司,以陶瓷基板材料为主,主要生产工业陶瓷、高温窑具、工业窑炉系列。工业陶瓷以生产氧化锆陶瓷、氧化铝陶瓷、碳化硅陶瓷、氮化硅陶瓷等先进陶瓷为主;高温窑具为锂电池正负极材料专用匣钵、刚玉坩埚、刚玉匣钵、刚玉承烧板、精细刚玉承烧板、堇青石复合莫来石推板、碳化硅棚板、氧化锆系列承烧板等产品;工业窑炉以生产实验电炉系列、高温单(双)通道推板窑、辊道窑、气氛保护(窑)炉、箱式炉、钼丝炉、网带炉、钟罩炉、真空炉、升降炉、台车窑等为主。 东莞市明睿陶瓷科技有限公司 氧化锆陶瓷和氧化铝陶瓷结构件生产厂家。拥有高级工程师10多名,技术骨干多名;我们的陶瓷产品主要是工业领域用的精密陶瓷结构零件,采用高强度氧化锆(钇稳定/镁稳定/铈稳定)、氧化铝(97/99/99.5/99.7/99.9/99.99)材质。

透明氧化铝陶瓷制备的研究进展

透明氧化铝陶瓷制备的研究进展 关键词:透明氧化铝,透光率,烧结助剂,烧结工艺 1引言 透明氧化铝陶瓷最早是由美国Coble博士发明的,他通过在Al2O3中添加0.25wt% MgO,于1700~1800℃氢气气氛下烧结出呈半透明的氧化铝陶瓷,从此开创了透明氧化铝陶瓷研究和应用的新篇章[1]。经过半个世纪的不懈努力和研究,科研工作者发现,通过提高氧化铝的纯度、致密度以及合理的调控显

微结构,可以显著提高氧化铝陶瓷的透光性。 随着研究的不断开展,制备氧化铝陶瓷的烧结助剂得到了极大地扩展,除了MgO,一些稀土氧化物(如Y2O3、La2O3、ZrO2等)同样可以作为氧化铝陶瓷的烧结助剂,并且采用复合添加剂的效果优于单独使用MgO。关于添加剂的引入方式,谢志鹏等[2]提出了化学沉淀包覆工艺,在1800℃氢气气氛下烧结,制备了透明氧化铝陶瓷。与传统的球磨工艺相比,该方法能够实现添加剂在氧化铝基体中的均匀分布,从而大大提高了陶瓷的透光性。 关于透明氧化铝陶瓷的烧结技术,最近的研究工作表明,采用热等静压(HIP)、放电等离子(SPS)等特种烧结工艺可以制备出亚微米晶的高性能透明氧化铝陶瓷。例如,Jin等[3]采用SPS工艺,于1250~1350℃,80MPa压力下烧结,制备了晶粒尺寸小于1μm,直线透光率为53%的透明陶瓷。由于晶粒细小,其机械强度也非常优异。 此外,Mao等[4]就氧化铝晶粒光轴取向对透光性的影响进行了研究,他们通过在强磁场条件下进行透明Al2O3陶瓷浆料的注浆成型,使烧结后的Al2O3陶瓷晶粒光轴趋于一致,从而减少六方晶系Al2O3陶瓷因双折射率不同带来的光损失,显著提高透明Al2O3陶瓷的透过率。下面就影响氧化铝陶瓷透光性的各种因素,以及氧化铝粉体选择、烧结助剂及作用、烧结工艺及透明氧化铝陶瓷的应用进行综述。 2影响氧化铝陶瓷透明性的因素 2.1.1气孔 对透明陶瓷透光性能影响最大的因素是气孔率,又包括气孔尺寸、数量、种类。普通陶瓷即使具有高的密度,往往也不是透明的,这是因为其中有很多封闭气孔,并且当陶瓷内部的气孔率大于1%时,陶瓷就基本不再透明。有实验

氧化铝陶瓷综述

***********(所属单位)材料科学进展课程设计 学号:******** 专业:******** 学生姓名:*** 任课教师:*** 2011年10月

***********(所属单位)材料科学进展 (小论文) 学号:******* 专业:******* 学生姓名:*** 任课教师:*** 2011年10月

氧化铝陶瓷综述 ***(姓名) *********(所属单位) 摘要:本文简述了氧化铝陶瓷的功能及在各行业的应用,详细论述了氧化铝陶瓷的制备、成型及烧结方法。 关键词:氧化铝陶瓷制备成型烧结应用 以氧化铝(Al2O3)为主要成分的陶瓷称为氧化铝陶瓷。它属于无机非金属材料,具有特殊用途,新的性能,故也称特种陶瓷、高性能陶瓷。氧化铝陶瓷是氧化物陶瓷中应用最广、用途最宽、产销量最大的陶瓷新材料。 1氧化铝的同质多晶变体及其性能简介 根据研究报道,Al2O3有12种同质多晶变体[1],但应用较多的主要有3种,即α-Al2O3、β-Al2O3和γ-Al2O3,这3种晶体的结构不同,故它们的性质具有 很大的差异[2]。 (1)α-Al2O3是三方晶系,单位晶包是一个尖的菱面体,密度为 3.96~4.01g/cm3,其结构最紧密、化学活性低、高温稳定性好、电学性能优良并且机械性能也最佳,在一定条件下可以由其它的两种晶体转换而来。 (2)β-Al2O3是一种Al2O3含量很高的多铝酸盐矿物,密度为 3.30~3.63g/cm3,它的化学组成中含有一定量的碱土金属氧化物和碱金属氧化物,并且还可以呈现离子型导电。 (3)γ-Al2O3是尖晶石型立方结构,在950~1200℃范围内转化为α-Al2O3,密度为3.42~3.47g/cm3。它的氧原子呈立方紧密堆积,铝原子填充在间隙中,这就决定了它在高温下不稳定、力学和电学性能差的缺陷,在科学应用中很少单独制成材料使用。但它有较高的比表面积和较强的化学活性,经过技术改进可以作为吸附材料使用。 由于β-Al2O3和γ-Al2O3在高温(950~1200℃)下易转化为α-Al2O3,而陶瓷的制备又须经高温烧结,所以氧化铝陶瓷是一种以α-Al2O3为主晶相的陶瓷材料。 2氧化铝陶瓷的功能简介 氧化铝陶瓷具有热稳定和化学稳定性,电绝缘性、压电性、耐腐蚀性、化学吸附性、生物适应性、吸声性和透光性等多种有实用价值的性能和功能,见表1。

氧化铝陶瓷

关注氧化铝陶瓷 行业范围:以氧化铝为主要生产原料及氧化铝深加工企业 技术概况: 一、氧化铝陶瓷的技术指标 氧化铝陶瓷含量≥92% 密度≥3.6 g/cm3 洛氏硬度≥80 HRA 抗压强度≥850 Mpa 断裂韧性KΙ C ≥4.8MPa·m1/2 抗弯强度≥290MPa 导热系数 20W/m.K 热膨胀系数: 7.2×10-6m/m.K 二、氧化铝陶瓷的特点 1. 硬度大 经中科院上海硅酸盐研究所测定,其洛氏硬度为HRA80-90,硬度仅次于金刚石,远远超过耐磨钢和不锈钢的耐磨性能。 2. 耐磨性能极好 经中南大学粉末冶金研究所测定,其耐磨性相当于锰钢的266倍,高铬铸铁的171.5倍。根据我们十几年来的客户跟踪调查,在同等工况下,可至少延长设备使用寿命十倍以上。 3. 重量轻 其密度为3.5g/cm3,仅为钢铁的一半,可大大减轻设备负荷。 三、氧化铝陶瓷的应用前景 国外对氧化铝材料的研究起步较早,尤其是在科技含量高的领域如机械加工、医学、航空航天等。而国内对氧化铝材料研究相对较晚,技术相对落后,且制造业中生产工艺较落后、装备不精,所以产品质量跟西方发达国家相比还是存在一定的差距。因此,提高我国氧化铝材料的研究水平及大力推广氧化铝材料的应用已迫在眉睫。 预计受益和借鉴意义 氧化铝作为我集团的拳头产品和经济支柱,在目前的经济形势下仅仅作为电解铝企业的原材料其局限性已经逐渐显现。多渠道的扩展氧化铝的下游产品、提高氧化铝产品的附加值,将奠定信发百年老店的坚实基础。 如能创造条件对该行业进行了解研究,将进一步丰富我集团产业链条,并创造新的赢利点。 附: 氧化铝陶瓷部分企业 上海恒耐陶瓷技术有限公司、宜兴市丁蜀镇景宏陶瓷厂、宜兴九荣特种陶瓷有限公司、宜兴市金宇瓷业有限公司等。

浅谈添加剂在氧化铝陶瓷中的应用分析

浅谈添加剂在氧化铝陶瓷中的应用分析 2007-12-03 11:24:04| 分类:个人日记|举报|字号订阅 浅谈添加剂在氧化铝陶瓷中的应用分析 摘要:阐述了添加剂对A12O3陶瓷的性能影响的原理及机制,综述近年来A12O3陶瓷的添加剂应用研究现状。并详细论述了不同添加剂对A12O3晶粒异向生长及其性能的影响,分析了不同条件下A12O3晶粒的显微结构及其异向生长机理。最后对下一步的研究方向进行了展望。 关键词:添加剂氧化铝陶瓷进展 1,引言: 在工业日益发展的今天氧化铝陶瓷具有高硬度、耐高温、耐磨、抗氧化、强度良好等特点,已广泛应用于机械、冶金、化工、医疗等各个领域,是应用最广泛的结构陶瓷. 但因韧性差,强度有待提高,而影响了它的使用寿命和更广泛的应用,,然而由于Al2O3 自身阳离子电荷多, 半径小, 离子键强的特点,导致其晶格能较大, 扩散系数低, 烧结温度高. 一般纯氧化铝陶瓷的烧结温度在1 700 ℃以上, 这样高的烧结温度在工业上较难普遍实现, 而且不利于降低成本; 同时结构上也会存在较多的缺陷, 对材料力学性能不利. 为了促进氧化铝陶瓷致密化, 降低烧结 温度, 一般在原料里引入添加剂,从而添加剂对其性能的改善也日见重要!. 添加剂通过2 种作用方式促进氧化铝陶瓷的烧结: 1 与氧化铝基体形成固溶体,通过增加氧化铝的晶格畸变,使扩散速率变大,从而促进烧结; 2:添加剂本身或者添加剂与氧化铝基体之间形成液相。 氧化铝陶瓷常见种类有:刚玉瓷,高铝瓷,陶瓷刚玉磨料,氧化铝涂层,透明氧化铝陶瓷,多孔陶瓷等等.. .. 氧化铝瓷的常见晶型有a-Al2O3 β-Al2O3 γ-Al2O3等添加剂的引入可使其晶型转变从而提高其化学物理性能。 本文将从添加剂使氧化铝陶瓷晶型转变和烧结等方面的改变,进行阐述和分析。

国内氧化铝陶瓷基板厂家怎么选

国内氧化铝陶瓷基板厂家怎么选陶瓷基板目前用的最广泛是就是氧化铝陶瓷基板氮化铝陶瓷基板,这几年陶瓷基板发展势头较好,一方是国家对技术研究的重视,很多高校和研发机构都有做陶瓷电路板的研发;另一方方面科技技术的发展推动的电子产品的发展,也推动了电子产品的硬件陶瓷电路板的的发展。研发机构氧化铝陶瓷线路板图设计出来后需要找到对应的厂家打样后再测试再决定是否大批量投入生产。那么国内氧化铝陶瓷基板厂家怎么评估呢? 一,生产氧化铝陶瓷基板厂家怎么选? 1,公司定位和主营业务一个以陶瓷基板为核心业务厂家,肯定好过一个综合PCB的厂家,经验会更加丰富,技术更加专业。 2,是否专业的团队和品质控制团队计划下单到实现陶瓷基板的制作出货,需要对品质和流程严格把控确保品质和交期。 3,需要专业的工程师团队,确保板子做出来不出问题 4,公司服务一个公司对待客户的服务不好,后面容易出现很多问题和扯皮的现象。 5,先进的设备陶瓷基板容易碎,对设备和工艺的要求很高 6,精湛的制作工艺dbc工艺和DPC陶瓷基板制作工艺,以及难度工艺。 以上是阐述,选择氧化铝陶瓷基板厂家的几个方面评估,具体还要很多气体考虑的范畴,比如价格等等。

二,深圳氧化铝陶瓷基板厂家有哪一些呢 广东是电子元器件最先开启的省份,尤其是深圳是科技之城。电路板的基础配套设施相对比较完善,上下游产品供应链比较成熟。陶瓷基板是在LED行业,制冷片以及汽车电子方面包括高功率模组以及通信设施方面都会用到。陶瓷基板在广东深圳一代技术相对也更加成熟,有较好的经验。 那么深圳氧化铝陶瓷基板厂家都有哪一些?据我了解到的,目前有深圳汇合电路,宏瑞康电路斯科达等一些综合电路板制作公司也做陶瓷电路板。深圳金瑞欣特种电路是专业的陶瓷基板生产厂家,也是深圳氧化铝陶瓷基板厂家,研究陶瓷基板多年,有多年的行业经验和技术积累,是值得信赖的陶瓷电路板厂家。

相关文档
最新文档