第3章-赝势平面波方法(I)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3章 赝势平面波方法(I)

基于密度泛函理论的赝势平面波方法可以计算很大范围不同体系的基态属性,它采用了

平面波来展开晶体波函数,用赝势方法作有效的近似处理。由于平面波具有标准正交化和能量单一性的特点,对任何原子都适用且等同对待空间中的任何区域,不需要修正重叠误差。因此平面波函数基组适合许多体系,其简单性使之成为求解Kohn-Sham 方程的高效方案之一。另外,赝势的引入可以保证计算中用较少的平面波数就可以获得较为可靠的结果。该方法具有较高的计算效率,使之日益发展成为有效的计算方法。本章首先对赝势平面波方法进行重点讨论,其次介绍了基于第一性原理计算软件一般步骤,最后结合Materials Studio 软件包应用,对锐钛矿型TiO 2(101)表面及其点缺陷结构进行建模和计算。

3.1 基本原理

基于密度泛函理论的第一性原理计算实质是求解Kohn-Sham 方程。实际求解

Kohn-Sham 方程时,由于原子核产生的势场项在原子中心是发散的,波函数变化剧烈,需要采用大量的平面波展开,因而计算成本变得非常大,所以在计算中选取尽可能少的基函数。计算中选择的基函数与最终波函数较接近则收敛较快,当然包含的维度也应该尽量少。众所周知,根据研究对象不同,选择基函数的方法也不同的,如原子轨道线性组合法(LCAO-TB)、正交平面波法(OPW)、平面波赝势法(PW-PP)、缀加平面波法(APW)、格林函数法(KKR)、线性缀加平面波法(LAPW)、Muffin-tin 轨道线性组合法(LMTO)等,选取典型代表方法在随后的章节中重点展开讨论。与LAPW ,LMTO 等精度较高的第一性原理计算方法比较,平面波赝势法是计算量较少的方法,适用于计算精度要求不严格,因原胞较复杂而导致计算量陡增加的体系。为此,本章将重点学习赝势平面波方法,先学习电子能带的平面波基底展开以及赝势等相关基本概念,然后再讨论赝势引入原理。

3.1.1 平面波展开与截断能

1. 平面波展开

平面波是自由电子气的本征函数,由于金属中离子芯与类似的电子气有很小的作用,因

此很自然的选择是用它描述简单金属的电子波函数。众所周知,最简单的正交、完备的函数集是平面波exp[())i k G r +⋅,这里G 是原胞的倒格矢。根据晶体的空间平移对称性,布洛赫(Bloch)定理(将在第4.1.1节中说明)证明,能带电子的波函数(,)r k ψ总是能够写成

(,)()exp()r k r ik r ψμ=⋅ (3.1)

式中k 是电子波矢,()r μ是具有晶体平移周期性的周期函数。对于理想晶体的计算,这是很自然的,因为其哈密顿量本身具有平移对称性,只要取它的一个原胞就行了。对于无序系统(如无定型结构的固体或液体)或表面、界面问题,只要把原胞取得足够大,以至于不影响系统的动力学性质,还是可以采用周期性边界条件的。因此,这种利用平移对称性来计算电子

结构的方法,对有序和无序系统都是适用的。采用周期性边界条件后,单粒子轨道波函数可以用平面波基展开为

()()exp(())G r G i K G r N ψμ=

+⋅Ω (3.2) 式中1N Ω是归一化因子,其中Ω是原胞体积;这里G 是原胞的倒格矢,K 是第一Brillouin 区的波矢,()G μ是展开系数。Bloch 定理表明,在对真实系统的模拟中,由于电子数目的无限性,K 矢量的个数从原则上讲是无限的,每个K 矢量处的电子波函数都可以展开成离散的平面波基组形式,这种展开形式包含的平面波数量是无限多的。基于计算成本的考虑,实际计算中只能取有限个平面波数。采用的具体办法是一方面由于()r ψ随K 点的变化在K 点附近是可以忽略的,因此我们可以使用K 点取样通过有限个K 点进行计算。另一方面,为了得到对波函数的准确表示,G 矢量的个数也应该是无限的,但由于对有限个数的G 矢量求和已经能够达到足够的准确性,因此对G 的求和可以截断成有限的。给定一个截断能

22()2cut G K E m

+=h (3.3) 对G 的求和可以限制在2()/2cut G K E +≤的范围内,即要求用于展开的波函数的能量小

于cut E 。当0K =时,即在Γ点,有很大的计算优势,因为这时波函数的相因子是任意的,

就可以取实的单粒子轨道波函数。这样,对Fourier 系数满足关系式*()()l l G G μμ-=,利用

这一点,就可以节约不少的计算时间。

2. 截断能选取原则

为了取有限个的平面波数,通常的做法是确定一个截断能

量(Energy cutoff),如图3-1所示,此时函数基组并不完备,

总能量计算会产生相应误差,通过增加截断能量可以减小误差

幅度。为了使计算出的体系总能量达到设定精度,一般截断能

量必须选取到足够高。有限平面波基组的误差可以加以校正,

较好的解决方法是引入一个校正因子(correction factor),由此可以在一个恒定数量基组下进行计算,即使采用了恒定的截止能量这个强制条件也可以校正相应的计算结果。进行这种校正所需要的唯一的参数就是ln tot cut

dE d E ,E tot 是体系总能量,E cut 是截止能量。例如,当它的数值小于0.01 eV/atom 时,计算就达到了良好的收敛精度,对于大多数计算0.1 eV/atom 就已足够。

3. 平面波基展开特征

用平面波基来展开电子波函数是因为用平面波基来计算有很多优点。平面波基能很方便

地采用快速傅里叶变换(FFT)技术,使能量、力等的计算在实空间和倒空间快速转换,这样计算尽可能在方便的空间中进行。如前面讲到的哈密顿量中的动能项的矩阵元,在倒空间中

图3-1 截断能示意图

只有对角元非零,就比实空间减少了工作量。第二,平面波基函数的具体形式并不依赖于核的坐标。这样,一方面,价电子对离子的作用力可以直接应用Hellman-Feymann 定理(将在3.1.5节中进行说明)得到解析的表达式,计算显得非常方便。另一方面也使总能量的计算在不同的原子构型下有基本相同的精度。此外平面波计算的收敛性和精确性比较容易控制,因为通过截断能E cut 的选择可以方便地改变平面波基的多少。当然平面波基也有缺点,一般电子轨道具有一定的局域性,而平面波是空间均匀的,因此电子轨道展开时与原子轨道基相比,平面波基的个数要多得多。为了尽量减少平面波基的个数,一般在平面波的计算中都采用赝势(pseudopotentials)来描述离子实与价电子之间的相互作用,使电子轨道波函数在离子实内部的分布尽量平缓些。下面将讨论赝势概念及其引入思路。

3.1.2 赝势

1. 赝势引入

平面波函数作为展开基组具有很多优点,然而截断能的选取与具体材料体系密切相关。由于原子核与电子的库仑相互作用在靠近原子核附近具有奇异性,导致在原子核附近电子波函数将剧烈振荡。因此,需要选取较大的截断能量才能正确反映电子波函数在原子核附近的行为,这势必大大地增加计算量。另一方面,在真正反映分子或固体性质的原子间成键区域,其电子波函数较为平坦。基于这些特点,将固体看作价电子和离子实的集合体,离子实部分由原子核和紧密结合的芯电子组成,价电子波函数与离子实波函数满足正交化条件,由此发展出所谓的赝势方法。1959年,基于正交化平面波方法,Phillips 和Kleinman 提出了赝势的概念。基本思路是适当选取一平滑赝势,波函数用少数平面波展开,使计算出的能带结构与真实的接近。换句话说,使电子波函数在原子核附近表现更为平滑,而在一定范围以外又能正确反映真实波函数的特征,如图3-2所示。

所谓赝势,即在离子实内部用假想的势取代真实的势,求解波动方程时,能够保持能量

本征值和离子实之间的区域的波函数的不变。原子周围的所有电子中,基本上仅有价电子具有化学活性,而相邻原子的存在和作用对芯电子状态影响不大。这样,对一个由许多原子组成的固体,坐标空间根据波函数的不同特点可分成两部分(假设存在某个截断距离c r )。(1)c r 以内的核区域,所谓的芯区。波函数由紧束缚的芯电子波函数组成,对周围其它原子是否存在不敏感,即与近邻的原子的波函数相互作用很小;(2)c r 以外的电子波函数(称为价电子波函数)承担周围其它原子的作用而变化明显。

2. 原子赝势

全电子DFT 理论处理价电子和芯电子时采取等同对待,而在赝势中离子芯电子是被冻

结的,因此采用赝势计算固体或分子性质时认为芯电子是不参与化学成键的,在体系结构进行调整时也不涉及到离子的芯电子。在赝势近似中用较弱的赝势替代芯电子所受的强烈库仑势,得到较平缓的赝波函数,此时只需考虑价电子,在不影响计算精度情况下,可以大大降低体系相应的平面波截断能E cut ,从而降低计算量。图3-3为Si 原子赝势示意图。赝原子用于描述真实原子自身性质时是不正确的,但是它对原子-原子之间相互作用的描述是近似

相关文档
最新文档