基于GPS地铁线路控制测量技术

基于GPS地铁线路控制测量技术
基于GPS地铁线路控制测量技术

基于GPS的地铁线路控制测量技术探索摘要:鉴于基于gps测量具有布网快捷、精度高的优点,本文基于笔者多年从事控制测量的工作经验,结合某

地铁线路控制测量实例,提出了基于gps控制测量的控制网优化布设,分析了控制测量的实施以及结构

施工中的控制测量技术,有效地提高测量精度。

关键词:gps测量控制测量施工测量控制网

中图分类号:p228.4文献标识码:a 文章编号:

abstract: based on gps measurement has the advantages of high precision, fast setting, based on the author for many years engaged in control surveying work experience, combined with a subway line control measurement examples, based on gps control survey control network optimization design, analyzes the control measure and the implementation of structural control in construction measurement technology, effectively improve the measurement precision.

key words: gps measurement; control measure; construction survey; control network

1工程概况

本工程为某地铁线首期工程土建工程,起讫里程为

yck58+601.700~yck59+074.100,车站全长为472.4m,为地下两层双岛四线设计,并在车站西端设有十六号线及本线的多条存车线及

D级GPS控制测量技术设计书要点

目录 一、课程设计的目的和任务 (3) 1.1.设计目的 (3) 1.2.任务概述 (3) 二、测区概况 (3) 2.1.测区自然地理概况 (3) 2.2民族种类 (3) 2.3已有资料情况 (3) 2.4测区的范围: (3) 三、设计的依据 (3) 四、主要的技术指标 (4) 4.1GPS测量 (4) 4.2水平角观测 (6) 4.2.1水平距离的观测 (6) 4.2.2导线网 (6) 五、坐标系统的选择 (7) 六、设计方案 (7) 6.1布网的原则 (7) 6.1.1.GPS网型网型方案设计 6.2.图上展绘已知点(或图上查找已知点) (7) 6.3按点位要求与测区情况在图上选点布网 (8) 6.4.判断和检查点间的通视(主要点间) (9) 6.5.外业选点埋石 (10) 6.5.1选点 (10) 6.5.2标志埋设 (10) 六、仪器设备的选择 (11) 七、外野实测方案设计 (11) 7.1. GPS外业工作的原则 (11) 7.2安置天线要求 (12) 7.2.1对仪器设备的要求 (12) 7.3观测方法 (13) 7.3.1 GPS 观测方法 (13) 7.4 地籍勘丈 (13) 7.4.1 、地籍勘丈的方法: (13) 7.4.2. 宗地图编号 (13) 7.4.3. 地籍图的规格及分幅 (13) 7.4.4 地籍勘丈的基本精度 (14) 7.4.5界址点的施测方法 (14) 7.4.6 界址点边长的检核: (14)

7.4.7 地籍图的表示原则: (15) 7.4.8 宗地图 (15) 7.4.9面积量算与汇总统计 (15) 7.4.10提交成果 (15) 7.5数据的记录 (15) 八、数据处理的方法与要求 (17) 8.1.外业观测数据处理 (17) 8.2外业观测数据质量检核 (17) 8.3数据处理和平差计算 (18) 8.3.1数据处理 (18) 8.3.1无约束平差 (19) 8.3.2约束平差 (19) 8.4 GPS 高程拟合 (19) 七、提交成果 (19) 八、参考文献 (20)

地铁施工测量

一、 工程概况 本标段为昆明市轨道交通首期工程十三标段,包括2座车站和3个盾构区间,分别是金星站、白云路站、北辰小区站~金星站区间、金星站~白云路站区间、白云路站~昆明北站区间。金星站与白云路车站的主体结构采用明挖法施工,围护结构采用地下连续墙+内支撑的支护体系。主体结构外侧设全包防水层,与连续墙一起组成复合墙体系。 本标段工程范围示意见图如下。 二、工程地质与水文地质概况 1)地形地貌 昆明市区内地址构造复杂,但大部分隐伏于盆地松散岩层下,根据基底构造图资料,本区构造地质景观是以经向构造为骨干构造。纬向构造长期活动,受区域构造应力场中南北向力偶的作用,同时发育了北东、北西南构造。 2)地层岩性描述 本次勘察揭露地层最大深度为50m ,按地层沉积年代、成因类型将本工程场地勘察范围内的土层划分为第四系全新人工填土层、第四系全新统冲洪积层、第四系上更新统冲湖层、第四系上更新统坡残积层、更迭系茅口组灰岩五大类。与本站设计相关的土层自上而下依次为: 第①1层杂填土:褐灰、黑灰,稍密~稍湿,表层为沥青混凝土,下含碎石,局部夹有碎砖块等,为路基结构层。分布较连续,厚度1.50~2.40m ,平均厚度1.69m 。 第②1层粘土:褐黄色,湿,中压缩性,含云母、氧化铁,含少许风化碎石。局部为粉质粘土。分布较连续,层顶埋深1.50~1.80m ,厚度0.60~1.50m ,平均厚度0.95m 。 第②3层粘土:褐灰~深灰色,湿,中压缩性,含少量有机质,局部为粉质 昆明北站 北辰小区站 金星站 白云路站

粘土。分布较连续,层顶埋深2.30~3.30m,厚度0.50~3.00m,平均厚度1.45m。 第②4层粉土:褐灰~灰色,稍密,夹粉砂薄层。分布不连续,层顶埋深1.60~4.00m,厚度0.80~2.30m,平均厚度1.55m。 第②5层泥炭质粘土:黑灰~黑,软塑~可塑,高压缩性,有机质含量约12~40%,局部有机质含量大于60%,相变为泥炭。分布较连续,层顶埋深2.20~2.60m,厚度0.50m。 第③1层圆砾:深灰~兰灰、褐黄,中密。圆形及亚圆形,级配较差,砾石成分为砂岩及灰岩,中等风化。20~25m以上为粉土、粉砂为主要填充物,以下以粘性土为充填物。夹卵石、粘性土及粉土夹层,局部夹有胶结块。连续分布,且厚度大,均未揭穿,层顶埋深3.30~5.50m。 第③12层粘土:褐黄、兰灰、灰,硬塑,中压缩性。局部含5~15%砾石,砾石成分为砂岩及灰岩,中等风化。分布不连续,厚度0.40~2.50m,平均厚度0.98m;层顶埋深8.10~37.60m。 第③13层粉土:褐灰、灰、深灰,中密,局部地段相变为粉砂层,含砾,砾石含量3~15%,局部夹腐木。分布不连续,厚度0.30~2.60m,平均厚度1.33m。 3)地下水的腐蚀性评价 据在场地内取地下水样水质分析结果,场地地下水及地表水对混凝土结构无腐蚀性,对钢结构具弱腐蚀性,在Ⅱ类场地条件下对混凝土结构中钢筋无腐蚀性。 4)不良地质作用 ①液化土层 对已收集资料进行分析、整理、判别②4层粉土粉砂层为液化土层,其余各层粉土粉砂层属上更新统地层,判定为不液化土层。 ②岩溶 场地环城北路至人民路口下卧二迭系茅口组灰岩。节理裂隙十分发育,并与临近盘龙江有水力联系。具溶孔、溶沟、溶槽及溶洞等形态。多数溶洞、裂隙有充填物冲填,少数为空洞。 5)工程地质总体评价 车站开挖深度范围内的人工填土层密实度差,自稳性能差,开挖过程中易坍塌。②5层软土对基坑支护不利,开挖过程中易发生坍塌及“泥流”现象。②4层

地铁隧道控制测量技术(地面控制测量、联系测量、洞内控制测量)分解

地铁隧道施工控制测量

目录 一、地铁隧道施工测量的内容及特点 二、编制目的 三、编制依据 四、地面控制测量 五、联系测量 六、高程传递测量 八、洞内施工测量 九、贯通误差测量 十、断面测量 十一、结束语

地铁隧道施工控制测量 中铁X局集团有限公司万海亮 一、地铁隧道施工测量的内容及特点 地铁工程主要有车站和隧道组成,多建于城市地下,但也有些区段会采用地面或者高架线路。隧道施工控制测量是地铁施工测量的重点和难点,所以这里主要介绍地铁隧道施工控制测量。 1.1地铁隧道施工测量的内容 地铁隧道控制测量一般是要通过已完成的车站(盾构始发井)、竖井、或地面钻孔把地面(井上)控制点的坐标、方位及高程传递到地下(井下),从而将地面和地下控制网统一为同一坐标(高程)系统,作为地下导线的起算坐标、起始方位角和起始高程基准,依此指导和控制地下区间隧道开挖并保证正确贯通。 因此,地铁隧道施工测量的内容主要有:地面平面控制测量、地面水准控制测量、联系测量、竖井高程传递、洞内控制测量、隧道施工测量、贯通测量。地铁隧道施工产生的测量误差除地面控制点的因素外,还包括井上与井下联系测量误差以及区间隧道施工控制测量误差。因此,地面控制测量、联系测量及区间隧道施工控制测量是地铁施工测量的三个关键因素,也是直接影响地铁贯通精度的关键控制点。 1.2地铁隧道施工测量的特点 1、地铁工程线路长,全线分区段施工,各区段开工时间、施工方法各异,且由不同承包商施工,要确保贯通,每个区段不仅要完成本段的测量任务,还要注意与邻接工程的衔接。

2、地铁线路长,且在主要地下施工,控制网要采取分级分段建立。 3、地铁暗挖隧道,施工工艺复杂,地下施测条件差,测量工作量大。 4、地铁隧道贯通精度及建筑限界都有要求严格,在隧道施工的各个阶段必须对地面和地下控制网进行联系测量。 因此应结合城市地铁的工程的特点建立合理、满足精度要求的地铁施工控制网对地铁隧道的顺利、准确贯通非常关键。 二、编制目的 为使地铁施工优质、高效、顺利进行,施工过程中不出现由于测量错误或误差超限而引起的结构物返工或整改等质量问题,在施工过程中必须通过科学的测量方法,按照规范要求定期对控制网进行复测,使施工测量全过程处于受控状态。最终保证按期完成施工任务并交付验收。 三、编制依据 1、《城市轨道交通工程测量规范》(GB50308-2008) 2、《工程测量规范》(GB50026-2007) 3、《城市测量规范》(CJJ8-99) 4、《西安地铁建设工程施工测量管理细则》 5、《西安地铁工程施工测量、监测管理管理办法(暂行)》 6、业主测量队所交测点,控制点数据资料。 四、地面控制测量 4.1 地面平面控制测量 《城市轨道交通工程测量规范GB50308-2008》规定:向隧道内传递坐标和方位时,应在每个井(洞)口或车站附近至少布设三个平面控制点及两个水准控制点作为联系测量的依据。

地铁隧道贯通测量

毕业设计(论文)题目地铁隧道贯通测量 英文题目Through Measurement of Subway Tunnel 摘要 为了使两个或多个掘进工作面按其设计要求在预定地点正确接通而进行的工作 叫做贯通测量,这是一项重要的地下隧道施工技术。贯通测量的基本任务是保证各 项掘进工作面均沿着设计的位置和方向掘进,使贯通后结合处不超过规定的限度。 贯通测量工作直接影响到地下工程的质量,因此有必要对其方法做系统的学习研究。 关键字:地下工程测量沈阳地铁贯通测量 Abstract

The main target of through measurement is to make sure two or more heading face according to the design requirements connected at the correct point. Through measurement,one of the underground measurement methods, is an important technology of underground tunnel construction.Through measurement direct impact the quality of underground works. It is therefore necessary to make its way to study systems. Key word:underground measurement, Shenyang metro, through measurement

浅谈地铁盾构隧道施工测量技术

浅谈地铁盾构隧道施工测量技术 发表时间:2019-01-21T15:41:47.030Z 来源:《建筑模拟》2018年第31期作者:宁安平杨兴元 [导读] 近年来,随着我国经济的快速发展以及城镇化进程的加快,城市人口不断增加,城市交通拥堵问题越来越突出,因此发展城市轨道交通、缓解紧张的交通运输压力也日益成为各大城市迫切需要解决的问题。 宁安平杨兴元 中国水利水电第四工程局有限公司测绘中心青海西宁 810007 摘要:近年来,随着我国经济的快速发展以及城镇化进程的加快,城市人口不断增加,城市交通拥堵问题越来越突出,因此发展城市轨道交通、缓解紧张的交通运输压力也日益成为各大城市迫切需要解决的问题。与其他交通形式相比,地铁以运量大、快速、准时、节能环保及安全舒适等特点受到了各大中型城市的青睐,也逐渐成为城市展示经济实力、城市化建设程度以及高新技术应用的重要标志。 关键词:地铁盾构;隧道施工;测量技术 盾构法施工是一种先进的隧道施工技术,与其他施工技术相比较,盾构施工引起的地表沉降较小,对施工现场周围环境的影响小,是目前地铁隧道施工中最安全有效也是应用最广泛的施工方法。本文结合某市地铁隧道盾构施工测量工作的具体问题和实际做法,总结出了某市地铁盾构施工建设各个阶段测量工作的要点,提出了一种适用于某市地铁盾构施工的的测量流程,以便为某市后续线路的建设提供测量依据,并且也能为其他地区和单位的地铁盾构施工测量管理提供一个有价值的参考。 一、盾构施工测量简介 盾构隧道施工测量是指为盾构掘进施工和管片拼装符合设计要求而进行的测量工作。盾构施工测量工作主要内容包括地面控制测量、联系测量、地下控制测量、和贯通测量等。 二、盾构施工测量 1、设计数据的复核 工程准备开工时,应进行图纸会审。图纸会审时,测量人员应根据图纸线路参数对盾构掘进轴线(隧道中线)三维坐标进行计算,计算资料必须做到两人独立计算复核,必要时经过第三者计算复核或用不同的方法进行计算复核,对比检查,自检合格后报监理单位及第三方控制测量单位复核,经多方确认的盾构轴线坐标数据由相关方各执一份,作为以后施工过程轴线偏位检查的重要依据。 2、盾构设计数据的导入验收 盾构施工隧道中线坐标进行计算完成之后,土建施工单位要将计算得到的数据导入到盾构机导向系统,这个过程要求业主、土建施工单位、监理单位和第三方控制测量单位共同参与,验收无误后要求各方签字确认,并且拍照留存。 3、地面控制测量 轨道交通平面控制测量,一般分为三级。首级控制网通常是整个轨道交通线路网的平面控制网,是整个城市的轨道交通线路网的控制骨架,二级平面控制网一般为某条线路的平面控制网,三级控制网是在施工过程中根据二级平面控制网形成的精密导线。高程控制测量一般分两个等级布设,一等高程控制网主要是某城市中某条线路的高程控制网,二等高程控制网是施工水准网的基础和起算依据。 地面平面控制测量:为方便施工,在一、二级平面控制网的基础上加密布设精密导线。精密导线一般采用附合导线、闭合导线或节点导线形式。地面导线平均边长宜在350米左右,精密导线相邻边的短边和长边的比例不宜过小,不宜小于1:2,且个别短边不应小于100米。精密导线外业观测应满足《城市轨道交通工程测量规范》中相应的技术要求。精密导线网应整体严密平差,平差计算前将观测边长进行高程归化和投影改化。并分段进行单导线平差验算。 地面高程控制测量:二等高程控制网沿轨道交通线路两侧布设,一般采用附合线路、闭合线路或节点网形式进行布设,水准点平均间距应小于2KM。水准测量外业观测应按照二等水准测量观测技术要求进行。高程控制网的内业数据处理必须采用严密平差,在处理过程中应注意每千米高差中数偶然中误差、高差中数全中误差及最弱点高程中误差。水准路线按测段往返测高差中数偶然中误差MΔ;MΔ按下列公式计算: 式中MΔ—— 每千米高差中数偶然中误差(mm); L ——水准测量的测段长度(km); Δ——水准路线测段往返高差不符值(mm); n ——往返测水准路线的测段数。 当附合路线和水准环多于20个时,每千米水准测量高差中数全中误差应按下式计算: 式中MW—— 每千米高差中数全中误差(mm); W——附合线路或环线闭合差(mm); L——计算附合线路或环线闭合差时的相应路线长度(km); N——附合线路和闭合线路的条数。 4、始发托架的定位 在盾构机始发托架安装前,利用联系测量引至井下控制点精确定位始发托架中心线,一般采用全站仪极坐标法现场放样。特别注意因盾构机是以隧道设计中心线为参考依据掘进的,托架中心一般由施工单位依据隧道中心线和洞门钢环实际中心自行设计托架中心线。始发托架放样时,如果在直线段(或大半径曲线段)始发时,托架前端和后端中心形成的直线应和设计线路(或线路对应的托架前端和后端位

地铁隧道控制测量技术地面控制测量联系测量洞内控制测量分解

地铁隧道施工控制测量 地铁隧道施工控制测量

页16共页1第 地铁隧道施工控制测量目录 一、地铁隧道施工测量的内容及特点 二、编制目的 三、编制依据 四、地面控制测量 五、联系测量 六、高程传递测量 八、洞内施工测量 九、贯通误差测量 十、断面测量 十一、结束语 页16共页2第 地铁隧道施工控制测量

地铁隧道施工控制测量 中铁X局集团有限公司万海亮 一、地铁隧道施工测量的内容及特点 地铁工程主要有车站和隧道组成,多建于城市地下,但也有些区段会采用地面或者高架线路。隧道施工控制测量是地铁施工测量的重点和难点,所以这里主要介绍地铁隧道施工控制测量。 1.1地铁隧道施工测量的内容 地铁隧道控制测量一般是要通过已完成的车站(盾构始发井)、竖井、或地面钻孔把地面(井上)控制点的坐标、方位及高程传递到地下(井下),从而将地面和地下控制网统一为同一坐标(高程)系统,作为地下导线的起算坐标、起始方位角和起始高程基准,依此指导和控制地下区间隧道开挖并保证正确贯通。 因此,地铁隧道施工测量的内容主要有:地面平面控制测量、地面水准控制测量、联系测量、竖井高程传递、洞内控制测量、隧道施工测

量、贯通测量。地铁隧道施工产生的测量误差除地面控制点的因素外,还包 括井上与井下联系测量误差以及区间隧道施工控制测量误差。因此,地面控制测量、联系测量及区间隧道施工控制测量是地铁施工测量的三个关键因素,也是直接影响地铁贯通精度的关键控制点。 1.2地铁隧道施工测量的特点 1、地铁工程线路长,全线分区段施工,各区段开工时间、施工方法各异,且由不同承包商施工,要确保贯通,每个区段不仅要完成本段的测量任务,还要注意与邻接工程的衔接。 页16共页3第 地铁隧道施工控制测量 2、地铁线路长,且在主要地下施工,控制网要采取分级分段建立。 3、地铁暗挖隧道,施工工艺复杂,地下施测条件差,测量工作量大。 4、地铁隧道贯通精度及建筑限界都有要求严格,在隧道施工的各个阶段必须对地面和地下控制网进行联系测量。 因此应结合城市地铁的工程的特点建立合理、满足精度要求的地铁施 工控制网对地铁隧道的顺利、准确贯通非常关键。 二、编制目的 为使地铁施工优质、高效、顺利进行,施工过程中不出现由于测量错误或误差超限而引起的结构物返工或整改等质量问题,在施工过程中必须通过科学的测量方法,按照规范要求定期对控制网进行复测,使施工测量全过程处于 受控状态。最终保证按期完成施工任务并交付验 三、编制依据

一级GPS控制测量技术设计书知识讲解

G P S 控制测量设计书

1.工作大纲 ____________________________________________ 0 1.1任务来源___________________________________________ 0 1.2工作内容及任务______________________________________ 0 2. 技术设计方案_______________________________________ 0 2.1概述_________________________________________________ 0 2.1.1项目区概况_________________________________________________ 0 2.1.2已有资料及其利用情况_______________________________________ 0 2.2技术标准和要求______________________________________ 1 2.3技术路线和技术方案 ___________________________________ 1 2.3.1控制测量设计原则___________________________________________ 1 3.项目目组织实施计划和进度安排 _______________________ 4 3.1项目组织机构 _________________________________________ 4 3.1.1组织机构设置计划本项目组织机构设置计划如下图所示___________ 4 3.1.2各部分的具体职责___________________________________________ 4 3.1.3项目设备资源配置计划_______________________________________ 4 3.2项目进度安排 _________________________________________________ 4 4.质量管理措施、进度控制措施、生产安全保障措施_______ 5 4.1质量保证措施 _________________________________________________ 5 4.2项目进度控制 _________________________________________________ 5 4.3生产及资料安全保障措施 _______________________________________ 5 5. 提交成果资料_______________________________________ 6 6附录 ________________________________________________ 7 6.1GPS点之迹 ____________________________________________ 7

GPS静态控制测量技术设计指南备课讲稿

GPS静态控制测量实施指南 一、综述 GPS网建立过程分3个阶段:设计准备、施工作业、数据处理1.设计准备 该阶段的主要工作项目:项目规划、方案设计、施工设计、测绘资料收集、选点埋石、仪器检测。 1.1项目规划 ①位置及范围:测区的地理位置、覆盖范围及控制网的控制 面积 ②用途及精度等级:控制网的具体用途、所要求达到的精度 或等级。(各级GPS网采用中误差作为精度指标,以2倍中误差作为 极限误差。) C级网用途:三等大地控制网、区域、城市及工程测量的基本控制网; D 级网用途:四等大地控制网; E 级网用途:中小城市、城镇及测图、地籍、土地信息、建筑施工 等。 (由于本基坑工程跨距较长,基坑深距大,暂定C、D级测量精度 GPS测量相邻点间基线长度的精度用下面公式表示:

σ为基线向量的弦长中误差,单位mm,a为固定误差,单位mm,b为比例误差系数,单位1 X 10-6 ,d为相邻点间距离,单位为km。 城市GPS测量精度指标:(本工程选用四等) GPS高程拟合板块: D、E级网点按四等水准测量方法进行高程联测, GPS点需要高程联测时,可采用使GPS点与水准点重合,平原、微丘地形联测点的数量不宜少于6个,必须大于3个,联测点的间距不宜大于20km,且均匀分布;重丘、山岭地形联测点的数量不宜少于10个。 各级GPS控制网的高程联测应不低于四等水准测量的精度。 当GPS控制网点间距离小于20km时,可不考虑对流层和电离层的修正;当大于20KM时,每时段应于始、中、终个观测一次气象元素,并采用标准模型加入对流层和电离层的修正。 为GPS控制网点的正常高,先利用已联测高程的GPS点正常高和经GPS控制网平差得到的大地高,求其高程异常值,然后采用拟合或插值等方法求其他高程异常值和正常高。 ③点位分布及数量:控制网点的分布、数量及密度要求。 (GPS网点应均匀分布,相邻点间距离最大不宜超过该网平均点间距的2倍。依据城市测量规范三等基线平均距离为5km,四等为2km,鉴于平时土方开挖收方测量需要5km左右设置一控制观测点。

地铁施工测量技术方案

第15章施工测量 施工测量是标定和检查施工中线方向、测设坡度和放样建筑物,测量是施工的导向,是确保工程质量的前提和基础。地铁工程施工测量的施测环境和条件复杂,要求的施测精度又相当高,必须精心施测和进行成果整理,工程测量成果必须符合相关规范的要求。 15.1 施工测量技术要求 1、施工测量按招标文件和施工图纸、《城市测量规范》CJJ8、《地下铁道、轻轨交通工程测量规范》GB50308及《工程测量规范》GB50026的有关规定执行。 2、对甲方提供的控制点进行检测,符合精度要求后再进行工程的施工测量。 3、对整个工程场区按施工需要布设精密导线平面控制网(如采用原有控制网作为场区控制网时,要先复核检查,符合精度要求后方能取用)。 4、场区内按施工需要布设高程控制网,并应采用城市二等水准测量的技术要求施测,其路线高程闭合差应在±8L mm(L为线路长度,以km计)之内。 5、北京地铁工程隧道开挖的贯通中误差规定为:横向±50mm、竖向±25mm,极限误差为中误差的2倍,即纵向贯通误差限差为L/5000(L为贯通距离, 以km计)。 北京地铁工程平面与高程贯通误差分配表15-1 15.2 施工测量特点 1、车站包括主体结构、出入口、换乘通道和风道。采用明、暗挖相结合的施工方法,施工工艺复杂,工序转换快,地下施测条件差,测量工作量大。 2、地面导线控制网和高程控制网由地面传递到地下,必须保证精度,且要布设形成检测条件并经常复测控制点。 3、对于车站主体结构,净宽尺寸在建筑限界之外,还应考虑如下的加宽量:50mm综合施工误差+H/150钻孔灌注桩施工误差及水平位移。 4、车站钢管柱的位置,其测设允许误差为±3mm。钢管柱安装过程应检测其垂直度,安装

地铁浅埋暗挖隧道施工控制测量

地铁浅埋暗挖隧道施工控制测量 摘要:从地铁浅埋暗挖隧道地铁施工出发,阐述西安地下铁道工程浅埋暗挖法施工控制测量的现状和主要技术工作方法。 关键字:城市轨道;浅埋暗挖法;测量 Abstract: from the shallow depth excavation construction of subway tunnel, this paper expounds xian underground engineering shallow depth and the present situation of the WaFa construction control survey and main technical working methods. Keyword: urban rail; sallow buried-tunnelling method ; measurement 工程简介 西安轨道交通二号线TJSG-23标三爻~凤栖原区间,由中铁十七局集团承建,右线起讫里程YDK21+978.600~YDK23+386.300,右线全长1407.7m;左线起讫里程ZDK21+978.600~ZDK23+386.300(长链 1.215m),左线全长1408.915m。区间隧道断面为单线单洞,区间隧道采用浅埋暗挖法施工,复合式衬砌,复合式衬砌的外衬为衬期支护,由注浆加固的地层、网喷支护与钢拱架等支护形式组成,内衬采用钢筋混凝土模筑衬砌,内外层衬砌之间铺设封闭的防水层。马蹄形断面依据隧道建筑界限,设计时在宽度和高度上外放100㎜拟定。直线段:隧道中线与线路中线重合;曲线段:采用移动隧道中心线方法代替限界加宽。 洞顶覆土11.5~28.7米,线间距13.0~15.0米。区间含两处平曲线,最小曲线半径650m。线路为单面坡,最大纵坡12‰。 本区间共设两座施工竖井。1#竖井及联通道位置为YDK22+270,竖井为矩形断面,截面尺寸7.8*9.8米,施工横通道长37.49米。2#竖井及联通道位置为YDK23+005,竖井为矩形断面,截面尺寸7.8*9.8米, 井深31.302米,施工横通道长35.57米。左右线间施工横通道兼做联络通道。 本区间共有3处地裂缝,采用矿山法处理。过地裂缝段设置变形缝,初支变形缝位置与二衬保持一致,采用初衬格栅的纵向连接筋断开处理,且每道变形缝接口处局部二衬厚度需要加大以适应地裂缝较大变形,二衬变形缝采用特殊防水措施。 地铁测量控制因素 本工程主要为暗挖区间,施工工艺复杂,暗挖区间的地下施测条件差,测量工作量大,如何保证工程控制测量精度,是本工程测量的重点。 地铁暗挖区间施工往往是要通过已施工好的车站、竖井、盾构井,或通过地

地铁隧道贯通测量

地铁隧道贯通测量 林正庆 上海地铁一号线纵贯市区,全长14.7km,是上海目前较大的市政施工项目之一。上海隧道一号线全线采用盾构机械施工,施工时要进行跟踪测量,即贯通测量。隧道贯通测量精度指标有多种,其中横向和竖向精度指标最为重要,是衡量隧道掘进的准确程度的标准。贯通测量指导盾构到达竖井预留门洞,要求准确贯通,因此贯通测量在盾构施工中起到很重要的作用。 地铁隧道贯通测量的目的,是使盾构准确地沿着设计轴线开挖推进,并进入接收井的预留门洞。盾构机头中心与预留门洞中心的偏差值称为贯通误差。预留门洞的大小,应该是盾构内径、隧道内衬管径厚度、施工误差、测量误差这四个方面的总和。测量误差如能达到设计所要求的±5cm,就能达到贯通测量规定的要求。但一般情况下,建设单位为了保证质量起见,对测量精度提出更高的要求。 上海地铁一号线平面首级控制为四等空中导线,一般点位设置在区间隧道附近较稳定的高大建筑物上,观测视线由空中传递,并采取强制归心测角测距。高程控制点为二等几何水准网进行联测,点位远离施工区,较稳定。地面坐标传递到进下隧道的方法,一般采用方向线法、投点法两种;高程控制传递至井下采用钢尺悬挂观测法进行。 常熟路站至陕西南路站区间隧道工程,由于受施工现场条件的限制,采用常规的地面坐标传递到井下的方向线法和投点法已不能保证精度,而采用经纬仪加光电测距仪直接进行传递,这是首次。 1工程概况 地铁一号线常熟路站至陕西南路站区间隧道工程全长742m,为上、下两平行隧道,位于淮海中路下面。该区间隧道采用逆向施工技术进行掘进,先埋设地下管线,在隧道轴线上预留门洞,再进行路面铺装,而后进入地下施工。 两车站各预留施工沉井,井口边长仅8m,且偏离隧道轴线设置。沉井深15m,施工出土、进料都由井口通过。同时控制点受施工现场限制,控制点所在的建筑物在施工区沉井旁,建筑物沉降使控制点产生位移,由此给确保隧道贯通测量的精度带来很大难度。 隧道贯通测量误差,是指纵、横向和竖向误差。纵向误差影响掘进长度,横向、竖向误差则影响贯通的准确性。 2 横向贯通测量 横向贯通测量一般包括:地面控制测量;竖井联系测量;井下导线测量。 如图1,Ⅳ424甲控制点设置在常熟路附近建筑物上,距井口170m。Ⅳ423在瑞金路比较稳定的建筑物上,距井口约180m。这两点是该地铁区段上、下行线隧道贯通测量的起始点。 图1 控制点分布图 2.1 误差源 (1)Ⅳ424甲~Ⅳ423方向与隧道轴线近似平行,故起始边长度误差对横向贯通误差的影响可忽略不计。

地铁施工测量

工程概况 本标段为昆明市轨道交通首期工程十三标段,包括2座车站和3个盾构区间,分别是金星站、白云路站、北辰小区站?金星站区间、金星站?白云路站区间、白云路站?昆明北站区间。金星站与白云路车站的主体结构采用明挖法施工,围护结构采用地下连续墙+内支撑的支护体系。主体结构外侧设全包防水层,与连续墙一起组成复合墙体系。 本标段工程范围示意见图如下。 北辰小区站金星站白云路站昆明北站 二、工程地质与水文地质概况 1 )地形地貌 昆明市区内地址构造复杂,但大部分隐伏于盆地松散岩层下,根据基底构造图资料,本区构造地质景观是以经向构造为骨干构造。纬向构造长期活动,受区域构造应力场中南北向力偶的作用,同时发育了北东、北西南构造。 2)地层岩性描述 本次勘察揭露地层最大深度为50m,按地层沉积年代、成因类型将本工程场地勘察范围内的土层划分为第四系全新人工填土层、第四系全新统冲洪积层、第四系上更新统冲湖层、第四系上更新统坡残积层、更迭系茅口组灰岩五大类。与本站设计相关的土层自上而下依次为: 第①1层杂填土:褐灰、黑灰,稍密?稍湿,表层为沥青混凝土,下含碎石, 局部夹有碎砖块等,为路基结构层。分布较连续,厚度 1.50?2.40m,平均厚

度 1.69m 。 第②1 层粘土:褐黄色,湿,中压缩性,含云母、氧化铁,含少许风化碎石。 局部为粉质粘土。分布较连续,层顶埋深1.50?1.80m ,厚度0.60?1.50m,平均厚度0.95m 。 第② 3层粘土:褐灰?深灰色,湿,中压缩性,含少量有机质,局部为粉质粘土。分布较连续,层顶埋深 2.30 ?3.30m ,厚度0.50?3.00m ,平均厚度1.45m 。 第② 4层粉土:褐灰?灰色,稍密,夹粉砂薄层。分布不连续,层顶埋深1.60? 4.00m ,厚度0.80?2.30m ,平均厚度1.55m 。 第② 5层泥炭质粘土:黑灰?黑,软塑?可塑,高压缩性,有机质含量约12?40%,局部有机质含量大于60%,相变为泥炭。分布较连续,层顶埋深 2.20?2.60m ,厚度 0.50m 。 第③1层圆砾:深灰?兰灰、褐黄,中密。圆形及亚圆形,级配较差,砾石成分为砂岩及灰岩,中等风化。20?25m 以上为粉土、粉砂为主要填充物,以下以粘性土为充填物。夹卵石、粘性土及粉土夹层,局部夹有胶结块。连续分布,且厚度大,均未揭穿,层顶埋深 3.30?5.50m 。 第③12层粘土:褐黄、兰灰、灰,硬塑,中压缩性。局部含5?15 %砾石,砾石成分为砂岩及灰岩,中等风化。分布不连续,厚度0.40?2.50m,平均厚度0.98m ;层顶埋深8.10?37.60m。 第③13层粉土:褐灰、灰、深灰,中密,局部地段相变为粉砂层,含砾,砾 石含量3?15 %,局部夹腐木。分布不连续,厚度0.30?2.60m,平均厚度1.33m。 3)地下水的腐蚀性评价 据在场地内取地下水样水质分析结果,场地地下水及地表水对混凝土结构无

地铁隧道联系测量方法及精度控制讲解

地铁隧道联系测量方法及精度控制 (王伟中交隧道盾构公司江西南昌30029) [摘要] 本文以南昌地铁一号线青山湖站至高新大道站为例,对盾构隧道区间联系测量方法进行详细的介绍。同时对数据的处理方法,对投点方法及两井定向精度进行了相关分析。 [关键词] 联系测量两井定向精度分析数据处理 1前言 随着中国的城市化进程的加快,城市人口的增加给城市交通带来的压力日渐明显。然而,城市化的发展绝不可以被交通压力所约束。因而与我们传统的地上交通相对应的地下交通就成为缓解城市交通压力的新渠道。这就是目前的大、中城市正在极力发展的地铁交通。地铁的发展主要依赖与地下工程隧道开挖等的相关技术的进步,了解相关的主要技术就会知道地铁测量对地铁隧道尤为重要,这是地铁施工的最重要的基本条件。 2工程背景概况 青山湖大道站~高新大道站区间里程范围:SK20+052.554~SK20+902.822,区间长度为850.268双线延米,下行线在XK20+840.204里程处设置XK20+840.000长链(XK20+840.204=XK20+840.000 长链0.204),区间线路间距13.4~15.0m,线路包括2个曲线,曲线半径均为3000m。区间最大坡度为22‰,区间隧道覆土厚度在10.0m~16.5m。本区间设置一处联络通道(兼泵站),中心里程在为:SK20+502.007和XK20+502.042。区间西端为青山湖大道站,东端为高新大道站。青山湖大道站~高新大道站区间区间隧道,线路在北京东路下方。隧道结构距离地面319#、320#、321#、371#(19层)建筑物建筑物均在14m以上,地面建构筑物无需采取特殊处理和保护措施。 根据盾构工程筹划,两台盾构机从青山湖大道站东端出发,向东掘进到高新大道站西端结束。 3联系测量 在地铁隧道推进前必须要进行联系测量,即将车站地面平面坐标系统和高程系统传递到井下,使车站上下能采用同一坐标系统所进行的测量工作;两井定向有物理定向、几何定向等,这里主要阐述两井几何定向。联系测量须独立进行两次,在互差不超过限差时采用均值作为联系测量的最终结果。

完整word版GPS控制测量技术设计书

GPS控制测量技术设计书概述 本次实习的目的是了解控制测量作业的全过程,掌握GPS静态测量数据处理的基本知识,巩固课堂学习的理论知识,将理论与实践有机结合,提高理论水平与外业操作能力。 测量依据、原则 CH 2001-92《全球定位系统(GPS)测量规范》 CJJ 73-97《全球定位系统城市测量技术规程》 CH 1002-95《测绘产品检查验收规定》 CH 1003-95《测绘产品质量评定标准》 CJJ 8-85《城市测量规范》 本工程《技术设计书》 2 测区情况 2.1 测区范围及任务 本测区位于东经108°57'、北纬34°13'附近。位于长安大学校本部东院,测区北临育才路,东至雁塔路,测区内为教学区,地势平坦,建筑物以及树木较多,通视条件较差。本次实习在测区内布设7个GPS控制点,构建一个D级GPS网,满足实习需要。 2.2已有资料 测区如有已知的国家高等级三角点,可考虑联测国家高等级点,将GPS网点的坐标转换到国家坐标系中。如测区无已知的国家高等级三角点,采用测区独立坐标系。 控制网起算数据3.2. 本次实习GPS控制网可考虑利用国家等级点2个,国家等级点必须有西安1980坐标系坐标或1954北京坐标系坐标,作为本次实习GPS网的起算数据。如无已知的国家高等级三角点,则采用测区中任意两点的独立坐标作为本次实习GPS 控制网的起算数据,独立坐标系可选用已已建成的地方独立坐标系,也可以在实习是自己建立。 2.4坐标系统、高程系统和时间系统 GPS基线向量为WGS-84坐标系,GPS网平面平差成果为西安1980坐标系坐标或1954北京坐标系坐标,并转换为测区相应的坐标系。 高程系统采用1985国家高程基准或1956黄海高程系统。 时间系统采用北京时间或UTC时间系统。 2.5GPS网的布设 采用三台GPS接受机,按边连式的布网形式布设GPS控制网,等级为D级。 2.6GPS网的选点 GPS点位的选择应符合技术要求,有利于使用其他测量方法进行联测;点位的基础应坚定稳固,易于长期保存,并有利于安全作业; 点位应便于安置接收设备和操作,视野开阔,被测卫星的地平高度角应大于15。;点位应远离大功率无线点发射源(如电视台、微波站等),其距离不得小于200m,并应远离高压输电线,其距离不得小于50m;点位附近不应有强烈干扰接收卫星信号的物体 GPS静态测量外业观测及观测数据资料的处理 3.1GPS外业观测 本次实习的GPS控制网采用GPS技术静态观测方法施测。

浅谈地铁轨道施工中CPⅢ测量技术的应用 冯恺

浅谈地铁轨道施工中CPⅢ测量技术的应用冯恺 发表时间:2018-05-18T16:54:41.503Z 来源:《基层建设》2018年第3期作者:冯恺 [导读] 摘要:在地铁轨道施工过程中,为了保障地铁施工的安全和准确性,地铁引入了高铁施工中一项常见和重要CPⅢ测量技术。 中国电建市政建设集团有限公司天津 300384 摘要:在地铁轨道施工过程中,为了保障地铁施工的安全和准确性,地铁引入了高铁施工中一项常见和重要CPⅢ测量技术。CPⅢ控制网作为测量系统的组成部分,发挥的作用非常重要。 关键词:地铁;CPⅢ控制网测量;分析 1地铁建设及其特点 地铁建设与社会经济发展是密切相关的,传统地铁速度较低,逐渐无法更好的适应当下经济发展的需求,因此需要适当的提升运输速度,使交通效率提升。以往地铁在建设的过程中,对于轨道的平顺度要求比较低,施工环节没有基于工作需要与实际情况建立完整的测量系统,平面控制网的等级可以分为一等至五等,坐标系应用方面可以选用国家坐标系,也可以局部假定。地铁CPⅢ测量区别于一般的测量,控制网等级分为三级,均利用国家坐标系,从而使其更加的规范与统一,方便后期管理与控制。现阶段地铁建设标准与要求高,车辆行驶的速度高,对于无碴轨道的要求高,平顺性与稳定性要求高。为了达成上述要求就需要建立一套完善的控制测量体系,确保测量结果精度能够得到保障。无砟轨铺设作为一项引进技术,应用于国内地铁建设的时间比较短,在应用的过程中技术标准高,新工艺多,前期测量工作十分的重要。地铁建设应用该项技术,测量工作采用了三维控制测量,利用GPS开展控制测量,CPI属于高等级控制网,对于测量结果的误差要求高,是确保道路正常运行的基础。 2测量工作应用的方法 2.1平面控制测量 采用此方法开展测量工作对全站仪要求有测量的精度,包括角度与距离两个方面,能够自动对中目标,检定合格。具体的测量操作,利用边交换绘测量,CPCPⅢ控制网控制点的间距通常保持在50到60米范围内每对,第一站的位置设在起始CPⅢ点的中间,前后分别有一对,第二站在4对CPⅢ中间,前后各两对,依次进行设置。观测点应该对CPⅢ进行至少两次观测,水平角度与距离观测工作二者应该保持同步,观察设备主要是利用全站仪,确保每个点最终能够被观测到的次数在三次,每个观测站的测量长度控制在150米范围内,在倒数第三站开始测量工作要以相反的顺序进行,如果有多个观测段,相邻观测点之间应该重叠测量CPⅢ点,测量数量保持在3对,衔接数量保持在4对。测量工作要依据测量作业指导书开展,实际测量工作与指导书确立的标准二者之间会存在一定的差异,属于正常现象。与上一级控制点进行联测,间隔联测的距离保持在600米左右,一般情况下需要通过两个以上的观测站点。高等级控制点在进行联测时,至少应该观测三个完整的数据。采用边交绘测量的方法需要对误差进行分析,从而使其保持在合理的范围内。观测点位于疏散平台上部5-10cm,车站位于站台板外侧,观测工作进行时需要专业棱镜。全站仪采用自由设站,只需要对设备进行整平操作,使设备的对点误差减少,测量精度提升。仪器在安置时尽可能前后视距保持相等,避免视距过大从而产生视距误差。后方交会的测量方法在严密性方面存在不足,误差较大,因此在测量工作中需要确保控制点测量的次数在三次以上,分析数据需要使用专业的处理软件。 2.2高程控制测量 高程控制测量主要利用电子水准仪,通过往返测量从而得到精确的高程,对水准仪的要求是检定合格并且精度能够得到保障。具体的观测操作是,以某个水准点为已知点进行测量,水准测量路线需要确立两个点,一是交替测量点,二是中视点,测量至下一水准点则可以结束工作。返测工作是基于已知的往测水准点,此时的前后视点是往测工作进行时的中视点,中视点则是另一侧相对CPⅢ点,测量至往测起始水准点时结束工作。为保证精度,测量时在尺上安装自制灯带。 2.3线下精密控制网复测 精密控制网是测量工作的基础,无砟轨道对线下基础工程测量沉降要求较高,控制网测量工作需要工程变形与沉降满足要求,并且对轨道铺设条件进行评估,确认其不存在问题后进行。CPⅢ在建网前需要复测精测网,并分别进行高程控制网与平面控制网复测作业,联测基点与CPO,计算整网平差,使控制网准确性得到保证。为使CPⅢ网建立的过程高效准确,通常情况下需要对CPⅡ网加密,加密工作主要是方便观测工作进行,弥补无法利用或者是损坏的CPⅢ点与CPI。线下工程轨道铺设工作开展前需要复测平面线位,对施工造成的误差超限进行处理,为轨道铺设工作奠定基础。 3 CPⅢ数据采集与计算 为满足地铁建设工作测量与建网要求,降低人员工作强度,提升工作效率与质量,设备自带软件需要具备以下特点,对数据采集限差进行设置,包括指标差与指标互差,水平角与竖直角互差等,依据数据采集限差规定,采集与要求与质量标准相符的数据。为了的确保整体工作的质量,需要建立完善的质量管理体系,全程对质量进行控制,对各项限差进行实时核检,与要求不相符的数据需要重新测量。结合到数据限差要求筛选数据,保存符合要求与标准的数据到指定的位置,观测过程的原始数据需要妥善保存,便于后期出现问题时查找原因及对工作进行总结。将数据导入软件进行处理时,软件需要结合到相关规定,再次对数据进行筛选与检查,并最终确定参与平差计算的各项数据符合工作相关标准与规定。测量工作对外部环境也有一定的要求,需要天气条件稳定,温度与湿度变化较小,洞内需干燥,车站及联络通道范围内无脚手架遮挡。 4自由设站法 地铁与一般地铁控制网的区别在于通过自由设站对控制点进行观测,CPⅢ需要安装对中棱镜,自由设站测量点地面无需任何标志,CPⅢ点即是控制点。该方法是将站点设置在待定的控制点上,特定坐标计算方面采用的是间接平差法进而进行测量,自由设站的控制点点位误差包含了相邻与系统点位误差,已知控制点的点位误差会使自由站点的点位产生位移,对设站点的误差进行控制需要在观测的范围内单位确保有足够多的控制点。该方法能够确立站点坐标,仪器设备的水平方位也能够确定,定向精度也会高于利用控制点的精度,自由设站时,控制点的数量越多,定向的精度就会越高。 5地铁CPⅢ控制网测量 某地铁位于,线路全长19.8公里,全为地下线,13座站台,测量工作内容是平面控制网测量,高程控制网测量。平面控制测量工作内

相关文档
最新文档