九年级数学上册 第二十二章 二次函数章末小结教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学 习 资 料 专 题
二次函数
章末小结
※教学目标※ 【知识与技能】
掌握本章重要的知识点,能用相关函数知识解决实际问题. 【过程与方法】
通过梳理本章知识,回顾解决实际问题中所涉及的数形结合思想、方程思想、分类思想的过程,加深对本章知识的理解. 【情感态度】
在这用本章知识解决实际问题的过程中,进一步增强数学应用知识,感受数学的应用 价值,激发学生的学习兴趣. 【教学重点】
本章知识结构梳理及其应用. 【教学难点】
灵活运用二次函数性质解决问题. ※教学过程※ 一、整体把握
二、加深理解
1.二次函数的定义:一般地,形如2y ax bx c =++(0a ≠,,,a b c 为常数)的式子称为y 关于x 的二次函数.需要注意的是,二次项系数0a ≠是定义中不可缺少的条件.
2.抛物线()20y ax bx c a =++≠的图象和性质:
(1)的符号决定抛物线的开口方向;反之,由抛物线的开口方向可确定的符号. (2)利用抛物线的对称轴通常可以解决两个方面的问题:①结合a 的符号及对称轴所处的位置判别b 的符号;②利用对称轴即开口方向确定函数的增减性.
(3)利用抛物线的顶点,可确定函数的最大(小)值,但对自变量x 有限制时,相应的函数值的最大(小)值就应利用函数的性质来确定.
(4)抛物线与x 轴的交点及对应的一元二次方程的关系:抛物线与x 轴有两个交点、一个交点、没有交点,可由其对应的一元二次方程的根的判别式来判别,即有两个交点⇔ Δ=24b ac ->0,有一个交点⇔Δ=24b ac -=0,没有交点⇔Δ=24b ac -<0.至于其交点的横坐标,则可由对应的一元二次方程得到. 三、复习新知
例1 已知二次函数()20y ax bx c a =++≠的图象如图,则下列结论中正确的是( )
A.abc >0
B.24b ac -<0
C.93a b c ++>0
D.8c a +<0
分析:根据二次函数的图象求出a <0,c >0,根据抛物线的对称轴求出2b a =->0,即可得出abc <0;根据图象与x 轴有两个交点,推出24b ac ->0;对称轴是直线1x =,与x 轴的一个交点是(-1,0),求出与x 轴另一个交点的坐标是(3,0),把3x =代入二次函数得出930y a b c =++=;把4x =代入得出1688y a a c a c =-+=+,根据图象得出8c a +<0.
答案:D
例2 已知:抛物线2
y x bx c =-++经过A (-1,0),B (5,0)两点,顶点为P .
(1)求此抛物线的解析式; (2)求△ABP 的面积;
(3)若点C (1x ,1y )和点D (2x ,2y )在抛物线上,则当0<1x <2x <1时,请写出1y 与2y 的大小关系.
分析:(1)把A ,B 两点的坐标代入求得b 和c 的值,即可得到抛物线的解析式;(2)先把抛物线的解析式配成顶点式得到P 点坐标为(2,9),然后根据三角形面积公式计算即可;(3)由于抛物线的对称轴为直线2x =,开口向下,则根据二次函数的性质可确定1y 与2y 的大小关
系.
解:(1)把A (-1,0),B (5,0)分别代入2y x b x c =-++.解得4b =,5c =.∴此抛物线的解析式为245y x x =-++.
(3)∵抛物线的对称轴为直线2x =,开口向下,∴当0<1x <2x <1时,1y <
2y .
(3)根据题意,得21500010140033000x x =-+-,解得160x =或280x =.根据题意,得21200010140033000x x =-+-,解得150x =或290x =.∴50≤x ≤60或80≤x ≤90.
四、归纳小结
通过这节课的学习,你对本章知识你有哪些新的认识?你有哪些体会? ※布置作业※
从教材复习题22中选取. ※教学反思※
1.本节课为复习课,由于本章的内容较多,也比较重要,因此教学时师生应共同回顾与反思,归纳出本章知识的框架图,并让学生回答二次函数的一些性质,并适时通过课堂训练来达到复习的效果.对于学生容易产生错误的知识点,教师要给予解释,并通过例题的讲解使学生加深理解,对于实际问题,教师仍需要通过一些典型例题来让学生掌握.
2.课堂复习中,教师要充分与学生互动,活跃课堂气氛,使学生在愉快的学习环境中复习并最终掌握二次函数的知识,让学生对方程思想、数形结合思想以及转化思想有进一步的理解.