III—V族化合物半导体的能带结构

合集下载

化合物半导体材料

化合物半导体材料
化合物半导体材料
赵洞清
由两种或两种以上元素以确定 的原子配比形成的化合物,并具有 确定的禁带宽度和能带结构等半导 体性质的称为化合物半导体材料
碲镉汞
砷化镓
氮化镓
锗硅合金
06 05
01
02
磷化铟
磷化镓
0体材料。属Ⅲ-Ⅴ族化合物半导体。属闪锌 矿型晶格结构,晶格常数5.65×10-10m,熔点1237℃,禁 带宽度1.4电子伏 • 砷化镓可以制成电阻率比硅、 锗高3个数量级以上的半绝 缘高阻材料,用来制作集成 电路衬底、红外探测器 、γ光子探测器等。由于 其电子迁移率比硅大5~6倍 ,故在制作微波器件和高 速数字电路方面得到重要应 用。用砷化镓制成的半导体 器件具有高频、高温、低温性能好、 噪声小、抗辐射能力强等优点
外延生长法
磷化铟
• 性状:沥青光泽的深灰色晶体。 • 熔点:1070℃。闪锌矿结构,常温下 带宽(Eg=1.35 eV)。熔点下离解压 为2.75MPa。 • 溶解性:极微溶于无机酸。 • 介电常数:10.8 • 电子迁移率:4600cm2/(V· s) • 空穴迁移率:150cm2/(V· s) • 制备:具有半导体的特性。由金属铟 和赤磷在石英管中加热反应制得。
氮化镓
• 一种具有较大禁带宽度的半导体,属于所 谓宽禁带半导体之列。它是微波功率晶体 管的优良材料,也是 蓝色光发光器件中 的一种具有重要应 • 用价值的半导体。
• GaN材料的研究与应用是目前全球半导体研究的前沿和热 点,是研制微电子器件、光电子器件的新型半导体材料, 并与SIC、金刚石等半导体材料一起,被誉为是继第一代 Ge、Si半导体材料、第二代GaAs、InP化合物半导体材 料之后的第三代半导体材料。它具有宽的直接带隙、强的 原子键、高的热导率、化学稳定 性好(几乎不被任何酸腐蚀)等 性质和强的抗辐照能力, 在光电子、高温大功率器件和 高频微波器件应用方面有着广 阔的前景。

第三章化合物半导体

第三章化合物半导体
Ge、Si元素半导体{111}面是最密排面而且有最大面间
距,面与面间结合力较弱,因而比较容易沿这些晶面裂开。
第49页,本讲稿共207页
然而,对闪锌矿结构的Ⅲ-V族化合物晶体,虽 然{111}面间距大于{110 }面间距,但晶体沿着
(110 )面最容易发生解理,这是因为闪锌矿结构除 共价键外还有离子键成分。
体的解理有重要影响。
第33页,本讲稿共207页
对于负电性相差不大的两种原子相结合时,则 可看成是共价键和离子键之间的过渡,称之为极
性健。在极性健中既存在共价键的成分又有离子键 的成分,各自所占比例与负电性差有关,其关系如 表6-4所示。
第34页,本讲稿共207页
第35页,本讲稿共207页
表 6-5 给出了Ⅲ-V 族化合物半导体的负 电性差与离子键成分的对应关系。
asgagaas可逆如果设法将上述的as减少譬如把容器中的砷蒸气抽走即砷蒸气压小于0936个大气压则gaas将不断分解产生砷蒸气于是反应式自右向左进行反之若设法在gaas熔点附近继续不断地维持足够的砷蒸气并让砷蒸气压保持在0936大气压则反应式就不断地从左向右进行直到全部镓和砷蒸气合成砷化镓为止
第三章化合物半导体
第31页,本讲稿共207页
由于极化现象,电子云有向 B 处移动的趋向。这又 导致在B处出现负有效电荷,A处出现正有效电荷。 混合键的两种效应迭加的结果,一般在A和B处将出 现正负有效电荷。
第32页,本讲稿共207页
上述这种除共价键以外,还有附加的离子键的 特点,被称为Ⅲ-V族化合物的 “极性” 。他对晶
上述只是对闪锌矿型晶体结构而言,此外,有些 Ⅲ-V 族化合物如 GaN、InN 等为纤维锌矿结构,还有的因其 生长条件不同,有时具有闪锌矿结构,有时具有纤维锌 矿型结构(如BN )。

第六章III-V族化合物半导体

第六章III-V族化合物半导体

6-及条件的依据:相图
非凝聚体系相图与凝聚体系相图的差别 非凝聚体系P-T-X相图

GaAs作为重要半导体材料的 主要特征
直接带隙,光电材料 迁移率高,适于制作超高频超高速器件和电路 易于制成非掺杂半绝缘单晶,IC中不必作绝缘
隔离层,简化IC,减少寄生电容,提高集成度 Eg较大,可在较高温度下工作 抗辐射能力强 太阳电池,转换率比Si高 Gunn效应,新型功能器件
能带结构:直接带隙 导带中有两个次能谷X,L,与主能谷能量差不大 主能谷中:电子有效质量较小,迁移率较高 次能谷种:电子有效质量大,迁移率小,态密度大, 室温下:电子处于主能谷 当外电场超过某一阈值时: 电子由主能谷→次能谷,迁移率由大→小, 出现:电场增大,电流减小的负阻效应 体效应(电子转移效应),Gunn效应(1963年)
GaAs晶体生长的两个途径
熔体生长:先合成1:1的化合物熔体然后直
接由熔体中生长其单晶 溶液生长:由某一组分的溶液中生长化合 物晶体(常以III族元素作溶剂)
对Ga-As体系精细相图
GaAs在加热时发生的一些可逆反应 熔体生长的GaAs晶体一般含有较多的Ga空


GaAs的物理、化学性质
暗灰色,有金属光泽 其晶格常数随T及化学计量偏离有关,
a(富As)<a(富Ga) 室温下对H2O和O2是稳定的 大气中600℃以上开始氧化 真空中800 ℃以上开始离解 与盐酸×与浓硝酸∨易溶于王水
GaAs的能带结构与Gunn效应
GaAs能带结构和Gunn效应
第六章 III-V族化合物半导体
IIIA元素:B 、Al、Ga、In
VA元素: N、P、As、Sb 组合形成的化合物15种(BSb除外) 目前得到实用的III-V族化合物半导体 GaN GaP GaAs InP GaSb InSb InAs 原子序数之和:由小→大 材料熔点:由高→低 带隙宽度:由大→小

半导体物理半导体中的杂质和缺陷

半导体物理半导体中的杂质和缺陷
CdTe以外的II-VI族化合物大多是单极性半导体。这些材 料有一些共同的特点,即熔点都比较高,其组成元素又 往往具有较高而不相等的蒸气压,因此制备符合化学计 量比的完美单晶体十分困难,而空位等晶格微缺陷的形 成却比较容易。
§1-5 典型半导体的能带结构
一、能带结构的基本内容及其表征
1、能带结构的基本内容 • 1)导带极小值和价带极大值的位置,特别是导带
3、碲化汞的能带结构 碲化汞的导带极小值与价带极大值基本重叠,禁 带宽度在室温下约为-0.15eV,因而是半金属。
五、宽禁带化合物半导体的能带结构
1、SiC的能带结构 SiC各同质异型体间禁带宽度不相同,完全六方型的2HSiC最宽,为3.3eV;随着立方结构成分的增加,禁带逐 渐变窄,4H-SiC为3.28eV,15R-SiC为3.02eV,6H-SiC 为2.86 eV,完全立方结构的3C-SiC为2.33eV。 •皆为间接禁带
2)等电子络合物的陷阱效应




4、深能级的补偿作用
浅能级杂质间的补偿
深能级杂质的补偿
导带
• • •• • • • • • • • • ED
导带
• •• •• • •• •• •• ••
•• •
EDEA
• • • • • EA
价带
价带
同样有补偿作用,但效果弱一点。
三、缺陷的施、受主作用及其能级
1)价带 中心略偏,轻重空穴带二度简并
2)导带底的位置 随着平均原子序数的变化而变化,以GaAs为界,…
3)禁带宽度
随着平均原子序数的变化而变化,…
4)电子有效质量 随着平均原子序数的变化而变化,…
5)空穴有效质量 重空穴在各III-V族化合物间差别不大

III—V族化合物半导体的能带结构解析

III—V族化合物半导体的能带结构解析
砷化镓和磷化镓合成后可以制成磷砷化镓混合晶体,形成三 元化合物半导体,其化学分子式可写成x称为混晶比。
能带结构随组分x的不同而不同: 实验发现,当0≤x≤0.53时,其能带结构与砷化镓类似; 当 0.53≤x≤1时,其能带结构成磷化镓。
除了三元化合物外,人们更进一步制成由III-V族化合物构成 的四元化合物混合晶体。例如,在磷化铟衬底上可制备出四元化合 物,在GaAs衬底上制备出四元化合物,图1-28和1-29分别为和的禁 带宽度和晶格常数随组分x、y的变化关系(Ga1-xInxAs1-yPy) 。
L能量比布里渊区中心极小值高出0.29eV。
砷化镓价带也具有一个重空穴带 V1,一个轻空穴带V2和由于自旋-轨道 耦合分裂出来的第三个能带V3,重空 穴带极大值也稍许偏离布里渊区中心。
重空穴有效质量为0.45m0,轻空穴 有效质量为0.082m0,第三个能带裂距 为0.34eV。
室温下禁带宽度为1.变化,
实线为等禁带宽度线,虚线为等晶格常数线, 图中阴影部分表示在该组分内材料属于间接带隙半导体。
间接带隙半导体:导带和价带的极值处于不同的k空间,跳跃是间 接的。
间接跳跃过程除了发射光子还有声子。
问题:硅,锗,砷化镓是什么类型的半导体?
人们已利用混合晶体的禁带宽度随组分变化的特性制备发光
或激光器件。
光二极管(LED),当x=0.38~0.40时,室温下禁带宽度在 1.84~1.94eV范围,其能带结构类似砷化镓,当导带电子与价带空 穴复合时可以发出波长在6400~6800A范围内的红光。
调节的x、y部分,以研制1.3~1.6μm红外光的所谓长波长激光 器是当前很活跃的研究领域。
什么是发光二极管(LED: light-emitting diode)

06章-Ⅲ-Ⅴ族化合物半导体

06章-Ⅲ-Ⅴ族化合物半导体

比Ge、Si等困难。到50年代末,科学工作者应用水平布里奇曼法
(HB)、温度梯度法(GF)和磁耦合提拉法生长出了GaAs、InP单晶,但
由于晶体太小不适于大规模的研究。

1962年Metz等人提出可以用液封直拉法(LEC)来制备化合物半导
体晶体,1965~1968年Mullin等人第一次用三氧化二硼(B2O3)做液封剂, 用LEC法生长了GaAs、InP等单晶材料,为以后生长大直径、高质量
(b)甲烷正四面体模型

另一种认为在闪锌矿型晶体结构中,除Ga-和As+
形成的共价键外,还有Ga3+和As3-形成的离子键,因
此Ⅲ-V族化合物的化学键属于混合型。
• 由于离子键作用,电子云的分布是不均匀的,它有向 V族移动的趋向,即产生极化现象。这样导致在V族 原子处出现负有效电荷,Ⅲ族原子处出现正有效电荷。
• 在室温下,电子处在主能谷中,因为在室温时电子从晶体那 里得到的能量只有0.025eV,很难跃迁到X处导带能谷中去。
• 电子在主能谷中有效质量较小(m=0.07m0),迁移率大;而在 次能谷中,有效质量大(m=1.2m0),迁移率小,但状态密度比 主能谷大。

当外电场超过一定值时,电子可由迁移率大的主能谷转移
• 红、橙、黄、绿、蓝、靛(青)、紫 • 红:780-630nm • 橙:630-590nm • 黄:590-550nm • 绿:(550-490nm), • 蓝:(490-440nm), • 紫:(440-380nm).
• 发光的颜色是由能隙决定的,通过控制GaP中的掺杂剂可 以使GaP发出不同的光。
6-2 砷化镓单晶的生长方法
• 本节要点: • 掌握III-V族化合物的平衡相图的分析方法 • 砷化镓单晶的生长方法:水平布里奇曼法

半导体物理硅、锗、砷化镓的能带结构

半导体物理硅、锗、砷化镓的能带结构

二、 固溶体的基本性质 固溶体的物理性质一般会连续地随组份比的变化而变化
1.晶格常数服从Vegard关系: aAB xaB (1 x)aA
aABC xaA yaB (1 x y)aC
InSb 0.64
晶格常数 a (nm)
0.62 AlSb InAs 0.60
InP 0.58
GaAs 0.56
x
EgXx 1.115 0.43x 0.206x2 eV 0 x 0.85
EgL x 2.01 1.27 x
eV
0.85 x 1
3) GeSi固溶体的赝晶生长 GeSi固溶体的晶格常数随着Ge组分的升高而增大, 如果以硅片为衬底生长GeSi固溶体薄膜,在Ge组分 较高时出现严重晶格失配,生成高密度失配缺陷。
组份比 x
2、固溶体的禁带宽度 • 固溶体的能带结构随其组分的变化而变化,每个导带极小
值与价带顶之间的距离都随组分的变化而变化
Eg,AB xEg,A (1 x)Eg,B Eg,ABC xEg,A yEg,B (1 x y)Eg,C
Eg a bx cx2
固溶体
Eg (eV)
固溶体
AlxIn1-xP
1.351+2.23x
AlxGa1-xAs
AlxIn1-xAs 0.36+2.012x+0.698x2 AlxGa1-xSb
AlxIn1-xSb 0.172+1.621x+0.43x2 GaxIn1-xP
GaxIn1-xAs
0.36+1.064x
GaxIn1-xSb
Eg (eV)
1.424+1.247x; 1.424+1.455x
ax 0.5431 0.01992x 0.002733x2 nm

半导体材料第8章III--VV族多元化合物半导体

半导体材料第8章III--VV族多元化合物半导体

吉林大学电子科学与工程学院
半导体材料
超晶格 : 由两种(或两种以上)组分(或导电类 型)不同、厚度d极小的薄层材料交替生长在一起 而得到的一种多周期结构材料。
厚度d远大于材料的晶格常数a,但相近与或小于 电子的平均自由程
衬底
这是在原来“自然”晶体晶格的周期性结构上又叠 加了一个很大的“人工”周期的新型人造材料。
吉林大学电子科学与工程学院
半导体材料
c) 电价因素
连续固溶体必要条件:原子价(或离子价)相同 多组元复合取代总价数相等,电中性。 ( 不是充 分条件) ¾ 电负性相近,有利于固溶体的生成 ¾ 电负性差别大,倾向于生成化合物 如果价态不同,则最多只能生成有限固溶体(满 足尺寸条件前提下)
吉林大学电子科学与工程学院
使用四元固溶体可增加一个对其主要性能进行调 整和裁剪的自由度,即可通过两种组元的组分改 变来调整其带隙和晶格常数。
吉林大学电子科学与工程学院
半导体材料
从 图 上 可 知 : 与 InP 晶 格 (0.5869nm) 相 匹 配 的 该固溶体的带隙可在 0.74~1.35eV之间调整
吉林大学电子科学与工程学院
吉林大学电子科学与工程学院
半导体材料
三元固溶体:
Vegard定律
晶格常数
aAB=xaA+(1-x)aB aA和aB分别为互溶材料A和B的晶格常数 带隙宽度
Eg,AB= a+bx+cx2 其中,a,b,c为特定固溶体材料的特征常数
吉林大学电子科学与工程学院
半导体材料
固溶体晶格常数随组分变化
晶格常数 a (nm)
吉林大学电子科学与工程学院
半导体材料
E(k)
3.0

半导体材料课件III-V族化合物半导体的特性 GaAs单晶的生长方法

半导体材料课件III-V族化合物半导体的特性 GaAs单晶的生长方法
光探测器
高效太阳电池
霍尔元件
吉林大学电子科学与工程学院
半导体材料
GaAs在我们日常生活中的一些应用
遥 控 器 是 通 过 GaAs 发 出 的 红 外光把指令传给主机的。
家电上的红色、绿色指示灯是 以 GaAs 等 材 料 为 衬 底 做 成 的 发光二极管。
吉林大学电子科学与工程学院
CD, DVD,BD光盘是用以 GaAs为衬底制成的GaAlAs激 光二极管进行读出的。
吉林大学电子科学与工程学院
半导体材料
非凝聚体系p-T-x相图各投影图的含义
GaAs体系 p-T-x相图
¾G a - A s 的 T - x 图 , 反 映 体 系sGaAs+l+g三相平衡时的 温度与xAs组成的关系。
质很不相同,把这种不对称性叫做极性
吉林大学电子科学与工程学院
半导体材料
极性(闪锌矿是非中心对称的)
[111]

[111]

表面A

ⅤⅤ ⅢⅢ

[1 1 1]


表面B
[1 1 1]
闪锌矿结构在[110]面上的投影 显示在[111]方向和[1 1 1] 方向的差别
吉林大学电子科学与工程学院
半导体材料
从垂直[111]方向看,GaAs是一系列由Ga原子和As 原子组成的双原子层,因此晶体在对称晶面上的性 质不同。如[111]和[111]是不同的。 III族:A原子,对应的{111}面称为A面 V族:B原子,对应的{111}面称为B面 ¾ A—B组成的双原子层称为电偶极层 ¾ A边和B边化学键,有效电荷不同,电学和化学性
直接3.4eV 间接2.26eV 直接 1.43eV 直接 0.73eV

gaas 电导率

gaas 电导率

gaas 电导率【导语】砷化镓(GaAs)作为一种重要的半导体材料,其电导率特性在半导体器件和光电领域具有重要的应用价值。

本文将介绍GaAs的基本性质及其电导率特性,并探讨掺杂浓度、温度等因素对电导率的影响。

【GaAs的基本性质】GaAs是一种III-V 族半导体材料,其原子结构为四面体。

在GaAs中,Ga原子与As原子通过共价键形成晶体结构。

GaAs的能带结构中,价带和导带之间的能隙较小,约为1.42eV。

这使得GaAs在室温下呈现出固态特性。

GaAs的电导率特性与其能带结构密切相关。

在未经掺杂的GaAs中,电子空穴对在能隙中复合,导致电导率较低。

当GaAs受到杂质掺杂时,掺杂原子会替代Ga或As原子,引入额外的电子或空穴。

这些电子或空穴会在能带中形成自由电子,从而提高GaAs的电导率。

【电导率与掺杂浓度关系】掺杂浓度对GaAs的电导率具有重要影响。

随着掺杂浓度的增加,杂质原子在晶格中的占位数增加,形成的自由电子或空穴浓度也相应增加。

当掺杂浓度较低时,电导率随着掺杂浓度的增加而缓慢升高;当掺杂浓度达到一定值后,电导率随掺杂浓度的增加而显著提高。

然而,过高的掺杂浓度会导致晶格畸变,使得电导率增加趋势减缓。

【温度对电导率的影响】GaAs的电导率受温度影响较大。

随着温度的升高,GaAs中的杂质原子热运动加剧,电子与杂质原子的碰撞次数增加,导致电子散射增强。

此外,温度升高还会导致空穴浓度增加,从而降低电导率。

因此,GaAs的电导率随温度的升高而降低,表现出明显的温度依赖性。

【应用领域】GaAs的电导率特性使其在半导体器件和光电领域具有广泛的应用。

例如,GaAs可以用于制作高速光电探测器、太阳能电池、射频和微波器件等。

近年来,随着5G通信、物联网等技术的快速发展,对GaAs材料的研究和应用日益受到关注。

【总结】GaAs的电导率特性对于半导体器件和光电领域的应用具有重要意义。

通过研究掺杂浓度、温度等因素对GaAs电导率的影响,可以优化半导体器件的性能,为我国科技发展提供有力支持。

半导体物理(第一章)

半导体物理(第一章)
波矢k与自由电子波矢意义相似,具有量子数的作用,描述晶 体中电子共有化运动的量子状态。
3、布里渊区与能带
求解薛定谔方程可得出在晶格周期势场中运动的电子的 能量-动量(E~k)关系曲线。
当 k n ,(n=0, ±1, ±2…) 时,能量出现不连续——形成允带和
a 禁带。
允带出现的区域称为布里渊区。从k=0处向k>0和k<0延伸,分别有 第一布里渊区、第二布里渊区……,每一个布里渊区对应一个能带。
体的V(x)是很困难的。
研究发现,电子在周期性势场中运动的基本特点和自由电 子的运动十分相似。
1、自由电子的运动状态
V(x)=0。求解薛定谔方程可以得出:
( x) Ae-ikx
2k 2 E
k为波矢,k的大小为
k
2
2m0
(第六版以前的教材中的定义与此不同)
根据德布罗意关系,电子的能量、动量与频率、波矢之间 的关系为
1.2 半导体中的电子状态和能带
1.2.1 原子能级和晶体能带
单晶半导体是由按确定规律周期排列的原子构成,相邻原 子之间的间距只有几个埃,原子密度非常大。对于c-Si,原 子密度高达5×1022cm-3。所以,单晶半导体中电子的能量状 态与孤立原子中的一定不同,但可以想象,一定存在着某种 联系。
单个原子中电子的壳层排布为1s2 2s2 2p6 3s2 3p6 3d10……, 但多个原子密集排布在一起时,相似壳层对应的能级会发生 交叠——电子变为在整个晶体中运动——电子的共有化运动。 最外壳层电子的共有化最显著!
电子状态用波函数x描述, x满足薛定谔方程(假设
为一维单个电子):
2 2m0
d2 dx 2
V (x) (x)
E (x)

和wo3带隙差不多的半导体

和wo3带隙差不多的半导体

和wo3带隙差不多的半导体
半导体是一种介于导体和绝缘体之间的材料,具有特殊的电子能带结构。

和wo3(三氧化钨)具有类似带隙的半导体材料有很多种,本文将介绍几种典型的半导体材料。

第一种是二氧化硅(SiO2),它是一种常见的半导体材料,广泛应用于集成电路制造中。

二氧化硅的带隙约为8-9电子伏特,与wo3的带隙相近。

二氧化硅具有优异的绝缘性能和高热稳定性,因此被广泛用于制造微电子器件和光学器件。

第二种是砷化镓(GaAs),它是一种常见的III-V族化合物半导体材料。

砷化镓的带隙约为1.4-1.6电子伏特,与wo3的带隙相近。

砷化镓具有优异的高频特性和较高的电子迁移率,因此被广泛应用于射频电子器件、激光器和太阳能电池等领域。

第三种是硅锗(SiGe),它是一种合金半导体材料,由硅和锗按一定比例混合而成。

硅锗的带隙约为0.7-0.8电子伏特,与wo3的带隙相近。

硅锗具有与硅相似的加工工艺和优异的热导率,因此被广泛应用于高频电子器件、光电器件和热电器件等领域。

除了以上几种常见的半导体材料,还有其他具有类似带隙的半导体材料,如氮化镓(GaN)、氮化铝(AlN)等。

这些半导体材料在光电子器件、能源器件和传感器等领域具有广泛的应用前景。

总结起来,和wo3具有类似带隙的半导体材料有二氧化硅、砷化镓、硅锗等。

这些半导体材料在微电子、光电子和能源领域发挥着重要的作用,推动着现代科技的发展。

通过研究和应用这些半导体材料,我们可以不断提高电子器件的性能,推动科技创新和社会进步。

湖南大学半导体物理考试重点(全)

湖南大学半导体物理考试重点(全)

半导体物理第一章半导体中的电子状态单电子近似:即假设每个电子是在周期性排列且固定不动的原子核势场及其他电子的平均势场中运动。

该势场是具有与晶格同周期的周期性势场。

1.1半导体的晶格结构和结合性质1.大量的硅、锗原子组合成晶体靠的是共价键结合,他们的晶体结构与碳原子组成的一种金刚石晶格都属于金刚石型结构。

2.闪锌矿型结构(见课本8页)1.2半导体中电子的状态和能带1.Φ(r,t)=Ae i(k.r−wt) k为平面波的波数2.k=|k|=2л/λ波的传播方向为与波面法线平行3.在晶体中波函数的强度也随晶格周期性变化,所以在晶格中各点找到该电子的概率也具有周期性变化的性质。

这反映了电子不再完全局限在某一个原子上,而是可以从晶胞中某一点自由运动到其他晶胞内的对应点,因而电子可以在整个晶体中运动,这种运动称为电子在晶体内的公有化运动。

1.3半导体中的电子的运动有效质量1.导带低电子的有效能量1h2(d2Edk2)k=0=1m n∗2.引进有效质量的意义在于它概括了半导体内部势场的作用,使得在解决半导体中的电子外力作用下的运动规律时,可以不涉及半导体内部势场的作用。

3.能量带越窄二次微商越小,有效质量越大。

内层电子的能量带越窄,有效质量大;外层电子的能量带宽,有效质量小。

1.4本征半导体的到点机构空穴1.可以认为这个空状态带有正电。

2.正电荷为空状态所有,它带的电荷是+q。

3.空穴:通常把价带中空着的状态看成是带正电的粒子,称为空穴。

.空穴不仅带有正电荷+q,而且还具有正的有效质量。

4引进空穴概念后,就可以把价带中大量电子对电流的贡献用少量的空穴表达出来。

半导体中除了导电带上电子导体作用外,价带中还有空穴的导电作用,这就是本征半导体的导电机构。

1.6 硅和锗的能带结构硅和锗的禁带宽度是随温度变化的,在T=0K时,硅和锗的禁带宽度E g分别趋近于1.70eV和0.7437eV.随着温度的升高,E g按如下规律减小E g(T)=E g(0)- -aT2T+β,式中E g(T)和E g(0)分别表示温度为T和0K时的禁带宽度,a,β为温度系数。

06章-Ⅲ-Ⅴ族化合物半导体

06章-Ⅲ-Ⅴ族化合物半导体



sp3杂化轨道:由1个2s轨道和3个2p轨道杂化,形成能量、 形状完全相等的4个sp3杂化轨道
(a)碳的sp3杂化轨道;
(b)甲烷正四面体模型

另一种认为在闪锌矿型晶体结构中,除Ga-和As+
形成的共价键外,还有Ga3+和As3-形成的离子键,因
此Ⅲ-V族化合物的化学键属于混合型。
• 由于离子键作用,电子云的分布是不均匀的,它有向
• 除此以外, GaAs具有比Si大得多的电子迁移率,
这对提高晶体管的高频性能是有利的。
GaP的能带结构
• 参见课本图6-4磷化镓的能带结构图。在波 矢是空间的电子能量图上,价带顶与导带
底不处于相同的波矢k处,所以GaP是间接
跃迁型材料。 • 间接跃迁型材料要实现跃迁必须与晶格作 用,把部分动量交给晶格或从晶格取得一 部分动量,也就是要与声子作用,才能满 足动量守恒的要求,因而非直接跃迁发生 的几率是很小的 ( 约为直接跃迁的 l / 1000) ,


光波长(颜色)的控制
• 加入氮后,光子能量: • hν = Eg一(Ee)n一(Eh)n
Eg为禁带宽度 (Ee)n为氮等电子陷阱形成激子中电子的能级 (Eh)n为氮等电子陷阱形成激子中空穴的能级
• •
由上式计算出光子的频率和波长,从而确定光的颜色
当氮含量较高时,还会有氮-氮等电子陷阱,这种二个靠得 很近的氮原子形成的等电子陷阱对电子的束缚要大于一个氮原 子对电子的束缚,它也能吸引空穴形成激子。这种激子复合放 出光子的能量小于单个氮原子形成的激子复合所放出光子的能 量,即 hν = Eg一(Ee)nn一(Eh)nn < Eg一(Ee)n一(Eh)n • 这是造成光谱分布波峰向长波方向移动以及使波宽加大的原因

第一章能带理论

第一章能带理论
本征激发 当温度一定时,价带电子受到激发而成为导 带电子的过程 。
激 发 后:
空的量子态( 空穴)
价带电子
激 发 前:
导带电子
空穴 将价带电子的导电作用等效为带正电荷的准粒子的导电作用。
空穴的主要特征: A、荷正电:+q; B、空穴浓度表示为p(电子浓度表示为n); C、EP=-En D、mP*=-mn*
1.导体的能带
三、 导体、绝缘体和半导体的能带
2.绝缘体和半导体的能带
6#C电子组态是:1s22s22p2
2p
2s
1s
(1)满带中的电子不导电 I(k)=-I(-k) 即是说,+k态和-k态的电子电流互相抵消。 (2)对部分填充的能带,将产生宏观电流。
Eg
电子能量
Ec
自旋量子数 ms:±1/2,产生能级精细结构

2.晶体中的电子
(1)电子的共有化运动
在晶体中,电子由一个原子转移到相邻的原子去,因而,电子将可以在整个晶体中运动。
2p
2p
2p
2p
3s
3s
3s
3s














电子共有化运动示意图
(2)能级分裂
a. s 能级
设有A、B两个原子
孤立时, 波函数(描述微观粒子的状态)为A和B,不重叠.
第一章 半导体中的电子状态
半导体的晶格结构和结合性质 半导体中电子状态和能带 半导体中电子的运动和有效质量 半导体中载流子的产生及导电机构 半导体的能带结构
1、金刚石型结构和共价键
化学键: 构成晶体的结合力. 共价键: 由同种晶体组成的元素半导体,其 原子间无电负性差,它们通过共用 一对自旋相反而配对的价电子结 合在一起.

第四章:化合物半导体材料《半导体材料》课件共49页文档

第四章:化合物半导体材料《半导体材料》课件共49页文档
GaAs在无线通讯射频前端应用具有高工作频率、 低噪声、工作温度使用范围高以及能源利用率高 等优点,因此在未来几年内仍是高速模拟电路, 特别是功率放大器的主流制程技术。
手机是促进GaAs IC市场增长的主 要动力
根据Strategy Analytics的报告,手机仍将是促进砷化 镓(GaAs)IC市场增长的主要动力。
化物半导体材料
III-V族化合物半导体材料 II-VI族化合物半导体材料
4.1 常见的III-V化合物半导体
化合物 晶体结 带隙
ni

un
up
GaAs 闪锌矿 1.42 1.3×106 8500
320
GaP 闪锌矿 2.27
150
120
GaN 纤锌矿 3.4
900
10
InAs 闪锌矿 0.35 8.1×1014 3300
计算:GaAs 300 K和400 K下的带隙
晶体结构
金刚石结构 闪锌矿结构 纤锌矿结构
离子键和极性
共价键--没有极性 离子键--有极性
两者负电性相差越到,离子键成分越大, 极性越强。
极性的影响
(1)解理面--密排面 (2)腐蚀速度--B面易腐蚀 (3)外延层质量--B面质量好 (4)晶片加工--不对称性
光纤通信具有高速、大容量、信息多的特点,是构筑 “信息高速公路”的主干,大于2.5G比特/秒的光通信 传输系统,其收发系统均需要采用GaAs超高速专用电路。
随着光电子产业和自动化的发展,用作显示器件LED、 测距、玩具、条形码识别等应用的高亮度发光管、可见 光激光器、近红外激光器、量子阱大功率激光器等均有 极大市场需求,还有GaAs基高效太阳能电池的用量也十 分大,对低阻低位错GaAs产业的需求十分巨大而迫切。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
L能量比布里渊区中心极小值高出0.29eV。
砷化镓价带也具有一个重空穴带 V1,一个轻空穴带V2和由于自旋-轨道 耦合分裂出来的第三个能带V3,重空 穴带极大值也稍许偏离布里渊区中心。 重空穴有效质量为0.45m0,轻空穴 有效质量为0.082m0,第三个能带裂距 为0.34eV。 室温下禁带宽度为1.424eV,0K时 为1.519eV,室温附近禁带宽度随温度 线性变化, Eg(T)= Eg(0)-αT2/(T+β)
什么是发光二极管(LED: light-emitting diode) 发光二极管是由数层很薄的搀杂半导体材料制成,一层带 过量的电子n,另一层因缺乏电子而形成带正电的“空穴”p, 当有电流通过时,电子和空穴相互结合并释放出能量,从而辐 射出光。
锑化铟的价带包含三个能带, 一个重空穴带V1, 一个轻空穴带V2 由自旋-轨道耦合所分裂出来的第三个能带V3,
20K时重空穴有效质量沿[111],[110],[100] 方向分别为0.44m0,0.42m0和0.32m0,轻空穴有 效质量为0.0160m0。 重空穴带的极大值偏离布里渊区中心,约为 布里渊区中心至布里渊区边界距离的0.3%,其能 值比k=0处的能量高10-4eV,由于这两个值很小, 因而可以认为价带极大值位于k=0, 价带的自旋-轨道裂距约为0.9eV。
1.7 III—V族化合物半导体的能带结构 III—V族化合物半导体与硅、锗具有同一类型的能带结构。 锑化铟和砷化镓的能带结构作一简要的介绍。 III—V族化合物半导体能带结构的一些共同持征。因为闪锌 矿型结构和金刚石型结构类似,所以第一布里渊区也是截角八面 体的形式,14面体。
这些化合物基本上都具有相似的价带结构. 同硅、锗一样,其价带在布里渊区中心是简并的,具有—个 重空穴带和一个轻空穴带,还有一个由自旋—轨道耦合而分裂出 来的第三个能带。 不同点:但是,价带的极大值并不是恰好在布里渊区的中心, 而是稍许有所偏离。 各种化合物导带结构有所不同,它们在[100]、[111]方向和布 里渊区中心都有导带极小值,但是最低的极小值在布渊里区中所 处的位置不完全相同, 1. 在平均原子序数高的化合物中,最低的极小值是在布里渊 区的中心, 2. 而在平均原子序数较低的化合物中,最低的极小值是在[100] 或[111]方向。
室温下禁带宽度为0.18eV,0能带极值都位于布里渊区中心。
2、砷化镓的能带结构
砷化镓的导带极小值也位于k=0处,等能面是球面,导带底 电子有效质量是各向同性的,其值为0.067mo。在 [111]和[100]方 向布里渊区边界L 和X还各存在另一个极小值,电子有效质量: 0.55mo和0.85mo。
除了三元化合物外,人们更进一步制成由III-V族化合物构成 的四元化合物混合晶体。例如,在磷化铟衬底上可制备出四元化合 物,在GaAs衬底上制备出四元化合物,图1-28和1-29分别为和的禁 带宽度和晶格常数随组分x、y的变化关系(Ga1-xInxAs1-yPy) 。 实线为等禁带宽度线,虚线为等晶格常数线, 图中阴影部分表示在该组分内材料属于间接带隙半导体。
3、磷化镓和磷化铟的能带结构
磷化镓和磷化铟也都是具有闪锌矿型结构的III-V族化合物半 导体,它们的价带极大值也位于k=0处。 磷化镓导带极小值不在布里渊区中心,而在<100>方向,电子 有效质量为0.35mo,重空穴和轻空穴有效质量分别为0.86m0和 0.14m0, 室温下禁带宽度为2.26eV,dEg/dT= -5.4x10-4eV/K。 磷化铟导带极小值位于k=0,电子有效质量为0.077m0,重空穴 和轻空穴有效质量分别为0.8m0和0.012m0,室温下禁带宽度为 1.34eV,dEg/dT= -2.9x10-4eV/K。
各种化合物的导带电子有效质量不同.
1. 平均原子序数高的化合物中(能带变形),有效质量较小。 各种化合物的重空穴有效质量却相差很少。 2. 原子序数较高的化合物,禁带宽度较窄,在禁带宽度最窄的 III—V族化合物中,由于价带和导带的相互作用使得导带底不呈 抛物线形状。
1.锑化铟的能带结构
锑化铟的导带极小值位于 k=0处,极小位附近的等能面是球 形的。但是,极小值处E(k)曲线的曲率很大,因而导带底电子 有效质量很小,室温下mn*=0. 0135m0。随着能量的增加,曲率迅 速下降,因而能带是非抛物线形的。
间接带隙半导体:导带和价带的极值处于不同的k空间,跳跃是间 接的。 间接跳跃过程除了发射光子还有声子。 问题:硅,锗,砷化镓是什么类型的半导体?
人们已利用混合晶体的禁带宽度随组分变化的特性制备发光 或激光器件。 光二极管(LED),当x=0.38~0.40时,室温下禁带宽度在 1.84~1.94eV范围,其能带结构类似砷化镓,当导带电子与价带空 穴复合时可以发出波长在6400~6800A范围内的红光。 调节的x、y部分,以研制1.3~1.6μm红外光的所谓长波长激光 器是当前很活跃的研究领域。
4、混合晶体的能带结构 III-V族化合物之间也都能形成连续固溶体,构成混合晶体. 它们的能带结构随合金成分的变化而连续变化,这一重要的 性质在半导体技术上已获得广泛的应用。 砷化镓和磷化镓合成后可以制成磷砷化镓混合晶体,形成三 元化合物半导体,其化学分子式可写成x称为混晶比。 能带结构随组分x的不同而不同: 实验发现,当0≤x≤0.53时,其能带结构与砷化镓类似; 当 0.53≤x≤1时,其能带结构成磷化镓。
相关文档
最新文档