生物化学与分子生物:氨基酸和蛋白质

合集下载

生物化学重点知识

生物化学重点知识

生物化学重点知识生物化学是生物学与化学的交叉领域,研究生物体内的化学反应和生物分子之间的相互作用。

在生物化学的学习过程中,有一些重点知识是必须要掌握的,下面将对一些重点知识进行详细介绍。

一、生物大分子生物大分子是构成生物体的主要分子,包括蛋白质、核酸、多糖和脂质。

其中,蛋白质是生物体内最为重要的大分子之一,具有结构和功能的双重性。

蛋白质的结构由氨基酸组成,氨基酸通过肽键连接而成。

蛋白质的功能多种多样,包括参与代谢反应、传递信号、构建细胞结构等。

另外,核酸是生物体内贮存和传递遗传信息的分子,包括DNA和RNA两类。

DNA是遗传信息的载体,其双螺旋结构能够稳定保存大量的遗传信息。

而RNA主要参与蛋白质的合成过程,包括转录和翻译。

多糖是生物体内的能量储备和结构支持物质,如淀粉、糖原和纤维素等。

多糖的结构复杂多样,具有不同的功能和生物活性。

脂质是生物体内最不溶于水的大分子,包括脂肪酸、甘油和磷脂等。

脂质在细胞膜的构建和代谢调节中起着重要作用。

二、酶和酶促反应酶是生物体内催化化学反应的蛋白质,具有高度的特异性和效率。

酶可以加速生物体内代谢反应的进行,并且在反应结束后不被消耗。

酶的催化活性受到温度、pH值等环境因素的影响。

酶促反应是在酶的催化下进行的生物体内化学反应。

酶促反应遵循米氏动力学,包括亲和力、酶底物复合物和酶活性等步骤。

酶促反应在维持生物体内稳态和平衡中起着不可替代的作用。

三、代谢途径代谢是生物体内所有化学反应的总称,包括合成代谢和分解代谢两个方面。

在代谢中,有一些重要的途径是需要重点掌握的。

糖代谢途径是生物体内最主要的能量来源,包括糖原异生途径和糖酵解途径。

细胞通过这些途径产生ATP能量,供给细胞代谢和功能活动。

脂肪酸代谢途径是细胞内脂质代谢的关键过程,包括脂质合成和脂质分解。

脂肪酸代谢可以提供额外的能量供应,同时也参与胆固醇合成等生物学过程。

氨基酸代谢途径是蛋白质合成和代谢的基础,主要包括氨基酸转氨、氨基酸降解和尿素循环等步骤。

生物化学与分子生物学学习指导与习题集

生物化学与分子生物学学习指导与习题集

生物化学与分子生物学学习指导与习题集11第一篇生物大分子的结构与功能第一章蛋白质的结构与功能氨基酸的结构与性质1.氨基酸的概念:氨基酸(amino acid)是蛋白质分子的基本结构单位。

构成蛋白质分子的氨基酸共有20种,这些氨基酸都是L-构型的α-氨基酸。

2.氨基酸分子的结构通式:5、氨基酸的等电点氨基酸不带电荷时,溶液的pH值称为该氨基酸的等电点,以pI表示。

氨基酸不同,其等电点也不同。

也就是说,等电点是氨基酸的一个特征值。

6、氨基酸的茚三酮反应如果把氨基酸和茚三酮一起煮沸,除脯氨酸和羟脯氨酸显黄色外,其它氨基酸都显深浅不同的紫色。

氨基酸与茚三酮的反应,在生化中是特别重要的,因为它能用来定量测定氨基酸。

肽键:1、肽键: 一个氨基酸的α-羧基与另一个氨基酸的α-氨基以共价键偶联形成肽,其间的化学键称为肽键(peptide bond),也叫酰胺键(-CO-NH-)。

4、肽(peptide)是氨基酸通过肽键相连的化合物。

肽按其组成的氨基酸数目为2个、3个和4个等不同而分别称为二肽、三肽和四肽等,多肽和蛋白质的区别是多肽中氨基酸残基数较蛋白质少,一般少于50个,而蛋白质大多由100个以上氨基酸残基组成,但它们之间在数量上也没有严格的分界线。

蛋白质的分离和纯化2、盐析:在蛋白质溶液中加入大量中性盐,以破坏蛋白质的胶体性质,使蛋白质从溶液中沉淀析出,称为盐析。

常用的中性盐有:硫酸铵、氯化钠、硫酸钠等。

√蛋白质的等电点概念:蛋白质分子所带正、负电荷相等时溶液的pH值称为蛋白质的等电点。

pH 值在等电点以上,蛋白质带负电,在等电点以下,则带正电。

溶液的pH在蛋白质的等电点处蛋白质的溶解度最小。

(Tertiary structure)。

对于一些较小的蛋白质分子,三级结构就是它的完整三维立体结构;而对于大的蛋白质分子,则需要通过三级结构单位的进一步组织才能形成完整分子。

其维系键主要是非共价键(次级键):氢键、疏水键、范德华力、离子键等,也可涉及二硫键。

(完整版)生物化学及分子生物学(人卫第九版)-08蛋白质消化吸收和氨基酸代谢

(完整版)生物化学及分子生物学(人卫第九版)-08蛋白质消化吸收和氨基酸代谢
氮的总平衡:摄入氮量 = 排出氮量(正常成人) 氮的正平衡:摄入氮量 > 排出氮量(儿童、孕妇、恢复期病人等) 氮的负平衡:摄入氮量 < 排出氮量(饥饿、严重烧伤、出血及消耗性疾病患者)
(二)蛋白质的生理需要量
正常成人每日蛋白质的最低生理需要量为30~50g 我国营养学会推荐成人每日蛋白质的需要量为80g
重点难点
掌握 1. 营养必需氨基酸 2. 脱氨基作用及重要的转氨酶 3. 氨在血液中的转运形式及尿素的合成 4. 一碳单位 5. 含硫氨基酸代谢
熟悉 1. 血氨的来源 2. 氨基酸碳链骨架的转换或分解 3. 氨基酸的脱羧基作用 4. 芳香族氨基酸代谢
了解 1. 蛋白质的消化、吸收及蛋白质的营养价值 2. 真核细胞内蛋白质的降解 3. 支链氨基酸代谢
二、营养必需氨基酸决定蛋白质的营养价值
(一)营养必需氨基酸(essential amino acid)
1. 体内需要而不能自身合成,必须由食物提供的氨基酸 2. 9种:亮氨酸、异亮氨酸、苏氨酸、缬氨酸、赖氨酸、甲硫氨酸、苯丙氨酸、
色氨酸、组氨酸 3. 其余11种为营养非必需氨基酸
(二)蛋白质的营养价值(nutrition value)
氨肽酶
二肽酶
氨肽酶
内肽酶
羧肽酶
氨基酸 +
二肽酶
氨基酸
➢蛋白酶原的活化
肠激酶
胰蛋白酶原 胰蛋白酶
糜蛋白酶原
糜蛋白酶 羧肽酶原
弹性蛋白酶原 羧肽酶
弹性蛋白酶
(二)氨基酸和寡肽通过主动转运机制被吸收
1. 吸收部位:主要在小肠
2. 吸收形式:氨基酸、寡肽
3. 吸收机制:主动转运
转运蛋白的类型:
中性氨基酸转运蛋白 酸性氨基酸转运蛋白 碱性氨基酸转运蛋白 亚氨基酸转运蛋白 β-氨基酸转运蛋白 二肽转运蛋白 三肽转运蛋白

生物化学 蛋白质 氨基酸

生物化学 蛋白质 氨基酸


等电点的计算方法
解离方程式 等于其两性离子两边的pK值的算术平均值。


一氨基一羧基的中性AA
碱性AA(二氨基一羧基) 酸性AA(一氨基二羧基)
pI在6.0左右
pI较大 pI较小
多种氨基酸的混合液,若要得到谷氨酸(等 电点为 3.22 )。将溶液 pH 值调至多少最合适? 为什么?
当溶液pH值=等电点时,氨基酸的溶解度最小, 易沉淀。
2 氨基酸的分类

蛋白质中常见的氨基酸
20种氨基酸的名称、结构、符号。 分类
(1) Nonpolar or hydrophobic amino acids 非极性氨基酸
Alanine (Ala, A)
丙氨酸
(1) Nonpolar or hydrophobic amino acids.

蛋白质中不常见的氨基酸
非蛋白质氨基酸

3 氨基酸的理化性质

两性解离和等电点
化学性质
(1)氨基酸的两性解离和等电点

氨基酸是两性电解质。 两性离子。 等电点(pI)。
氨基酸的两性解离
等电点

概念:使氨基酸所带静电荷为零的溶液pH 值即为该氨基酸的等电点(pI)。 当溶液pH值=等电点(pI)时,氨基酸 在电场中既不向阴极移动,也不向阳极移 动,溶解度最小,易沉淀。
考核
理论课 (1-16周) 1 课程论文 2000字以上 2 闭卷考试 【期中考试? 期末考试】 (选择题、填空题、名词解释、判断题、英译汉/汉 译英、问答题与计算题)

实验课 (3-13周,共10个实验) 1 实验报告 2 实验设计+实验报告 (自主实验) 3 笔试

(完整版)生物化学与分子生物学知识总结

(完整版)生物化学与分子生物学知识总结

生物化学与分子生物学知识总结第一章蛋白质的结构与功能1.组成蛋白质的元素主要有C、H、O、N和 S。

2.蛋白质元素组成的特点各种蛋白质的含氮量很接近,平均为16%。

100克样品中蛋白质的含量 (g %)= 每克样品含氮克数× 6.25×1003.组成人体蛋白质的20种氨基酸均属于L- -氨基酸氨基酸4.可根据侧链结构和理化性质进行分类非极性脂肪族氨基酸极性中性氨基酸芳香族氨基酸酸性氨基酸碱性氨基酸5.脯氨酸属于亚氨基酸6.等电点(isoelectric point, pI)在某一pH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性。

此时溶液的pH值称为该氨基酸的等电点。

色氨酸、酪氨酸的最大吸收峰在 280 nm 附近。

氨基酸与茚三酮反应生成蓝紫色化合物7.蛋白质的分子结构包括:一级结构(primary structure)二级结构(secondary structure)三级结构(tertiary structure)四级结构(quaternary structure)1)一级结构定义:蛋白质的一级结构指在蛋白质分子从N-端至C-端的氨基酸排列顺序。

主要的化学键:肽键,有些蛋白质还包括二硫键。

2)二级结构定义:蛋白质分子中某一段肽链的局部空间结构,即该段肽链主链骨架原子的相对空间位置,并不涉及氨基酸残基侧链的构象主要的化学键:氢键⏹蛋白质二级结构包括α-螺旋 (α -helix)β-折叠 (β-pleated sheet)β-转角 (β-turn)无规卷曲 (random coil)3)三级结构定义:整条肽链中全部氨基酸残基的相对空间位置。

即肽链中所有原子在三维空间的排布位置。

主要的化学键:8. 模体(motif)是具有特殊功能的超二级结构,是由二个或三个具有二级结构的肽段,在空间上相互接近,形成一个特殊的空间构象。

9.分子伴侣(chaperon)通过提供一个保护环境从而加速蛋白质折叠成天然构象或形成四级结构。

生物化学-生化知识点_第一章氨基酸与蛋白质

生物化学-生化知识点_第一章氨基酸与蛋白质

第一章氨基酸与蛋白质上册 P1231. 1 氨基酸①①①蛋白质水解最后成为氨基酸混合物酸水解得19种 L-AA,色氨酸破坏。

碱水解得色氨酸,其余氨基酸消旋破坏。

酶水解不消旋破坏,但水解不彻底。

①①①α-氨基酸的一般结构生物体内已发现氨基酸180种,常见氨基酸20种1. 2 氨基酸的分类:常见蛋白质氨基酸,不常见蛋白质氨基酸,非蛋白氨基酸①①①常见蛋白质氨基酸,或称基本氨基酸。

每个氨基酸可用三个字母或单字母简写表示。

按侧链R基不同进行分类。

①1①按R基化学结构分类1.脂肪族氨基酸15个①.中性氨基酸5个甘氨酸 Glycine 氨基乙酸 Gly G 无旋光丙氨酸 Alanine α-氨基丙酸 Ala A缬氨酸 Valine α-氨基-β-甲基丁酸 Val V亮氨酸 Leusine α-氨基-γ-甲基戊酸 Leu L异亮氨酸 Isoleucine α-氨基-β-甲基戊酸 Ile I①.含羟基或硫氨基酸4个丝氨酸 Serine α-氨基-β-羟基丙酸 Ser S苏氨酸 Threonine α-氨基-β-羟基丁酸 Thr T半胱氨酸 Cysteine α-氨基-β-基丙酸 Cys C甲硫氨酸 Methionine α-氨基-γ-甲硫基丁酸 Met M③.酸性氨基酸及其酰胺4个天冬氨酸 Aspartic acid α-氨基丁二酸 Asp D谷氨酸 Glutamic acid α-氨基戊二酸 Glu E天冬酰胺 Asparagine α-氨基丁二酸一酰胺 Asn N谷氨酸胺 Glutamine α-氨基戊二酸一酰胺 Gln Q④. 碱性氨基酸2个赖氨酸 Lysine α,ε-二氨基已酸 Lys K精氨酸 Arginine α-氨基-δ-胍基戊酸 Arg R2.芳香族氨基酸3个苯丙氨酸 Phenylalanine α-氨基-β-苯基丙酸 Phe F酪氨酸 Tyrosine α-氨基-β-对羟苯基丙酸 Tyr Y色氨酸 Tryptophan α-氨基-β-吲哚基丙酸 Trp W3.杂环族氨基酸2个组氨酸 Histidine α-氨基-β-咪唑基丙酸 His H脯氨酸 Proline α-吡咯烷羧酸 Pro P①2①按R基极性性质分类1.非极性R基8个Ala(A) Val(V) Leu(L) Ile(I) Pro(P)Phe(F) Trp(W) Met(M)1。

生物化学习题及答案(氨基酸和蛋白质)

生物化学习题及答案(氨基酸和蛋白质)

生物化学习题(氨基酸和蛋白质)一、名词解释:两性离子:指在同一氨基酸分子上含有正负两种电荷,又称兼性离子或偶极离子必需氨基酸:指人体(和其他哺乳动物)自身不能合成,机体又必需,需要从饮食中获得的氨基酸等电点:指氨基酸的正离子浓度和负离子浓度相等时的环境pH,用符号pI表示。

一级结构:蛋白质多肽链中氨基酸的排列顺序二级结构:蛋白质分子的局部区域内,多肽链按一定方向盘绕和折叠的方式三级结构:蛋白质在二级结构的基础上借助各种次级键卷曲折叠成特定的球状分子结构的构象四级结构:多亚基蛋白质分子中各个具有三级结构的多肽链以适当方式聚合所呈现的三维结构超二级结构:蛋白质分子中相邻的二级结构单位组合在一起形成的有规则的、在空间上能辨认的二级结构组合体盐析:在蛋白质分子溶液中加入一定量的高浓度中性盐(如硫酸铵),使蛋白质溶解度降低并沉淀析出的现象盐溶:在蛋白质溶液中加入少量中性盐使蛋白质溶解度增加的现象蛋白质的变性:蛋白质分子的天然构象遭到破坏导致生物活性丧失的现象;蛋白质在受到光照、热、有机溶剂及一些变性剂的作用时,次级键遭到破坏导致天然构象的破坏,但其一级结构不发生改变蛋白质的复性:在一定条件下,变性的蛋白质分子回复其原有的天然构象并回复生物活性的现象同源蛋白质:来自不同种类生物的序列和功能类似的蛋白质。

如血红蛋白别构效应:某些不涉及蛋白质活性的物质,结合于蛋白质活性部位以外的其它部位(别构部位),引起蛋白质的构象变化,而导致蛋白质活性改变的现象。

肽单位:又称肽基,是肽链主链上的重复结构。

由参与肽键合成的N原子、C原子和它们的四个取代成分:羰基氧原子、酰胺氢原子和两个相邻的α-C原子组成的一个平面单位。

二、填空题:1、天然氨基酸中,甘氨酸(Gly)不含不对称碳原子,故无旋光性。

2、常用于检测氨基酸的颜色反应是茚三酮。

3、通常可用紫外分光光度法测定蛋白质含量,这是因为蛋白质分子中的 Phe 、 Tyr和Trp (三字符表示)三种氨基酸残基有紫外吸收能力。

医学类事业单位考试生物化学与分子生物学含答案

医学类事业单位考试生物化学与分子生物学含答案

生物化学与分子生物学考点1 蛋白质的结构与功能(一)氨基酸氨基酸是组成蛋白质的基本单位,自然界中存在的氨基酸有300多种,但组成蛋白质的只有20种,其中除甘氨酸外,均属L-α-氨基酸。

氨基酸的一般结构式为NH2—CH(R)—COOH。

连在COOH基团上的C称为α-碳原子,不同氨基酸其侧链(R)各异。

1.氨基酸的分类依据氨基酸本身的理化性质及其本身具有的化学结构,对氨基酸进行分类,在考试中主要考查以下几种分类方法。

酸性氨基酸谷氨酸、天冬氨酸碱性氨基酸赖氨酸、组氨酸、精氨酸含硫氨基酸半胱氨酸、胱氨酸、蛋氨酸(甲硫氨酸)必需氨基酸缬氨酸、异亮氨酸、亮氨酸、苯丙氨酸、蛋氨酸(甲硫氨酸)、色氨酸、苏氨酸、赖氨酸一碳单位丝氨酸、组氨酸、色氨酸、甘氨酸2.氨基酸共同的理化性质(1)氨基酸具有两性解离的性质。

(2)含共轭双键的氨基酸具有紫外线吸收性质。

根据氨基酸的吸收光谱,含有共轭双键的色氨酸、酪氨酸的最大吸收峰在280nm波长附近。

(3)氨基酸与茚三铜反应生成蓝紫色化合物。

(二)蛋白质的分子结构蛋白质分子是由许多氨基酸通过肽键相连形成的生物大分子。

蛋白质的分子结构分为一级、二级、三级、四级结构,后三者统称为高级结构或空间构象。

并非所有的蛋白质都有四级结构,由一条肽链组成的蛋白质只有一、二、三级结构,由两条或两条以上肽链组成的蛋白质才有四级结构。

1.一级结构在蛋白质分子中,从N-端至C-端的氨基酸排列顺序称为蛋白质的一级结构。

蛋白质一级结构中的主要化学键是肽键;此外,二硫键也属于一级结构范畴。

2.二级结构蛋白质二级结构是指蛋白质分子中某一段肽链的局部空间结构,也就是该段肽链主链骨架原子的相对空间位置,并不涉及氨基酸残基侧链的构象。

蛋白质二级结构主要包括α-螺旋、β-折叠、β-转角和Ω环。

3.三级结构蛋白质三级结构是指整条肽链中全部氨基酸残基的相对空间位置,也就是整条肽链所有原子在三维空间的排布位置。

蛋白质三级结构的形成和稳定主要靠次级键如疏水键、盐键、氢键和范德华力等。

生物化学知识点范文

生物化学知识点范文

生物化学知识点范文生物化学是研究生命体内各种生物分子及其相互作用的科学。

在生物化学中,我们可以学习到许多重要的知识点。

以下是一些生物化学的知识点介绍。

1.氨基酸:氨基酸是构成蛋白质的基本组成单元。

氨基酸由胺基(NH2)、羧基(COOH)和侧链组成。

人体内有20种常见的氨基酸,其中8种被称为必需氨基酸,意味着我们的身体无法合成它们,只能通过食物摄入。

2.蛋白质:蛋白质是生物体内最重要的大分子,也是组成细胞的主要成分之一、蛋白质在生物体内具有很多功能,如催化反应、结构支持、运输物质等。

3.酶:酶是生物体内的一类特殊蛋白质,能够催化化学反应的进程。

酶可以降低活化能,加速反应速率。

酶催化的反应遵循特定的酶动力学规律,如米氏方程和酶抑制等。

4.代谢与能量:生物体的代谢是指所有化学反应的总和。

分解代谢(有氧呼吸)和合成代谢(光合作用)是生物体维持生命所需要的核心反应。

生物体利用化学能将营养物质转化为能量,并用此能量进行各种生命活动。

5.核酸:核酸是生物体内储存和传递遗传信息的分子。

DNA(脱氧核糖核酸)和RNA(核糖核酸)是两种最重要的核酸。

DNA位于细胞核中,负责存储遗传信息,而RNA则参与基因的转录和翻译过程。

6.代谢途径:生物体的代谢途径包括糖酵解、有氧呼吸和光合作用等。

糖酵解是一种分解代谢途径,将葡萄糖分解为三个碳分子产生能量。

有氧呼吸则是一种氧化代谢途径,将葡萄糖氧化为二氧化碳和水,释放更多的能量。

光合作用则是一种合成代谢途径,将二氧化碳和水转化为有机物和氧气,其中光能被光合色素捕获。

7.脂质:脂质是生物体内重要的能源储存和结构组分之一、常见的脂质包括甘油三酯、磷脂和胆固醇等。

脂质在细胞膜结构、维持细胞功能和提供能量方面起着重要作用。

8.细胞膜:细胞膜是细胞的外表面,由磷脂双层构成。

细胞膜是半透性膜,能够控制物质的进出。

膜上还有许多蛋白质、糖和胆固醇等分子,参与细胞信号传导和识别。

9.遗传密码学:遗传密码学研究基因组中的密码子与氨基酸之间的对应关系。

生物化学与分子生物学第二版(贾弘禔)名词解释与课后题总结

生物化学与分子生物学第二版(贾弘禔)名词解释与课后题总结

可利用氨基酸理化特性对其进行定性定量分析 2 氨基酸 氨基酸具有两性离子特征,氨基酸具有特征性的滴定曲线 氨基酸的氨基和羧基可发生多种化学反应,包括肽反应和形成 schiff 碱。 利用其理化性质进行定性定量反应的方法 氨基酸与茚三酮试剂发生呈色反应 氨基酸与 2,4-二硝基氟苯反应生成二硝基苯基氨基酸 氨基酸与亚硝酸反应生成氮气 含共轭双键的氨基酸具有紫外吸收性质 薄层层析是鉴定氨基酸及其修饰的经典方法 此外,含共轭双键的氨基酸具有紫外吸收性质,色氨酸、酪氨酸的最大吸收峰在 280 nm 附 近。 核苷酸:核苷酸的紫外吸收特征可用于其定性定量分析 嘌呤碱和嘧啶碱共轭双键最大吸收 峰值 260nm 核苷酸的解离特征可用于其分离纯化 核苷酸分子在特定溶液中各基团的解离常数(pK)和等电点(pI)均为特征性常数,这些特 性赋予核苷酸以层析和电泳行为的差异,因此被广泛用于核苷酸的分离和纯化。例如,薄层 层析、离子交换层析、毛细管电泳等技术都可用于分离和纯化核苷酸。
除了 mRNAtRNArRNA 外,细胞内存在的许多其他种类的小分子 RNA ,统称为非信使小 RNA(small non-messenger RNAs, snmRNAs)。 简答 1 双螺旋结构 DNA 是反向平行、右手螺旋的双链结构 两条多聚核苷酸链相互平行但走向相反,围绕着同一个螺旋轴形成右手双螺旋结构 由脱氧核糖和磷酸基团构成的亲水性骨架(backbone)位于双螺旋结构的外侧,而疏水的碱 基位于内侧。 直径为 2 nm,螺距为 3.4 nm 从外观上看, DNA 双螺旋结构的表面存在一个大沟 (major groove) 和一个小沟 (minor groove) DNA 双链之间具有碱基互补关系 碱基垂直螺旋轴居双螺旋内側,与对側碱基形成氢键配对(互补配对形式: ) 相邻碱基平面距离 0.34nm,螺旋一圈螺距 3.4nm,一圈 10 对碱基 疏水作用力和氢键维系 DNA 双螺旋结构的稳定 相邻的两个碱基对平面在旋进过程中发生相互重叠(overlapping) ,由此产生了疏水性的碱 基堆积力(base stacking interaction) 。 这种碱基堆积力和互补碱基对的氢键共同维系着 DNA 双螺旋结构的稳定,并且碱基堆积力 在双螺旋结构的稳定中起着更为重要的作用。 科学依据:1952 年,奥地利裔美国生物化学家查伽夫(E.chargaff,1905— )测定了 DNA 中 4 种碱基的含量,发现其中腺膘呤与胸腺嘧啶的数量相等,鸟膘呤与胞嘧啶的数量相等。 这使沃森、 克里克立即想到 4 种碱基之间存在着两两对应的关系, 形成了腺膘呤与胸腺嘧啶 配对、鸟膘呤与胞嘧啶配对的概念。 1953 年 2 月,沃森、克里克通过维尔金斯看到了富兰 克琳在 1951 年 11 月拍摄的一张十分漂亮的 DNA 晶体 X 射线衍射照片,这一下激发了他们 的灵感。他们不仅确认了 DNA 一定是螺旋结构,而且分析得出了螺旋参数。他们采用了富 兰克琳和威尔金斯的判断,并加以补充:磷酸根在螺旋的外侧构成两条多核苷酸链的骨架, 方向相反;碱基在螺旋内侧,两两对应 X-射线衍射图 2 tRNA 结构特点:P55 3 嘌呤和嘧啶含有共轭双键,在紫外波段有吸收。不同的原因是一般 DNA 是双链,RNA 是 单链。 第四章 糖与复合糖 名解 单糖是不能被分解成更小分子的糖,如葡萄糖(glucose) 、果糖(fructose)和核糖(ribose)等 由 2~10 个单糖以葡糖苷键连接而成的糖称为寡糖 由 10 个以上单糖通过糖苷键连接而成的线性或分支聚合物称为多糖 糖蛋白聚糖结构的不均一性称为糖形(glycoform) 聚糖中的 N-乙酰葡糖胺与多肽链中天冬酰胺残基的酰胺氮以共价键连接,形成 N-连接糖蛋 白 N-连接糖蛋白中 Asn-X-Ser/Thr 三个氨基酸残基组成的序列段称为糖基化位点。 聚糖中的 N-乙酰半乳糖胺与多肽链的丝/苏氨酸残基的羟基以共价键相连而形成 O-连接糖 蛋白。 糖胺聚糖链共价结合的蛋白质称为核心蛋白。 简答 1 聚糖中的 N-乙酰葡糖胺与多肽链中天冬酰胺残基的酰胺氮以共价键连接,形成 N-连 接糖蛋白。N-连接聚糖结构有高甘露糖型、复杂型和杂合型 N-连接聚糖是在内质网上以长 萜醇作为聚糖载体,先合成含 14 个糖基的聚糖链,然后转移至肽链的糖基化位点上,进一 步在内质网和高尔基体进行加工而成。 每一步加工都由特异的糖基转移酶催化完成,糖基必须活化为 UDP 或 UDP 的衍生物。 2 丝/苏氨酸残基的羟基,O-连接聚糖常由 N-乙酰半乳糖胺与半乳糖构成核心二糖,核心二

氨基酸与蛋白质的PI名词解释

氨基酸与蛋白质的PI名词解释

氨基酸与蛋白质的PI名词解释在生物化学中,氨基酸和蛋白质是两个关键的概念。

氨基酸是构成蛋白质的基本组成单位,而蛋白质则是生命体内许多重要功能的关键机制。

在研究这些概念时,PI(等电点)是一个重要的指标,用于描述氨基酸和蛋白质的电离性质。

本文将介绍氨基酸和蛋白质的基本概念,并解释PI的含义和应用。

氨基酸是构成蛋白质的基本单元。

它是一种有机化合物,包含一个氨基基团(NH2)和一个羧基基团(COOH),以及一个侧链。

氨基酸分为20种常见的氨基酸,它们的侧链结构不同,使得每种氨基酸都有独特的性质和功能。

在细胞内,氨基酸通过肽键连接起来,形成多肽链,从而构成蛋白质的基本结构。

蛋白质是生物体内多种功能的重要机制之一。

它们参与细胞结构的建立和维持,调节代谢途径,催化生化反应,传递信号以及执行许多其他重要功能。

蛋白质可以作为酶、激素、抗体、结构蛋白、转运蛋白等。

不同的蛋白质通过其特定序列和3D结构来实现其功能。

氨基酸序列的组合和空间排列方式决定了蛋白质的特性和功能。

PI(等电点)是描述氨基酸和蛋白质电离性质的一个重要参数。

它定义为溶液中氨基酸或蛋白质的pH值,使得其带电量为零。

具体而言,PI是使蛋白质带正电荷的极端酸性溶液的pH值,或者使其带负电荷的极端碱性溶液的pH值。

对于氨基酸来说,它有两个离子化的基团,即氨基基团和羧基基团。

这两个基团的电离在不同的pH条件下会发生变化。

在酸性条件下,氨基基团会带正电荷,而羧基基团会带负电荷。

在碱性条件下,这种情况将发生变化。

当溶液的pH与氨基酸的PI相等时,它的正电荷和负电荷对等,氨基酸带零电荷。

蛋白质的PI是由其所包含的氨基酸的PI确定的。

当蛋白质中的氨基酸带正电荷时,蛋白质会带正电荷,并且在pH高于其PI的条件下带负电荷。

相反,当氨基酸带负电荷时,蛋白质会带负电荷,并且在pH低于其PI的条件下带正电荷。

根据蛋白质的PI,其在不同pH条件下的电离状态可以被预测和控制。

了解蛋白质的PI对于许多生物化学和生物学实验至关重要。

有机化学 第二十一章 氨基酸、蛋白质和核酸

有机化学 第二十一章  氨基酸、蛋白质和核酸

氨基酸等电点可由相应氨基酸盐酸盐的pKa值求 出。如丙氨酸盐酸盐,可看作一个二元酸,具有两
个平衡常数K1和K2
用碱调节丙氨酸盐酸盐水溶液pH值,当加入 0.5mol碱时,平衡中氨基酸正离子4的浓度与偶极 离子5的相同,[4] =[5]此时溶液pH值等于pK1,实 际上此溶液中只有50%的偶极离子5。当加入1.5mol 碱时,溶液中氨基酸偶极离子5的浓度等于负离子6, [5]=[6]此时溶液的pH值等于pK2 ,溶液中也含50% 偶极离子5。所以使丙氨酸完全以偶极离子5存在时, pH值应为pK1和pK2的平均值,这个pH值即为丙氨酸 的等电点(pI),pI=(pK1 + pK2)/2。根据表21-2数据, 丙氨酸盐酸盐的pK1为2. 3、pK2为9. 7,可求出丙 氨酸等电点为6. 0:
三、氨基酸的来源与合成 氨基酸不仅是组成蛋白质的结构单元,而且它
们本身也是人体生长的重要营养物质,具有特殊的 生理作用,因此氨基酸的生产和应用早就得到人们 的重视。
生产氨基酸主要有以下四条途径: 1.蛋白质的水解
由蛋白质水解制备氨基酸是从1820年开始的, 这是一个最古老的方法。味精早期就是由小麦蛋白 质—面筋水解得到。胱氨酸、半咣氨酸是由头发水 解制得的。
天然氨基酸,除甘氨酸外, α碳原子都有手 性,且都是L构型。氨基酸的构型是与乳酸相比而 确定的(也就是从甘油醛导出来的)。例如,与L -乳酸相应的L -丙氨酸的构型是:
正像糖类化合物一样,氨基酸的构型习惯于用 D,L标记法。如果用R/S法标记,那么天然氨基酸大 多属于S构型。但也有R构型的,如L-半胱氨酸为R构 型。
胺与羧酸反应很容易形成铵盐,当氨基和羧基存在 于同一分子时,可在分子内发生质子迁移而形成内盐 (zwitterion):

生物化学 第三章 氨基酸

生物化学 第三章 氨基酸
COOH H3N
+
C H R
-H pK1' +H
+
+
COO H3N
+
-
C H R
-H pK2' +H
+
+
COO R
-
H2N C H
PH 1 净电荷 +1 正离子
7 0 两性离子 等电点PI 等电点
10 -1 负离子
( ) 与 亚 硝 酸 反 应
四. 氨基酸的化学反应
1.α-氨基参与的反应 氨基参与的反应
异亮氨酸 Ileucine 脯氨酸 Proline
甲硫氨酸 Methionine 半胱氨酸 Cysteine
氨基酸的结构
芳香族氨基酸
苯丙氨酸 Phenylalanine
H 2N CH 2 O CH C OH
氨基酸的结构
芳香族氨基酸
苯丙氨酸 Phenylalanine 酪氨酸 Tyrosine
H 2N CH CH
天冬氨酸 Aspartic acid
酸性氨基酸
O H2N CH C CH2 C OH O OH
氨基酸的结构
天冬氨酸 Aspartic acid 谷氨酸 Glutamic acid
H2N
酸性氨基酸
O CH C CH2 CH2 C OH O OH
氨基酸的结构
丝氨酸 Serine
含羟基氨基酸 含羟基氨基酸
一. 氨基酸—蛋白质的构件分子 蛋白质的水解作用提供了关于 蛋白质的水解——蛋白质的水解作用提供了关于
α-氨基酸的一般结构— 氨基酸的一般结构—
20种氨基酸除脯氨酸外,其他均具如下结构通式。 20种氨基酸除脯氨酸外,其他均具如下结构通式。 种氨基酸除脯氨酸外

生物化学与分子生物学蛋白质生物合成

生物化学与分子生物学蛋白质生物合成
第一节 蛋白质生物合成体系
蛋白质生物合成体系
基本原料:20种编码氨基酸 模板:mRNA 适配器:tRNA 装配机:核蛋白体 主要酶和蛋白质因子:氨基酰-tRNA合成酶、转肽酶、起始因子、延长因子、释放因子等 能源物质:ATP、GTP 无机离子:Mg2+、 K+
一、mRNA是蛋白质合成的信息模板
已发现少数例外,如动物细胞的线粒体、植物细胞的叶绿体。
二、氨基酰-tRNA通过其反密码子与mRNA中对应的密码子互补结合
tRNA的作用
运载氨基酸:氨基酸各由其特异的tRNA携带,一种氨基酸可有几种对应的tRNA,氨基酸结合在tRNA 3ˊ-CCA的位置,结合需要ATP供能; 充当“适配器”:每种tRNA的反密码子决定了所携带的氨基酸能准确地在mRNA上对号入座。
有转位酶活性,促进mRNA-肽酰-tRNA由A位移至P位;促进tRNA卸载与释放
释放因子
RF-1
特异识别UAA、UAG,诱导转肽酶转变为酯酶
RF-2
特异识别UAA、UGA,诱导转肽酶转变为酯酶
RF-3
具有GTP酶活性,介导RF-1及RF-2与核糖体的相互作用
参与真核生物翻译的各种蛋白质因子及其生物学功能
eIF-4B
结合mRNA,促进mRNA扫描定位起始AUG
eIF-4E
eIF-4F复合物成分,识别结合mRNA 的5帽结构
eIF-4G
eIF-4F复合物成分,结合eIF-4E、eIF-3和PAB
eIF-5
促进各种起始因子从小亚基解离
eIF-6
促进大、小亚基分离
延长因子
eIF1-α
促进氨基酰-tRNA进入A位,结合分解GTP,相当于EF-Tu
反应过程

生物化学与分子生物学 名词解释

生物化学与分子生物学 名词解释

第二章蛋白质1、GSH即谷胱甘肽,是由谷氨酸,半胱氨酸和甘氨酸通过肽键缩合而成的三肽。

2、蛋白质变性(protein denaturation)蛋白质在某些物理和化学因素作用下其特定的空间构象被改变,从而导致其理化性质的改变和生物活性的丧失,这种现象称为蛋白质变性。

3、α-螺旋(α-helix)蛋白质中常见的一种二级结构,肽链主链绕假想的中心轴盘绕成螺旋状,一般都是右手螺旋结构,螺旋是靠链内氢键维持的。

每个氨基酸残基(第n个)的羰基氧与多肽链C端方向的第3个残基(第n+3个)的酰胺氮形成氢键。

在典型的右手α-螺旋结构中,螺距为0.54nm,每一圈含有3.6个氨基酸残基,每个残基沿着螺旋的长轴上升0.15nm。

4、β-折叠片层(β-sheet)是蛋白质中的常见的二级结构,是由伸展的多肽链组成的。

折叠片的构象是通过一个肽键的羰基氧和位于同一个肽链或相邻肽链的另一个酰胺氢之间形成的氢键维持的。

氢键几乎都垂直伸展的肽链,这些肽链可以是平行排列(走向都是由N到C方向);或者是反平行排列(肽链反向排列)。

5、β-转角(β-turn)也是多肽链中常见的二级结构,连接蛋白质分子中的二级结构(α-螺旋和β-折叠),使肽链走向改变的一种非重复多肽区,一般含有2~16个氨基酸残基。

含有5个氨基酸残基以上的转角又常称之环(loops)。

常见的转角含有4个氨基酸残基,有两种类型。

转角I的特点是:第1个氨基酸残基羰基氧与第4个残基的酰胺氮之间形成氢键;转角II的第3个残基往往是甘氨酸。

这两种转角中的第2个残基大都是脯氨酸。

6、功能蛋白质组(functional proteome)指的是特定时间、特定环境和实验各种下,基因组活跃表达的蛋白质。

7、肽键(peptide bond )在蛋白质分子中,一分子氨基酸的α-羧基与另一分子氨基酸的α-氨基脱水缩合后而形成的酰胺键称为肽键。

8、基序/模体(motif)模体属于蛋白质的超二级结构,由2个或2个以上具有二级结构的的肽段,在空间上相互接近,形成一个特殊的空间构象,并发挥专一的功能。

生物化学知识点总整理

生物化学知识点总整理

生物化学知识点总整理生物化学是研究生命体内分子结构、组成及其相互作用的化学学科。

它涵盖了许多重要的生物分子和反应过程,对于理解生命活动的分子基础和生物学功能至关重要。

下面是生物化学的一些重要知识点的总整理。

1.生物大分子:生物体内的大分子包括蛋白质、核酸、多糖和脂质等。

它们是生命的基础,参与了生物体内许多重要的结构和功能。

2.蛋白质:蛋白质是生物体内最重要的大分子之一、它们由氨基酸链组成,具有三级结构:一级结构是氨基酸的线性排列顺序,二级结构是通过氢键和范德华力形成的局部空间结构,三级结构是整个蛋白质折叠成特定的形状。

3.核酸:核酸是生物体内编码和传递遗传信息的分子。

DNA和RNA是两种最重要的核酸。

DNA通过碱基配对和双螺旋结构来存储和传递遗传信息,RNA则参与了蛋白质的合成过程中。

4.酶:酶是生物体内催化化学反应的蛋白质,可以加速反应速率。

酶与底物结合形成复合物,通过降低活化能来促进反应的进行。

5.代谢途径:生物体内的代谢活动通过一系列的化学反应途径进行。

这些途径包括糖酵解、柠檬酸循环、呼吸链和光合作用等。

代谢途径提供能量和合成生物分子所需的原料。

7.柠檬酸循环:柠檬酸循环是将葡萄糖代谢产生的乙酰辅酶A进一步氧化,产生更多的ATP、NADH和FADH28.呼吸链:呼吸链是将NADH和FADH2的电子逐步传递给氧气,生成水,并产生ATP的过程。

它包括细胞色素和膜蛋白等。

9.光合作用:光合作用是植物细胞中通过光能将水和二氧化碳转化为葡萄糖和氧气的过程。

光合作用产生的葡萄糖可以作为能量和碳源。

10.脂质:脂质是不溶于水的有机分子,包括脂肪酸、甘油和脂类等。

脂质在生物体内具有重要的结构和功能,如构成细胞膜、提供能量储存等。

11.生物膜:生物膜是由脂质和蛋白质共同组成的结构,包围着细胞和细胞器。

生物膜具有选择性渗透性,参与了许多生物活动,如物质输运、信号转导等。

12.分子遗传学:分子遗传学研究基因的组成和结构,以及基因的表达调控。

蛋白质—蛋白质与氨基酸的代谢(食品生物化学课件)

蛋白质—蛋白质与氨基酸的代谢(食品生物化学课件)
信号肽识别体:识别信号肽的是一种核蛋白质体,称为信 号识别体(signal recognition particle, SRP)。SRP有两个功 能域(domain),一个识别信号肽,一个干扰进入的氨酰tRNA和肽酰移位酶的反应,以终止多肽链的延伸作用。
➢ 新生肽在信号肽的导引下定向送往细胞的各个部 分,以行使各自的生物功能,在这种定向输送过 程中,信号肽被信号肽酶水解。
1.消化
➢ 蛋白质的消化开始于胃(胃蛋白酶),主要在小肠中进行消 化(糜蛋白酶原和胰蛋白酶原,羧肽酶原A和B等,由胰腺 分泌) 。
➢ 酶作用具有专一性,消化道蛋白酶作用同样具有专一性 , 特定的蛋白酶分解特定的肽键。
2.吸收
消化道内的物质透过粘膜进入血液或淋巴的过程称为吸收。 食物蛋白质消化后形成的游离氨基酸和小肽通过肠粘膜的 刷状缘细胞吸收后,其小肽多在肠细胞中被水解,氨基酸 则通过门静脉被输送到肝。肝脏是氨基酸进行各种代谢变 化的重要器官。
2、蛋白质合成后的修饰
当合成蛋白质时,20种不同的胺基酸会合并成为蛋白 质。胺基酸的翻译后修饰会附在蛋白质其他的生物化 学官能团(如醋酸盐、磷酸盐、不同的脂类及碳水化 合物)、改变胺基酸的化学性质,或是造成结构的改 变(如建立双硫键),来扩阔蛋白质的功能。
方式: 1.酶可以从蛋白质的N末 端移除氨基酸,或从中间 将肽链剪开; 2.磷酸化。
酶类
端),生成氨基酸
酸+肽
二肽水解酶类
二肽基肽水解 酶类
水解二肽
作用于多肽链的氨基端,生成二 肽
二肽+H2O→2氨基酸 二肽基多肽+H2O→ 二肽+多肽
肽基二肽水解 作用于多肽链的羧基末端(C-末
酶类
端),生成二肽
多肽基二肽+H2O→ 多肽+二肽

《生物化学与分子生物学》(人卫第八版)-第一章蛋白质的结构与功能归纳总结

《生物化学与分子生物学》(人卫第八版)-第一章蛋白质的结构与功能归纳总结

第一章蛋白质·蛋白质(protein)就是由许多氨基酸(amino acids)通过肽键(prpide bond)相连形成得高分子含氮化合物。

·具有复杂空间结构得蛋白质不仅就是生物体得重要结构物质之一,而且承担着各种生物学功能,其动态功能包括:化学催化反应、免疫反应、血液凝固、物质代谢调控、基因表达调控与肌收缩等;就其结构功能而言,蛋白质提供结缔组织与骨得基质、形成组织形态等。

·显而易见,普遍存在于生物界得蛋白质就是生物体得重要组成成分与生命活动得基本物质基础,也就是生物体中含量最丰富得生物大分子(biomacromolecule)·蛋白质就是生物体重要组成成分。

分布广:所有器官、组织都含有蛋白质;细胞得各个部分都含有蛋白质含量高:蛋白质就是细胞内最丰富得有机分子,占人体干重得45%,某些组织含量更高,例如:脾、肺及横纹肌等高达80%。

·蛋白质具有重要得生物学功能。

1)作为生物催化剂(酶)2)代谢调节作用3)免疫保护作用4)物质得转运与存储5)运动与支持作用6)参与细胞间信息传递·氧化功能第一节蛋白质得分子组成(The Molecular Structure of Protein)1、组成元素:C(50%-55%)、H(6%-7%)、O(19%-24%)、N(13%-19%)、S(0-4%)。

有些但被指含少量磷、硒或金属元素铁、铜、锌、锰、钴、钼,个别还含碘。

2、各蛋白质含氮量接近,平均为16%。

100g样品中蛋白质得含量(g%)=每克样品含氮克数*6、25*100,即每克样品含氮克数除以16%。

凯氏定氮法:在有催化剂得条件下,用浓硫酸消化样品将有机氮都转化为无机铵盐,然后在碱性条件下将铵盐转化为氨,随水蒸气蒸馏出来并为过量得硼酸液吸收,再以标准盐酸滴定,就可计算出样品中得氮量。

此法就是经典得蛋白质定量方法。

一、氨基酸——组成蛋白质得基本单位存在于自然界得氨基酸有300余种,但组成人体蛋白质得氨基酸仅有20种,且均属L-氨基酸(甘氨酸除外),手性,具有旋光性(甘氨酸除外,甘氨酸R基团为-H)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

20种氨基酸的发现年代表
天冬酰氨 甘氨酸 亮氨酸 1806 1820 1820 Vauquelin Braconnot Braconnot 天门冬芽 明胶 羊毛、肌肉
酪氨酸
丝氨酸 谷氨酸 天冬氨酸 苯丙氨酸 丙氨酸 赖氨酸 精氨酸 组氨酸
1849
1865 1866 1868 1881 1881 1889 1895 1896
2.二级结构:多肽链借助氢键形成的有规则的
局部结构,如α螺旋、β折叠等。 3.三级结构:球状蛋白质在二级结构基础上, 借助次级键形成的相对独立的完整结构。 4.四级结构:具有三级结构的组成单位(亚基)
之间的聚合方式。
(四)蛋白质功能的多样性
蛋白质序列的多样性(P160)决定了其功能的 多样性。 如:20种氨基酸形成的二十肽(每种氨基酸
Bopp
Cramer Ritthausen Ritthausen Schultze Weyl Drechsel Hedin Kossel,Hedin
奶酪
蚕丝 面筋 蚕豆 羽扇豆芽 丝心蛋白 珊瑚 牛角 奶酪
胱氨酸
缬氨酸 脯氨酸 色氨酸 异亮氨酸 甲硫氨酸 苏氨酸
1899
1901 1901 1901 1904 1922 1935
(三)氨基酸的等电点 1.等电点的定义 2.等电点的计算 对于R基无解离基团的氨基酸: pI=(pK1+pK2)/2 对于R基有解离基团的氨基酸:pI等于等电形式两侧的pK值 之和的一半,以等电形式为中心,另一个pK值为第二级解离, 可以忽略不计。 2.19 4.25 9.67 如 Glu: Glu+ Glu+GluGlu2若 pH=pI=3.22, 根据 pH = pKa+log{[质子受体]/[质子供体]} 3.22=9.67+log{[Glu2-]/[Glu-]} 得 [Glu2-]/[Glu-]=3.5╳10-7 Lys,Arg和His的pI等于两个大的pK值之和的一半;Asp, Glu,Tyr和Cys的pI等于两个小的pK值之和的一半。
氨基酸的分离过程
用氨基酸自动分析仪分析 氨基酸混合物的洗脱曲线 (阳离子交换剂)。
(六)气液层析
(七)高效液相层析
HPLC分析氨基酸混合物的洗脱曲线
基本要求
1.掌握氨基酸的一般结构和氨基酸的分 类; 2.掌握氨基酸的酸碱性质和等电点的计 算方法; 3.熟悉氨基酸的常见化学反应的应用价 值; 4.熟悉分离和分析氨基酸的常用方法。
氨基酸的1H NMR谱
六、氨基酸混合物的分析分离
(一)分配层析法的一般原理
逆流分溶符 合二项式的 展开式,但 对于纸层析 和柱层析来 说,有关的 计算无实际 意义。 分配系数= 物质在流动 相中的总量/ 物质在固定 相中的总量
(二)分配柱层析
可以同检测器、 记录仪、馏分收 集器、输液泵构 成层析系统。
(7)调节功能 某些激素、一切激素受体和许多其他调节因子都是蛋白质。 (8)感觉功能 生物体对信息的识别与传递过程也离不开蛋白质。例如, 感受味道需要味觉蛋白,视觉信息的传递要有视紫红质参与。 视杆细胞中的视紫红质,只需1个光子即可被激发,产生视觉。 (9)遗传调控功能 遗传信息的储存和表达都与蛋白质有关。DNA在在染色体中 是缠绕在蛋白质(组蛋白)上的。有些蛋白质,如阻遏蛋白, 与特定基因的表达有关。β-半乳糖苷酶基因的表达受到一种 阻遏蛋白的抑制,当需要合成β-半乳糖苷酶时经过去阻遏作 用才能表达。 (10)其他功能 某些生物能合成有毒的蛋白质,用以攻击或自卫。白喉毒 素可抑制真核生物的蛋白质合成。
(三)纸层析
Rf主要与R基 的极性有关, 溶剂的pH可 影响R基的极 性,氨基酸 与滤纸的吸 附作用也影 响Rf。
(四) 薄层层析
速度快,硅胶等支 持物可以使用较强 烈的显色方法。
(五)离子 交换层析
离子交换 树脂的结 构如图所 示,功能 基团种类 较多。
氨基酸的离子交换分离原理
若pI−pH > 0,两性离子带净正电荷,若pI−pH < 0,两性离 子带净负电荷,差值越大,所带的净电荷越多。
(四)氨基酸的甲醛滴定
滴定终点由12 左右降到9左 右,可以用酚 酞为指示剂, 用标准氢氧化 钠滴定。
四、氨基酸的化学反应
(一)α-氨基参加的反应 1.与亚硝酸的反应 测量氮气的体积可计算氨基酸的含量。 2.与酰化试剂的反应 可用于氨基的保护。 3.烃基化反应 可用于测定多肽链的氮末端氨基酸。 4.形成西佛碱的反应 为转氨基反应的中间步骤。 5.脱氨基反应 为氨基酸分解反应的重要中间步骤。
注 意 结 构 特 点
4-羟脯氨酸 5-羟赖氨酸 3-甲基组氨酸 甲状腺素
ε -N-甲基赖氨酸
ε-N,N,N-三 甲基赖氨酸
焦谷氨酸 γ-羧基谷氨酸 α-氨基己二酸
磷酸丝氨酸
磷酸苏氨酸 磷酸酪丝氨酸
(二) 不常见的蛋白质 氨基酸
N-甲基精氨酸
N-乙 酰赖 氨酸
(三) 非蛋白质氨基酸
叠氮丝氨酸
这一性质可用 于蛋白质的定 量测定。
3.氨基酸的核磁共振(NMR)
在外加磁场的作用下,原子核的自旋方向达到一致,可以 和一定频率的外加磁场共振而形成吸收峰,同一种原子核在分 子中的位置不同,因其外围的电子云对核的屏蔽作用引起的吸 收峰位置移动(化学位移)也不同,由吸收峰的位置可以推断 原子处于哪一个基团,在1H NMR谱中,当相邻基团上有n个质子 时,该基团的质子吸收峰将分裂成n+1个峰。 c b a b c a
(4)贮存功能 某些蛋白质的作用是贮存氨基酸作为生物体的养料和胚胎 或幼儿生长发育的原料。此类蛋白质包括蛋类中的卵清蛋白、 奶类中的酪蛋白和小麦种子中的麦醇溶蛋白等。肝脏中的铁蛋 白可将血液中多余的铁储存起来,供缺铁时使用。 (5)运动功能 肌肉中的肌球蛋白和肌动蛋白是运动系统的必要成分,它 们构象的改变引起肌肉的收缩,带动机体运动。细菌中的鞭毛 蛋白有类似的作用,它的收缩引起鞭毛的摆动,从而使细菌在 水中游动。 (6)防御功能 高等动物的免疫反应是机体的一种防御机能,它主要也是 通过蛋白质(抗体)来实现的。凝血与纤溶系统的蛋白因子、 溶菌酶、干扰素等,也担负着防御和保护功能。
O-重氮乙酰 丝氨酸
肌氨酸β-丙氨基γ-氨基丁酸甜菜碱高丝氨酸
羊毛硫氨酸
高半胱氨酸
苯丝氨酸
氯胺苯醇(氯霉素)
环丝氨酸
瓜氨基 组胺 5-羟色氨 青霉胺
肾上腺素
鸟氨基
三、氨基酸的酸碱化学
(一)氨基酸的兼性离子形式 氨基酸在晶体状态和水溶液中均以兼性离子形式存在。因此,氨基酸有 很高的熔点。 (二)氨基酸的解离
蛋白质的分类如表4-1,4-2,4-3所示(p158)。
(二)蛋白质的形状和大小
按蛋白质的形状和溶解度可将蛋白质分为: 纤维状蛋白质、球状蛋白质和膜蛋白质。
蛋白质的相对分子质量差别很大。
(肌联蛋白)
(三)蛋白质构象和蛋白质结构的组织层次 蛋白质的结构复杂,可分为不同的结构层次: 1.一级结构:多肽链的氨基酸序列。
第3章 氨基酸
一、氨基酸是蛋白质的构件分子
(一)蛋白质的水解 1.酸水解:常用6mol/L HCl回流20h,水 解完全,不引起消旋,但色氨酸破坏,羟基 氨基酸部分水解,酰胺键水解。 2. 碱水解:水解完全,会引起消旋,但 色氨酸不破坏。 3. 酶水解:水解不完全,不引起消旋, 色氨酸不破坏,主要用于蛋白质的部分水解。
只用1次)可以形成的异构体为:
20!=2 1018 又如:相对分子质量为34000的蛋白质含12种 氨基酸,假定在肽链的任一位置, 12种氨基酸出 现的概率相等,则34000/120=283
12283 = 10305
1.催化:大多数酶是蛋白质。 2.调节:如激素和反式作用因子。 3.转运:如血红蛋白、血清蛋白、载酯蛋白、 膜转运蛋白等。 4.贮存:如种子蛋白和卵清蛋白。 5.运动:如肌肉、微管蛋白等。 6.结构成分:如角蛋白、胶原蛋白等。 7.支架作用:如锚定蛋白、连接蛋白等。 8.防御和进攻:如抗体、毒蛋白等。 9.特殊功能:如甜蛋白、胶质蛋白等。
3.按蛋白质的生物学功能分类
(1)催化功能 生物体内的酶都是由蛋白质构成的,没有酶,生物体内 的各种化学反应就无法正常进行。 (2)结构功能 蛋白质可以作为生物体的结构成分。高等动物的胶原蛋 白是主要的细胞外结构蛋白,占蛋白总量的1/4;细胞膜、线 粒体、叶绿体和内质网等膜系统都是由蛋白质与脂类组成的; 动物的毛发和指甲都是由角蛋白构成的。 (3)运输功能 脊椎动物的血红蛋白和无脊椎动物的血蓝蛋白起着运输 氧气的作用;血液中的载脂蛋白可运输脂肪,转铁蛋白可转 运铁;一些脂溶性激素的运输也需要蛋白,如甲状腺素要与 甲状腺素结合球蛋白结合才能在血液中运输。
Morner
Fischer Fischer Hopkins Erhlich Mueller McCoy et al
牛角
奶酪 奶酪 奶酪 纤维蛋白 奶酪 奶酪
(二)α-氨基酸的一般 结构
氨基在α-位,为L-构型.
二、氨基酸的分类
(一) 常见的蛋白质氨基酸
1.常见的蛋白质氨基酸共二十种。 2.按化学结构分为脂肪族、芳香族和杂环族三类。这种 分类方法对于研究氨基酸的合成与分解有重要意义。 3.按R-基的极性分为非极性R-基氨基酸、不带电荷的极 性R-基氨基酸、带正电荷的极性R-基氨基酸、带负电荷的极 性R-基氨基酸四类。这种分类方法对于研究氨基酸在蛋白质 空间结构中的作用,和对于氨基酸的分离纯化均有重要意义。 4.也可将氨基酸分为非极性脂肪族R-基氨基酸、非极性 芳香族R-基氨基酸、不带电荷的极性R-基氨基酸、带正电荷 的极性R-基氨基酸、带负电荷的极性R-基氨基酸五类。 要熟悉氨基酸的结构特点、分类和符号。
(二)α -羧基参加的反应
1.成盐和成酯反应 可用于羧基的保护。 2.成酰氯反应 可用于羧基的活化。 3.脱羧基反应 是生成胺类的重要反应。 4.叠氮反应 可用于羧基的活化。
相关文档
最新文档