植物生理学-光合作用65612 ppt

合集下载

《光合作用》ppt

《光合作用》ppt

THANKS
详细描述
在光合作用中,合成的糖类等有机物质会被运输到细胞的各个部位,包括根、茎、叶等器官。这些有机物会通 过韧皮部运输到植物的其他部位,以满足植物生长发育的需求。同时,这些有机物也会被分配到不同的器官中 ,以维持植物各部分的正常生长和发育。
04
光合作用的场所和条件
光合作用的场所
叶绿体
光合作用的主要场所是叶绿体,它是一种含有叶绿素的细胞器, 能够吸收阳光,将光能转化为化学能。
培养光合作用领域的优秀人才与国际合作
总结词
培养光合作用领域的优秀人才与加强国际合作是推动光合作用研究的重要措施。
详细描述
培养具有国际视野和创新能力的高水平人才是推动光合作用研究的关键。同时,加强国际合作与交流 ,共同开展光合作用研究,有利于加快研究进程,提高研究水平,为人类创造更多的生态、社会和经 济效益。
2023
《光合作用》ppt
目录
• 光合作用简介 • 光合作用的过程 • 光合作用中的物质变化 • 光合作用的场所和条件 • 光合作用的应用与意义 • 光合作用的未来研究与发展趋势
01
光合作用简介
什么是光合作用?
01
02
03
光合作用的定义
光合作用是植物、藻类和 某些细菌通过捕获光能, 将二氧化碳和水转化为有 机物质的过程。
糖类的合成与储存
总结词
糖类的合成和储存是光合作用中物质变化的另一个重要环节。
详细描述
在光合作用中,通过一系列酶的催化作用,将三碳化合物和五碳化合物等小分子 化合物转化为糖类等有机物质。这些糖类被储存在细胞的叶绿体中,作为植物生 长发育所需的能量来源。
有机物的运输与分配
总结词
有机物的运输和分配是光合作用中物质变化的最后一个环节。

植物光合作用ppt课件

植物光合作用ppt课件

光合作用的重要性
总结词
光合作用对植物生长、发育和生态系统功能至关重要,它为植物提供能量和养 分,坚持生态平衡。
详细描写
光合作用是植物获取能量和养分的主要方式,它为植物的生长和发育提供所需 的能量和有机物质。此外,光合作用还对坚持生态平衡和生物多样性具有重要 作用。
光合作用的发现及研究历程
总结词
光合作用的发现和研究历程揭示了人们对自然界认识的不断深入和发展,为现代农业和生态学研究奠定了基础。
光合作用进程中产生的能量和有 机物,可以帮助作物抵抗逆境, 如干旱、高温、盐碱等。通过提 高光合作用效率,可以增强作物
的抗逆能力。
在环境保护中的应用
1 2
空气净化
通过种植具有高光合作用效率的植物,可以吸取 空气中的二氧化碳,释放氧气,有助于改进空气 质量。
水土保持
植物通过光合作用固定土壤中Байду номын сангаас养分,同时植物 的根系可以防止土壤流失,有助于保持水土。
详细描写
光合作用的发现和研究历程可以追溯到18世纪,经过多个世纪的探索和研究,人们对光合作用的机制和原理有了 更深入的了解。这一历程不仅推动了植物生理学和生态学的发展,也为现代农业和生态学研究提供了重要的理论 基础和实践指导。
02
光合作用的进程
光反应阶段
光能吸取与转换
植物通过叶绿体中的色素吸取太阳光能,并将其转换为活跃的化 学能。
对自然界的物质循环和能量流动的意义
光合作用参与自然界的碳循环,将大气中的二氧化碳转化为有机物,对 坚持地球气候稳定具有重要作用。
光合作用将太阳能转化为化学能,为全部生态系统提供能量,驱动自然 界的能量流动。
光合作用对坚持自然界的生态平衡和生物多样性具有重要意义,是生态 系统稳定和健康的关键。

《植物生理学》第四章 光合作用ppt课件

《植物生理学》第四章 光合作用ppt课件
成一条长的代谢传递带,使代谢顺利进行。
二、类囊体膜上的蛋白复合体
1.蛋白复合体的概念和种类 蛋白复合体:由多种亚基、多种成分组成的复合体。 主要有四类:光系统Ⅰ(PSI)
光系统Ⅱ(PSⅡ) Cytb6/f复合体 ATP酶复合体(ATPase)。
15
2.蛋白复合体在类囊体膜上的分布特点
➢ PSⅡ主要存在于基 粒片层的堆叠区, ➢ PSⅠ与ATPase存 在于基质片层与基粒 片层的非堆叠区, ➢ Cytb6/f复合体分布 较均匀。
它的主要功能是控制物质的进出,维持光 合作用的微环境。
外膜(outer membrane) 非选择性膜, 分子量小于10000的物质如蔗糖、核酸、 无机盐等能自由通过。
内膜(inner membrane) 选择透性膜,CO2、 O2、H2O可自由通过;Pi、磷酸丙糖、双 羧酸、甘氨酸等需经膜上的运转器才能通 过;蔗糖、C5`C7糖的二磷酸酯、NADP+、 PPi等物质则不能通过。
第四章 植物的光合作用
1
碳素营养方式的不同分为两大类:
自养植物 (antophyte)
异养植物 (heterophyte)
自养生物把二氧化碳转变成有机物的过程叫 碳素同化作用(carbon assimilation)。
细菌光 合作用
绿色植物 光合作用
化能合 成作用
三种碳素同化方式的异同点:
过程
碳素来源 能量来源 供H体
示意基质类囊体与基粒类囊体
光合色素存在于类囊体膜上,类囊体是光能吸收 与转换的场所,所以,类囊体膜也称光合膜 (photosynthetic membrane)。 高等植物的类囊体垛叠成基粒,其意义有二:
1、膜的垛叠意味着捕获光能机构的高度密集,

2024版《光合作用》ppt优秀课件

2024版《光合作用》ppt优秀课件
目的
通过本课件的学习,使学生了解光合作用的基本概念、原理、过程和意义,培养学生的科学素养和环保意识,提 高学生的综合素质和实践能力。
光合作用的重要性
维持地球生态平衡
光合作用是地球上生物圈的重要组成 部分,它能够将太阳能转化为化学能, 并释放出氧气,为地球上的生物提供 生存条件。
促进农业生产
推动新能源发展
光能使水分子裂解为氧气、质子和电子,氧气释放到大气中。
ATP和NADPH的生成
03
通过光合磷酸化和电子传递链,生成ATP和NADPH,为后续暗
反应提供能量和还原力。
暗反应机制
01
02
03
二氧化碳的固定
二氧化碳与五碳糖结合, 生成不稳定的六碳中间产 物。
还原反应
利用光反应产生的ATP和 NADPH,将六碳中间产 物还原为三碳糖。
光合作用与生态系统的关系
深入研究光合作用与生态系统的相互作用关系,揭示光合作用在生态系统中的功能和调 控机制,为生态系统的保护和恢复提供科学依据。
THANKS
感谢观看
其他环境因素对光合作用的影响
水分对光合作用的影响
矿质元素对光合作用的影响
水分是光合作用的原料之一,缺水会导致光 合作用速率下降。
一些矿质元素如氮、磷、钾等对光合作用有 重要作用,缺乏这些元素会导致光合作用减 弱。
空气污染对光合作用的影响
农业生产措施对光合作用的影响
空气污染中的有害物质如二氧化硫、氟化物 等会对叶绿体造成损害,影响光合作用进行。
随着人类对可再生能源的需求不断增 加,光合作用在新能源领域的应用前 景广阔,如利用光合作用原理开发太 阳能电池等。
光合作用在农业生产中具有重要作用, 通过提高作物的光合效率,可以增加 作物产量和品质,提高农业生产效益。

《光合作用》课件ppt

《光合作用》课件ppt
温度对光合作用过程中各种反应的影响
温度对光合作用过程中的各个反应均有影响。例如,暗反应更容易受到温度变化的影响,而光反应相对较稳定 。
二氧化碳浓度对光合作用的影响
二氧化碳浓度与光合作用速
率呈正相关
在一定范围内,随着二氧化碳浓度的增加,光合作用 速率也逐渐增加。当二氧化碳浓度过高时,光合作用 速率也会受到抑制。
二氧化碳浓度对光合作用过
程中各种反应的影响
二氧化碳浓度对暗反应的影响更大。如果二氧化碳浓 度过低,会导致暗反应受阻,从而影响整个光合作用 过程。
05
光合作用的应用
提高农作物产量
要点一
品种选育
要点二
优化种植结构
通过选育光合作用效率高的作物品种 ,提高农作物的产量和品质。
根据当地的气候条件和土壤特点,合 理安排农作物的种植比例和密度,以 提高整体的光合作用效率。
在医学和生物技术中的应用
治疗疾病
光合作用过程中产生的氧气可以用于治疗一些疾病,如肺炎等。
促进伤口愈合
光合作用产生的营养物质可以促进伤口愈合。
在生物技术中的应用
光合作用可以用于基因工程等领域的研究,为生物技术的开发提供新的思路和方法。
06
学习光合作用的建议和展望
学习光合作用的重要性
生物进化
光合作用是地球上生物生存和进化的基础,通过光合作 用,植物可以制造有机物质,并释放氧气,为其他生物 提供生存的必需条件。
地球上的碳元素主要以二氧化碳的形式存在,植物通过 光合作用固定了大量的碳元素,减少了大气中的二氧化 碳浓度,减缓了全球变暖的趋势。
光合作用固定的碳元素,一部分用于植物自身的生长发 育,一部分储存在生物圈中,形成了地球上庞大的碳库 ,对地球的生态平衡具有重要意义。

矿产

矿产

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。

如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。

㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。

(2 列出开发利用方案编制所依据的主要基础性资料的名称。

如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。

对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。

二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。

2、国内近、远期的需求量及主要销向预测。

㈡产品价格分析
1、国内矿产品价格现状。

2、矿产品价格稳定性及变化趋势。

三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。

2、矿区矿产资源概况。

3、该设计与矿区总体开发的关系。

㈡该设计项目的资源概况
1、矿床地质及构造特征。

2、矿床开采技术条件及水文地质条件。

植物生理学 光合作用ppt课件

植物生理学 光合作用ppt课件

ppt精选版
45
三、光合磷酸化
概念:叶绿体在光下把无机磷和ADP转化成ATP。 光合作用中磷酸化与电子传递是偶联的,偶联因子又称ATP酶,位于光合 膜上
ppt精选版
46
米切尔(P.Mitchell)提 出的化学渗透学说
在光合电子传递过程中,H2O光解产生质子,及通过PQ穿梭把质 子由间质转移到类囊体腔,这样形成了类囊体膜内外的质子梯度
❖ 双光增益效应或爱默生效应(Emerson effect)在远红光 照射下,如补充红光,则量子产额大增。比两种波长的光单 独照射的总和还要多。
红降和双光增益效应证明:光合作用存在两个光系统;并且可 以独立或者接力完成光反应过程。
ppt精选版
38
❖ 光系统I(photosystemI,简称PSI):在类囊体膜的外侧, PSI的作用中心色素分子是P700。是长波光反应,其主要特 征是NADP的还原。电子供体质体兰素PC,电子受体X。
❖ (二)巨大的能量转换站
日光能转化为化学能(ATP),1970年,全世界的 能耗,只占光和储能的1/10,光和储能相当于24万个三门峡 水电站的能量。
❖ (三)维持大气中氧气和CO2的平衡,保护环境。
没有光合作用,地球内3000年就会缺氧。
❖ (四) 作物产量构成的主要因素。
ppt精选版
3
第二节 叶绿体及叶绿体色素 chloroplast
叶绿素是双羧酸的酯,一个羧基被甲醇所酯化,另一个羧基被叶 绿醇所酯化。
不溶于水,溶于有机溶剂,容易被光分解
卟啉环中的镁可被H+或Cu2+所置换,铜代反应
天线色素:大多数叶绿素a和全部叶绿素b分子和类胡萝卜素具有 收集光能和传递光能的作用。

植物生理学--光合作用 ppt课件

植物生理学--光合作用  ppt课件

淀粉
6CO2+11H2O+18ATP+12NADPH+12H+
PP磷T课酸件 己糖+18ADP+17Pi+115 2NADP+
卡尔文循环的调节
C3途径中的酶 RuBP羧化酶 NADP-GAP脱氢酶
FBP酯酶
SBP酯酶
Ru5P激酶
都属于光调节酶
这些酶在光下活化,以满足光合;而在暗中钝 化,减少底物消耗,使C3循环得以自动调节。
RuBP羧化酶的活性与叶绿体间质中的pH值和 Mg2+含量有密切关系。
PPT课件
16
(二)C4 途径
M.D.Hatch和C.R.Slack(1966)研究证实,在一
光合效率高的植物中,其光合固定CO2 后的第一 个稳定性产物是C4 -二羧酸,由此发现了另一条 CO2 的同化途径——C4 途径,也称C4 -二羧酸途 径或Hatch-Slack循环。
第四章 光合作用
第3节 光合作用机理
二、电子传递与光合磷酸化
(一)光合电子传递 Z 形光合链
①两个光系统串联,最终电子供体是H2O,最终 电子受体是NADP+。
②两个光系统间有一系列的电子载体。 ③传递过程偶联着磷酸化作用,形成ATP。
④各电子载体是以氧化还原电位高低成Z形串联
排列,两处是“上坡”其余“下坡”。
• “不怕太阳晒,也不怕那风雨狂,只怕先生骂我 笨,没有学问无颜见爹娘 ……”
• “太阳当空照,花儿对我笑,小鸟说早早早……”
(二)光合磷酸化
( 1 )非环式光合 磷酸化
( 2 )环式光合磷 酸化
PPT课件
机理
P.Mitchell (1961)提出了 化学渗透学说
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2. 双羧酸尾部:
一个羧基在副环(E)上以酯键与甲醇结合—甲基酯化; 另一个羧基(丙酸)在D环上与植醇(叶绿醇)结合— 植醇基酯化; 非极性,亲脂,插入类囊体膜的疏水区,起定位作用。
-
13
叶绿素提取:
纯的有机溶剂不能打破叶绿体色素与蛋白质的联系,所以必 须用能与水混溶的有机溶剂并有少量水存在时,才能将叶绿 体色素提取出来。
处于高能激发态的分子不稳定,会迅速释放能量回到基态; 处于第二单线态的Chl*以热的形式释放部分能量降到第一单线态; 处于第一单线态的Chl*以下列多种形式释放能量回到基态。 1) 释放热量 2) 发出荧光(第一单线态→基态)和磷光(第一三线态→基态) 3) 诱导共振(能量从一个分子传递给另一个分子)
-
11
第3节 光合色素(叶绿体色素)
✓ 叶绿素(Chlorophyll): Chl a, b ✓ 类胡萝卜素(Carotenoids): 胡萝卜素 & 叶黄素 ✓ 藻胆素( Phycocobilins) :藻类光合色素
-
12
一)叶绿素的化学结构和性质
1. 卟啉环头部:
4个吡咯环,其中心1个Mg与4个环上的N配位结合; 带电,是发生电子跃迁和氧化还原反应的位置; 呈极性,亲水,与类囊体膜上的蛋白结合。
-
5
光合作用是地球上最重要的化学反应。
—— 摘自1988年诺贝尔奖金委员会宣布 光合作用研究成果获奖的评语
-
6
与光合作用相关的诺贝尔奖
Wilstatter(1915)纯化叶绿素并阐明其结构; Fischer(1930s Emerson-光合单位)叶绿素化学; Calvin等(1962)阐明光合碳循环; Woodward(1965)合成叶绿素分子; Mitchell(1978)ATP合成——化学渗透学说; Deisenhofer等(1988)阐明光合细菌反应中心结构; Marcus(1992)生命体系(包括光合作用)的电子传递体系; Walker等(1997)ATP合酶的动态结构和反应机理; ……
β-胡萝卜素:
强吸收区: 400-500 (蓝紫); 不吸收区:500以上(呈黄色或红 棕色)
-
17
叶绿素:类胡萝卜素 ≈ 3∶1
叶片衰老过程中或逆境下, Chl较易降解,而Caro比 较稳定。
-
18
三)叶绿素的荧光现象和磷光现象
颜色 紫外 波长 100~ (nm) 400 能量 400

紫 400~ 425 290
叶绿体的基本结构:
由双层细胞膜围成的、通常呈椭圆形的相对独立的细胞器(亚细胞单位); 内外膜之间的空隙为膜间隙 ; 类囊体(Thylakoids):由膜构成的囊状结构。每个类囊体的膜围成一个腔, 腔内充满水和盐类; ——基粒类囊体(grana thylakoid, 基粒片层~lamella) ——基质类囊体(stroma thylakoid, 基质片层) 基质:不定型凝胶状,含丰富的酶、核酸、嗜饿体、核糖体、淀粉粒等。
-
21
诱导共振: Chl1 + hγ → Chl1* Chl1* + Chl2 →Chl1 + Chl2*
以诱导共振方式传递的能量用于光合作用; 诱导共振仅发生在处于第一单线态的Chl回到基态的过 程之中; 吸收了蓝光、处于高能态的Chl先以释放热能形式回到 第一单线态,然后第一单线态→基态。 ∴ 在能量利用上蓝光没有红光高。
同时释放氧气的过程。
-
3
光合作用的研究历史:
有机物质的来源?(CO2) O2的来源?(H2O) 光合作用的本质?(氧化还原反应) 挖掘光合作用的潜力?
超级稻、高光效能源植物 … … 袁隆平院士、匡廷云院士

CO2+2H2O* 叶绿体
(CH2O)+ O2*+ H2O
氧化剂 还原剂
-
4
光合作用的意义:
-
7
人类面临 五大问题
人口 粮食 能源 资源 环境

依赖 光合生产
因此,深入探讨光合作用的规律,揭示光合作用的机理, 使之更好地为人类服务,愈加显得重要和迫切。
-
8
第2节 能量转换细胞器 —— 叶绿体
叶片是光合作用的主要器官, 叶绿体(chloroplast)是光合作用最重要的细胞器。
-
9
-
10
80%丙酮 95%乙醇 丙酮:乙醇:水(4.5:4.5:1)
称取新鲜去大叶脉的菠菜叶片3g,剪碎放入研钵中,加少量石英砂和 碳酸镁及5ml 95%乙醇,研成均浆,过滤入25ml 容量瓶,分别用5ml 95%乙醇冲洗研钵3次,冲洗液同样过滤,收集滤液,倒入容量瓶中, 最后用95%乙醇定容至25ml,放入暗处备用。
把无机物变为有机物的重要途径
约合成5×1011t/y 有机物 ; 同化2.0×1011t/y 碳素 (6400t/s)。 “绿色工厂”
巨大的能量转换过程
将3.2×1021J/y的日光能转化为化学能。
维持大气中O2和CO2的相对平衡
释放出5.35×1011t氧气/y 。 “环保天使”
光合作用是生物界获得食物、能量和氧气的根本途径。
-
14
二)类胡萝卜素的化学结构和性质
1) 8个异戊二烯单位形成的四萜; 2)两头对称排列紫罗兰酮环; 3)不饱和C、H结构,疏水、亲脂。
β-胡萝卜素
叶黄素
-
15
三)光合色素的吸收光谱
-
16
叶绿素:
强吸收区: 640-700nm(红), 400-500nm(蓝紫);
不吸收区: 500-600nm (呈绿)
第4章 光合作用 (Photosynthesis)
-
1
第1节 光合作用的研究历史及意义 第2节 能量转换细胞器 — 叶绿体 第3节 光合色素 第4节 光反应 第5节 光合碳同化 第6节 影响光合作用的因素 第7节 提高植物光能利用率的途径
-
2
第1节 光合作用的研究历史及意义
光合作用:绿色植物利用光能把CO2和水合成有机物,
蓝 425~ 490 274
绿 490~ 550 230
黄 550~ 585 212
橙 585~ 640 196
红 640~ 700 181
远红 700~ 740 166
-
红外 >740
85 低
19
光合色素分子对光能的吸收及能量的转变示意图
-
20
基态:能量的最低状态 激发态:高能、不稳定状态
物质吸收光子→原子中的e重新排列→分子从基态跃迁到激发态 对于Chl分子: Chl + hγ= Chl* Chl*处于不同激发态:吸收红光→第一单线态;吸收蓝光→第二 单线态。第二单线态的能量>第一单线态。
相关文档
最新文档