药物设计学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
药物设计学
名解
1、合理药物设计:是根据与药物作用的靶点,即广义上的受体(如酶、受体、离子通道等)寻找和设计合理的药物分子,主要是通过对药物和受体的结构,在分子水平甚至电子水平上的全面、准确的了解,进行基于结构的药物设计和通过对靶点的结构、功能、与药物作用方式及产生生理活性的机理的认识进行基于机理的药物设计。
2、高通量筛选(HTS):是指以分子水平和细胞水平的实验方法为基础,以微板形式作为实验工具载体,以自动化操作系统执行实验过程,以灵敏快速的检测仪器采集实验结果数据,以计算机对实验数据进行分析处理,同一时间对数以千万样品检测,并以相应的数据库支持整体系运转的技术体系。
3、高内涵筛选(HCS):在保持细胞结构和功能完整性的前提下,同时检测被筛样品,对细胞形态、分化、迁移、凋亡、代谢途径及信号传导等方面的影响,在单一实验中获取大量与基因、蛋白质及其他细胞成分相关的信息,确定被筛样品生物活性和潜在毒性的过程。HCS应用高分辨率的荧光数码影像系统获得被筛样品对细胞产生的多维立体和实时快速的生物效应信息,对其多角度分析。
4、药物靶点:是指体内能够与药物特异性结合并产生治疗疾病作用或调节生理功能作用是生物大分子。包括受体,酶,离子通道,核酸,基因位点等生物大分子。
5、细胞信号转导:细胞通过位于细胞膜或细胞内的受体感受细胞外信号分子的刺激,经细胞内信号传导系统的转换,从而影响细胞生物学功能的过程。
6、竞争性抑制剂:具有与底物相似的结构,通常与正常的底物或配体竞争酶的结合部位。Km增大,Vmax不变。
7、过渡态类似物:是指从电性和/或立体结构方面来模拟酶过渡态中间物的抑制剂,该类抑制剂与酶的亲和力一般要远大于(10^7~10^15倍)底物类似物抑制剂与酶的亲和力。
8、组合化学:是一门将化学合成、组合理论、计算机辅助设计结合为一体的技术。它根据组合原理在短时间内将不同构建模块以共价键系统地反复地进行连接,从而产生大批的分子多样性群体,形成化合物库;然后,运用组合原理,以巧妙的手段对化合物库进行筛选、优化,得到可能的有目标性能的化合物结构的科学。
9、酶的过渡态:即指底物的过渡态。酶首先与底物结合成酶-底物复合物,然后转换成不稳定的酶-过渡态中间复合物。过渡态与酶的亲和力要远远大于底物与酶的亲和力。
10、酶的特异性:即酶专一性,指酶对催化的反应和反应底物所具有的选择性。
11、化学基因组学:化学基因组学作为功能基因组学时代的新技术,是基因组学与药物发现之间的桥梁和纽带,能够促进全新药物作用靶点和先导化合物的发现。化学基因组学技术整合了组合化学、高通量筛选、生物信息学、化学信息学和药物化学等领域的相关技术,采用具有生物活性的化学小分子配体作为探针,研究与人类疾病密切相关的基因和蛋白质的结构和生物功能,同时为新药开发提供靶蛋白以及具有高亲和性的药物先导化合物。
12、里宾斯基规则(Lipinski规则):也称“5规则”。该规则指出,口服吸收好的药物应满足以下条件:其分子量小于500(5*10)、氢键供体数目(以NH和OH数目之和)小于5(5*1)、氢键受体的数目(杂原子数目之和)小于10(5*2)、logP小于5(5*1)。当违反上述任意两个或多个规则时,化合物出现口服生物利用度差或代谢分布差的可能性就会大于90%。后来的研究又增加了新的规则,如可旋转键的数目小于10(5*2)、环数目小于5(5*1)等。上述规则仅适用于被动转运的情况,对于抗生素、抗真菌药、维生素及强心苷等主动转运的药物则不适用。
Lipinski规则最明显的优势在于异常的简便、快捷,易于理解,因而很容易智能化。Lipinski 规则可有效地应用于类药组合化学库的设计、类药化合物的合成与收集。
13、类药性(drug-likeness):类药性是药代动力学性质与安全性的总和,包括药物的理化性质(如分子量、亲脂性和pKa等)、拓扑结构特征(如可旋转键数、氢键数目和极性表面积等)、药代动力学性质(如生物利用度、代谢稳定性、血浆蛋白结合率等)以及毒性特征(药物-药物相互作用、hERG通道阻滞等)
14、鸡尾酒疗法:是指临床采用多种药物联用来治疗艾滋病感染患者的一种手段。通常包括两种核苷类逆转录酶抑制剂和一种非核苷类逆转录酶抑制剂。
15、固相合成:固相合成是先把反应物接到一个固相载体(通常是官能团化的高分子材料)上,然后,在非均相的条件下进行有机反应。
16、骨架跃迁(Scaffold hopping)设计:从已知的活性分子结构出发,通过传统的类似物设计方法或计算化学方法,对先导化合物进行骨架设计,以发现全新的拓扑结构骨架和活性分子。
17、Ⅱ相生物转化:将极性基团与体内的一些内源性物质(如葡萄糖醛酸、醋酸、谷胱甘肽等)结合生成极性大、易溶于水和易排出体外的轭合物。
18、拼合原理:将两种药物的基本结构经化学方法拼合在一个分子内,或将两者药效团兼容在一个分子中,使形成的药物或兼具两者的活性,强化药理作用,减少各自相应的毒副作用;或使两者发挥各自的药理活性,协同完成治疗过程。
19、致死合成:与生物体内基本代谢物的结构有某种程度相似的化合物,与基本代谢物竞争性地和酶作用,干扰基本代谢物的被利用,进而干扰生物大分子的合成,或以伪代谢物的身份掺入生物大分子的合成中,生成伪生物大分子,导致致死合成。
20、多靶点药物治疗:简而言之,可以同时作用于疾病网络中的多个靶点,对各靶点的作用可以产生协同效应,使总效应大于单个效应之和。多靶点药物治疗可以克服许多单靶点药物的局限性,同时调节疾病网络系统中的多个环节,不易产生抗药性,达到最佳的治疗效果。
21、核苷类逆转录酶抑制剂(NRTI):NRTIs通过阻断病毒RNA的逆转录,即阻止病毒双链DNA形成,使病毒失去复制的模板而起作用。它们首先进入被感染细胞,然后磷酸化,形成具有活性的三磷酸化合物。这些三磷酸化合物是HIV逆转录酶的竞争抑制剂,当插入生长的DNA链时,可导致病毒DNA合成受阻,从而抑制病毒复制。
这类抑制剂的不良反应严重,容易使病毒产生抗药性,因此与蛋白酶抑制剂联用,常会大大延长其病毒耐药性的产生,有协同效应。