回转器的设计

回转器的设计
回转器的设计

回转器的设计

狄萃 0804210103

摘要:在微电子器件中,电容易于集成,而电感难于集成,解决大电感的集成便成了一个问题。由于回转器具有把一个端口的电压(或电流)“回转”成另一端口电流(或电压)的能力,因此可联想到回转器可以将电容“回转”成电感,因此就有了此次的研究——关于回转

器的设计。我首先是从电流反向型负阻抗变换器开始设计的,接着引用已研究出的负阻抗变

换器来设计回转器。其中采用的核心器件是我们所学过的运算放大器。通过设计出的线路,进行仿真验证线路,以及试验台上的操作。最终根据所得数据,进行处理分析,得到回转器

的回转参数,并实验将电容“回转”成电感。这在工程上是具有重大意义的。

关键词:运算放大器负阻抗变换器回转器 T参数回转参数等效电感

The Design Of Gyrator

Dicui 0804210103

Abstract: In microelectronic devices, the capacitor is easy to integrate, while the integrated inductor is difficult to address the large inductance of integration has become a problem. As the gyrator has put a port voltage (or current) "turn" into another port current (or voltage) capability, so you can think of can be gyrator capacitance "turn" into the inductor, so there will be a current of Research - on the gyrator design. I first reverse from the current type negative impedance converter start designing, and went on to quote a negative impedance converter has been developed to design the rotary device. One device used in the core of what we have learned of the op amp. Through the design of the circuit to circuit simulation, as well as test stand operations. Ultimately in the light of the data processing analysis. The rotary device to be rotation parameters, and experiment will capacitance "turn" into the inductor. This project is of great significance. Keyword: Operational Amplifier;Gyro-conductance; Gyrator; T parameter; Input impedance;Equivalent inductor

引言:该课题是对回转器的研究与设计,最终将得出回转参数,并通过将电容回

转成模拟电感来验证设计的成果。回转器是电路理论中具有实用价值的器件,在

自动控制、仪器仪表、信号变换以及传感器信号采集与处理等电路中实现大时间

常数的一种新方法。黄锦安所编的第二版《电路》教材中给出了符号,对其端口

处伏安关系进行了理论推导,为了使回转器能在教学环节中理论联系实际,我们

进行了回转器的设计,随着实验设施的更新、扩充,我们对回转器进行了仿真分析,同时根据回转器能使容性负载和感性负载互为逆变的原理,通过运算放大器

的回馈作用,使其在自动控制等方面得到了广泛的应用。

一: 实验原理

1 负阻抗变换器

++

-

T=

U

2

电流反向负转换器能转换电流的方向并保持电压的极性不变。 用运算放大器运算放大器构成的电流反向型负阻抗变换器:

图(一)

运算放大器输出端电压 ,再根据理想运算放大器,同相输入端“+”和反相输入端“-”之间的“虚短”特性,可得 ,即 ;根据“虚断”特性,可得 , 。带入上式可得 ,根据负载Z 1上的端电压和电流的参考方向,有 , 因此从输入端U 1看入的输入阻抗 。

因此,U 2端的负载阻抗Z 1通过负阻抗变换器,在U 1端可等效为负阻抗(-Z 1),即从输入端的特性而言,上述端口相当于一个负阻抗元件。例如,当负载为电阻R ,则从输入端看入,相当于一个负电阻(-R )。其电路伏安特性如图:

图(二)

Z 11u 0130240u u i R u i R =-=-p n u u =12u u =13i i =24i i =12i i =.

.

2

21

U I Z =-..

121..1

2

in U U Z Z I I

===-

2 回转器

图(三)

或 r:回转电阻 g:回转电导,且 r = 1/g

图(四)

当时:

即:通过回转器“回转”后,其等效电感为L=r^2·C。

用负阻抗变换器实现回转器:

图(五)

根据负阻抗变换器的特性,3-3’端口的输入阻抗的并联值,即:

4--4’端口的阻抗与R的串联值,即:

1--1’端口的阻抗与R的并联值,即:

回转电阻r=R.

二:实验仪器和设备

数字示波器1台功率函数发生器1台

直流稳压电源1台可调电阻箱 1只

可调电容箱 1只数字万用表 1只

直流毫安表1只交流毫伏表 1只

运算放大器 2只

三:实验内容及步骤

1 回转电导的测量

(1)实验线路:

图(六)

正弦激励源,电压Us=3V f=1kHz 输出端接可调电阻箱RL 下图中R取100?虚线部分:

图(七)

图(八)

(2)实验数据:

g=0.0099998s

测量相对误差:go=0.01

E =(|g-go|)/go*100%=(0.01-0.0099998)/0.01*100%=0.002%

从测试记录可知, g’和g’’的值都非常接近0.01,以至g也非常接近0.01(即:1/R),所以可以认为该电路图设计的是比较成功的,与理论所算的电导值是符合的。

实验的思考:

从数据中可以看出随着可变电阻的增大,U1是减小的,U2是增大的,I1增大,I2减小,但是我们也可以看到,对于第三组数据,即:RL=300?时,数据有些变化,U1、I2均突然变小,但是最后不影响我们讨论的g,这不知道是偶然还是必然。另外也可以发现,当电阻值取的越大时,电压和电流值都将变化很小了。

2回转器模拟电感的测量

实验基本电路仍上图,仅负载电阻 R 改用进电容箱,在电路输入端口串联一采样电阻Ro=100?,以用示波器测试电路的输入电流.示波器( 上线) 按正弦激励输入端,以测试其输入电压波形,(下线) 接采样电阻 Ro 两端,以测

试其输入电流波形,其等效电路如图 5所示.改变电源频率,和负载电容C.可从示波器上读出电路输入端口①①上的电压与电流闻的相位差,并算出模拟电感的理论值与测试值( 亦可用交流电桥测量) 。

图:

表:

从表中可以看出,当频率 f =200Hz,c=1.000uF时,模拟等效电感的感抗XL=2*3.14Fl=1260>>100,即:XL>>RO,故从电路输入端口看,电路近于纯电感,其端口电压与电流间的相位差为90度。

示波器上所得的图为:

图(九)

从上图可以看出:回转器入端电超前于电流9 0 度,电路呈纯电感性质。因此,通过回转器仿真分析可以得出,回转器将电容回转成了电感。

四结论

电阻经负阻抗转换器后,电阻成为负阻;容性负载经负阻抗转换后变成感性负载。

通过对原理的研究,进行线路的设计,以及参数的设计,再将其到仿真软件上进行仿真,可以得出所设计的电路图是基本满足要求的,也可以得出结论我们所需要测量出的回转参数g,以及它就是R的倒数这样的结论。

通过对将负载电容成功“回转”成一个模拟纯电感,我们可以得出结论:回转器能回转阻抗的特性。而此将广泛用于大规模集成电路,因为在一个极小的单晶片上制造尺寸小,且无损耗的电感元件非常困难,但电容元件却易于制作,利用回转器将电容元件回转为电感元件,即能实现上述要求。

致谢在做此次实验研究过程中,除了查阅了大量资料,还有跟一些做同样研究的同学讨论外,还要感谢我们的电路老师——黄锦安,他在课堂上给我们讲解了回转器,介绍了一些基本的知识,同时也勾起了我的兴趣,所以才有了此次的研究。同时还要感谢我们的电路实验老师——孙建红,我们在集体上机仿真时,讨论了一些困惑的问题,为我在课外继续研究省了很多麻烦,少走了一些弯路。当然还有一些同学,总之,向这些人表示感谢。

参考文献

1 黄锦安主编电路

2 江泽佳主编.电路原理( 下册 ) 北京:高等教育出版社.

3 黄修志主编.线性电路分析.北京高等教育出版社 .

4 华中理工大学电工基础教研室编.电路实验指导书.北京高等教育出版社.

5 邱关源主编.电路( 上册) .北京:人民教育出版社.

6 徐伟,张晓光. 电路分析和模拟技术【M】.香港:现代知识出版社.

回转器

回转器 实验目的 实验原理 实验仪器 实验步骤 实验报告要求 实验现象 实验结果分析 实验相关知识 实验标准报告 实验目的 ? 学习和了解回转器的特性。 ? 研究如何用运算放大器构成回转器,学习回转器的测试方法。 ? 学习用回转器和电容,来替代电感的方法。 实验原理 ? 回转器是理想回转器的简称。它是一种新型的双 口元件,其符号如图5.16.1所示。其特性表现为它能 将一端口上的电压(或电流)?°回转?±为另一端口上 的电流(或电压)。端口量之间的关系为: 或 上式中,回转系数g 具有电导的量纲,称为回转 电导,α=1/g 称为回转比。 ? 回转器可以由晶体管或运算放大器等有源器件 构成。图5.16.2所示电路是一种用两个负阻抗变换器 12 21 i gu i gu =??=-? 1221 u i u i αα=-??=?

来实现的回转器电路。 其端口特性: 根据回转器定义式,可得 g =1/R 。 图2.16.2 回转器电路图 ? 在输入为正弦电压,负载阻抗是一个电容C 时, 输入阻抗为: 因此,在回转器输出端接入一个电容元件,从输入 端看入时可等效为一电感元件,等效电感L =C /g 2。 所以,回转器也是一个阻抗变换器,它可以使容性 负载变换为感性负载。 12 2111i u R i u R ? =??? ?=-??L in 2 2 2 111L j C Z j L g Z g g j C ωωω= == =

? 如图5.16.4(a )所示,用模拟电感器可以组成 一个RLC 并联谐振电路,图5.16.4(b )是其等效电 路。 图5.16.4(a ) RLC 并联谐振电路图 图5.16.4(b ) RLC 并联谐振电路等效电路图 图5.16.4(a ) 图5.16.4(b ) 此并联谐振电路的幅频特性为: 2 C U L U ()U ω= =

机械设计上机设计实验报告

机械设计上机设计 班级: 姓名: 学号:

目录 1.数表和线图的程序化处理 (1) 1.1数表的程序化 (1) 1.1.1查表检索法 (1) 1.1.2数表解析法 (12) 1.2线图的程序化 (15) 1.3有关数据处理 (16) 2.典型零部件的程序设计 (18) 2.1 V带传动的程序设计 (18) 2.2 齿轮传动的程序设计 (19) 2.3 滚动轴承的程序设计 (21) 3.课后习题计算 (22)

一、表和线图的程序化处理 1.1数表程序化 数表程序化有两种方法:一是查表检索法;二是数表解析法1.1.1 查表检索法 1)一元数表的存取 表1-1 普通V带型号及有关参数 运行界面:

程序代码: Private Sub Command1_Click() Dim s As Integer Dim q1 As Single, dm As Single, kb As Single s = Val(Txt_s.Text) Select Case s Case 0 q1 = 0.02: dm = 20: kb = 0.00006 Case 1 q1 = 0.06: dm = 50: kb = 0.00039 Case 2 q1 = 0.1: dm = 75: kb = 0.00103 Case 4 q1 = 0.17: dm = 125: kb = 0.00265 Case 5 q1 = 0.3: dm = 200: kb = 0.0075 Case 6 q1 = 0.62: dm = 355: kb = 0.0266 Case 7 q1 = 0.9: dm = 500: kb = 0.0498 End Select Txt_q1.Text = Str(q1) Txt_dmin.Text = Str(dm) Txt_kb.Text = Str(kb) End Sub Private Sub Command2_Click() End End Sub 2)二元数表的存取 表1-2齿轮传动工作状况系数K

回转器电路设计实验

南京航空航天大学 实验报告 实验课程:电路实验与实践 实验名称:回转器电路设计 班级:0312302 学号: 姓名: 实验日期:2013-12-19

一、实验目的 1.加深对回转器特性的认识,并对实际应用有所了解; 2.研究如何运用运算放大器构成回转器,并学习回转器的测试方法。 二、实验原理 回转器是理想回转器的简称,它能将一端口上的电压(电流)“回转”成 另一端口上的电流(电压)。端口之间的关系为: I1=gU2 或u1=-ri2 I2=-gU1 或u2=ri1 式中:r、g 为回转系数,r为回转电阻,g 为回转电导。 三、实验步骤 1. 测回转电导g: 回转器输入端接信号发生器,调得US=1.5V(有效值),输出端接负载电 阻RL=200Ω,分别测U1,U2,I1,求g。 2. 记录不同频率下U1、I1的相位关系: 回转器输出端接电容,C分别取0.1μF、0.22μF,用示波器观察f 分别为500Hz、1000HZ时U1和I1的相位关系。 3. 测由模拟电感组成的并联谐振电路的Uc~f幅频特性: 取C1=0.1μF经回转器成为模拟电感,另取C=0.22μF,则f0=1.073kHz, 符合要求。 信号源输出电压有效值保持为 1.5V 不变,改变频率(200Hz~2000Hz),测Uc 的值,同时观察US和UC的相位关系。(串联一取样电阻,阻值1k Ω) 四、仿真实验电路图及数据 1.测量回转电导g,仿真结果如下图所示 实验数据:U1=250mV U2=244.99mV I1=U1/1000 g=I1/U2=U1/(1000*U2)=1.00 X 10-3s

旋转变压器原理及应用

旋轉變壓器原理及應用 上海贏雙電機有限公司 ⒈概述 ⒈⒈旋轉變壓器的發展 旋轉變壓器用於運動伺服控制系統中,作為角度位置的傳感和測量用。早期的旋轉變壓器用於計算解答裝置中,作為模擬電腦中的主要組成部分之一。其輸出,是隨轉子轉角作某種函數變化的電氣信號,通常是正弦、余弦、線性等。這些函數是最常見的,也是容易實現的。在對繞組做專門設計時,也可產生某些特殊函數的電氣輸出。但這樣的函數只用於特殊的場合,不是通用的。60年代起,旋轉變壓器逐漸用於伺服系統,作為角度信號的產生和檢測元件。三線的三相的自整角機,早於四線的兩相旋轉變壓器應用於系統中。所以作為角度信號傳輸的旋轉變壓器,有時被稱作四線自整角機。隨著電子技術和數字計算技術的發展,數字式電腦早已代替了模擬式電腦。所以實際上,旋轉變壓器目前主要是用於角度位置伺服控制系統中。由於兩相的旋轉變壓器比自整角機更容易提高精度,所以旋轉變壓器應用的更廣泛。特別是,在高精度的雙通道、雙速系統中,廣泛應用的多極電氣元件,原來採用的是多極自整角機,現在基本上都是採用多極旋轉變壓器。 旋轉變壓器是目前國內的專業名稱,簡稱“旋變”。俄文裏稱作“ВращающийсяТрансформатор” ,詞義就是“旋轉變壓器”。英文名字叫“resolver”,根據詞義,有人把它稱作為“解算器”或“分解器”。 作為角度位置傳感元件,常用的有這樣幾種:光學編碼器、磁性編碼器和旋轉變壓器。由於製作和精度的緣故,磁性編碼器沒有其他兩種普及。光學編碼器的輸出信號是脈衝,由於是天然的數字量,數據處理比較方便,因而得到了很好的應用。早期的旋轉變壓器,由於信號處理電路比較複雜,價格比較貴的原因,應用受到了限制。因為旋轉變壓器具有無可比擬的可靠性,以及具有足夠高的精度,在許多場合有著不可代替的地位,特別是在軍事以及航太、航空、航海等方面。 隨著電子工業的發展,電子元器件集成化程度的提高,元器件的價格大大下降;另外,信號處理技術的進步,旋轉變壓器的信號處理電路變得簡單、可靠,價格也大大下降。而且,又出現了軟體解碼的信號處理,使得信號處理問題變得更加靈活、方便。這樣,旋轉變壓器的應用得到了更大的發展,其優點得到了更大的體現。和光學編碼器相比,旋轉變壓器有這樣幾點

计数器的设计实验报告

计数器的设计实验报告 篇一:计数器实验报告 实验4 计数器及其应用 一、实验目的 1、学习用集成触发器构成计数器的方法 2、掌握中规模集成计数器的使用及功能测试方法二、实验原理 计数器是一个用以实现计数功能的时序部件,它不仅可用来计脉冲数,还常用作数字系统的定时、分频和执行数字运算以及其它特定的逻辑功能。 计数器种类很多。按构成计数器中的各触发器是否使用一个时钟脉冲源来分,有同步计数器和异步计数器。根据计数制的不同,分为二进制计数器,十进制计数器和任意进制计数器。根据计数的增减趋势,又分为加法、减法和可逆计数器。还有可预置数和可编程序功能计数器等等。目前,无论是TTL还是

CMOS集成电路,都有品种较齐全的中规模集成计数器。使用者只要借助于器件手册提供的功能表和工作波形图以及引出端的排列,就能正确地运用这些器件。 1、中规模十进制计数器 CC40192是同步十进制可逆计数器,具有双时钟输入,并具有清除和置数等功能,其引脚排列及逻辑符号如图5-9-1所示。 图5- 9-1 CC40192引脚排列及逻辑符号 图中LD—置数端CPU—加计数端CPD —减计数端CO—非同步进位输出端BO—非同步借位输出端 D0、D1、D2、D3 —计数器输入端 Q0、Q1、Q2、Q3 —数据输出端CR—清除端 CC40192的功能如表5-9-1,说明如下:表5-9-1 当清除端CR为高电平“1”时,计数

器直接清零;CR置低电平则执行其它功能。当CR为低电平,置数端LD也为低电平时,数据直接从置数端D0、D1、D2、D3 置入计数器。 当CR为低电平,LD为高电平时,执行计数功能。执行加计数时,减计数端CPD 接高电平,计数脉冲由CPU 输入;在计数脉冲上升沿进行8421 码十进制加法计数。执行减计数时,加计数端CPU接高电平,计数脉冲由减计数端CPD 输入,表5-9-2为8421 码十进制加、减计数器的状态转换表。加法计数表5-9- 减计数 2、计数器的级联使用 一个十进制计数器只能表示0~9十个数,为了扩大计数器范围,常用多个十进制计数器级联使用。 同步计数器往往设有进位(或借位)输出端,故可选用其进位(或借位)输出信号驱动下一级计数器。 图5-9-2是由CC40192利用进位

角度传感器应用电路设计

磁阻式传感器KMZ41的特点: 内部包含有两个有磁阻构成的、位置成正交的、独立的电桥(Wheatstone Bridge)。其内部结构如下图所示: 将KMZ41置于有X轴、Y轴构成的平面上,当旋转磁场强度变化时,KMZ41就会产生两路正弦输出的信号,两信号的相位差就代表芯片轴向与磁场方向的夹角a,输出信号波形如下图所示: 图1 图2 图1为KMZ41产生的两路正弦输出信号;图2为芯片轴向与磁场方向的夹角。UZZ9001的内部结构与工作原理: UZZ9001的芯片内部包括A/D转换器1和A/D转换器2、滤波器、算法逻辑、SPI接口、时钟振荡器、;逻辑控制及复位等。UZZ9001Y与KMZ41连接,能够将磁阻式传感器KMZ41输出的两个有相位差的正弦信号转换成数字信号输出,与微控制器配套构成一个角度测量系统。 *

角度传感器部分设计: 方案一 由UZZ9000和KMZ41构成的角度检测电路: UZZ9000为线性电压输出式角度传感器调理器电路,输出电压与被测角度信号成正比;测量角度的范围是0~180°,且在0~100°范围内;测量误差小于±0.45°分辨力达0.1°;测量范围和输出零点均可调节;电源电压范围为+4.5~+5.5V;电源电流为10mA;工作温度范围是-40~+150℃。 由UZZ9000和KMZ41构成的电压输出式角度检测电路如图所示。改变R2和R3的比值,可以调节传感器1的偏移量;改变R4和R5的阻值,可以调节传感器2的偏移量;改变R6和R7的比值,可以调节零点偏移;改变R8和R9的比值;可以调节测量角度范围。电阻R2~R9可以采用电位器代替。电路输出电压送至数字电压表或者微控制器系统,即可显示出被测角度值。该电路可广泛用于发动机凸轮/曲轴速度及位置检测、节流阀控制、转向操作控制、汽车中的ABS系统等领域。 注:1.设置角度范围。在UZZ9000的引脚端13加上不同的外部电压可以选择0~30到0~180共16个不同的角度范围。

回转器电路设计(完整版,包括pspice仿真电路以及实验数据)

南京航空航天大学电路实验报告 回转器电路设计 姓名:李根根 学号:031220720 指导老师:王芸

目录 一、实验目的 (2) 二、实验仪器 (2) 三、实验原理 (2) 四、实验要求 (3) 五、用pspice软件进行电路仿真并分析 (5) 六、实验内容 (9) 七、实验心得 (11) 八、附件(Uc – f 图) (12)

一、实验目的 1.加深对回转器特性的认识,并对其实际应用有所了解。 2.研究如何用运算放大器构成回转器,并学习回转器的测试方法。 二、实验仪器 1.双踪示波器 2.函数信号发生器 3.直流稳压电源 4.数字万用表 5.电阻箱 6.电容箱 7.面包板 8.装有pspice软件的PC一台 三、实验原理 1.回转器是理想回转器的简称。它是一种新型、线性非互易的双端口元件,其电路符号如图所示。其特性表现为它能够将一端口上的电压(或者电流)“回转”成另一端口上的电流(或者电压)。端口变量之间的关系为 I1 = gu2 u1 = -ri2 I2 = gu1 u2 = ri1

式子中,r,g称为回转系数,r称为回转电阻,g称为回转电导。 2.两个负阻抗变换器实现回转器 图中回转电导为: 四、实验要求 先利用pspice软件进行电路仿真,(提示:仿真时做瞬态分析,信号源用Vsin ,做频率分析时,信号源用VAC)然后在实验室完成硬件测试: 1.用运算放大器构成回转器电路(电路构成见实验教材p216图9-24,其中电阻R的标称值为1000Ω),测量回转器的回转电导。 2.回转器的应用——与电容组合构成模拟电感。

3.用电容模拟电感器,组成一个并联谐振电路,并测出谐振频率以及绘制其Uc~f幅频特性曲线。 具体要求: 1.回转器输入端接信号发生器,调得Us=1.5V(有效值),输出端接负载电阻RL=200Ω,分别测出U1、U2及I1,求出回转电导g。 试回答改变负载电阻以及频率的大小对回转电导有何影响? 2.回转器输出端接电容,C分别取0.1μF和0.22μF,用示波器观察频率为500Hz、1000Hz 时U1和I1的相位关系,解释模拟电感是如何实现的。 要求画出测试U1和I1的相位关系的接线图,并用坐标纸分别画出两个不同C值时的U1和I1波形,记录其相位关系。说明模拟电感的实现与频率的大小有何关系。 3.用C1回转后的模拟电感作并联谐振电路,谐振频率f0取1000Hz左右,确定C和C1的大小,信号源输出电压保持Us=1.5V(有效值)不变,改变频率(200Hz~2000Hz)测量Uc的值,同时观察us和uc的相位关系。(要求串联一取样电阻1kΩ) 预习要求: 1.画出设计任务中完整的电路接线图,明确I1的测量方法,建议取样电阻取1kΩ。2.电容不要取大于1μF的电解电容,以免误差大。 报告要求: 1.提交一份电路仿真实验报告。 2.现场整理测试数据和图表,与仿真结果比较,给出比较详细的分析和说明。

旋转变压器原理及其在自动控制中的应用

旋转变压器原理及其在自动控制中的应用.txt婚姻是键盘,太多秩序和规则;爱情是鼠标,一点就通。男人自比主机,内存最重要;女人好似显示器,一切都看得出来。旋转变压器原理及其在自动控制中的应用 摘要:介绍旋转变压器(简称旋变)分类、结构特点、工作原理和解码方法,以及在各行各业中的应用,还有与其相关的工业设备(SMARTCAM)的应用特点。 关键词:旋转变压器,SMARTCODER,SMARTCAM 旋转变压器 简称旋变是一种输出电压随转子转角变化的信号元件。当励磁绕组以一定频率的交流电压励磁时,输出绕组的电压幅值与转子转角成正弦、余弦函数关系,或保持某一比例关系,或在一定转角范围内与转角成线性关系。它主要用于坐标变换、三角运算和角度数据传输,也可以作为两相移相器用在角度--数字转换装置中。 按输出电压与转子转角间的函数关系,主要分三大类旋转变压器: 1.正--余弦旋转变压器----其输出电压与转子转角的函数关系成正弦或余弦函数关系。 2.线性旋转变压器----其输出电压与转子转角成线性函数关系。线性旋转变压器 按转子结构又分成隐极式和凸极式两种。 3.比例式旋转变压器----其输出电压与转角成比例关系。 结构说明 由于我公司只销售日本多摩川公司的正余弦旋转变压器,所以在此介绍的旋转变压器皆为正余弦型的。 旋变由转子和定子绕组构成,并且两者相互独立,初级和次极线圈都绕在定子上,转子由两组相差90度线圈组成,采用无刷设计,如图1所示。 转子绕组定子绕组 图1 图2是旋转变压器电气示意图。 ER1-R2 励磁电压

Ve ES2-S4 图2 旋变的输入输出电压之间的具体函数关系如下所示: 设转子转动角度为θ,初级线圈电压(即励磁电压): ER1-R2=E*Sin2πft f:励磁频率, E:信号幅度 那么输出电压ES1-S3=K*E*Sin2πft*Cosθ; ES2-S4=K*E*Sin2πft*Sinθ K:传输比,θ:转子偏离原点的角度 令θ=ωt,即转子做匀速运动,那么其输出信号的函数曲线可表示为图3所示, 图中信号频率为f,即励磁信号频率,最大幅度为E,包络信号为Sinωt和Cosωt,解码器就是通过检测这两组输出信号获取旋变位置信息的。 不难看出,励磁频率越高,旋变解码精度也就越高,而励磁电压幅度则对解码没有很明显的影响。只需达到一定的电压数值即可, 一般来讲3V~120%额定电压。 (旋变转子旋转角度) 电气角 图3 解码 日本多摩川公司推出了自己的多款解码芯片,其原理都基本相同,如图4所示,解码芯片原理框图中如果图中Vsr=0, 那么θm=θrd. 即可解码出转子转角。 乘法器 SIN COS D/A θrd 相敏解 调器 积分器 压控振 荡器 VSR=kE1sinωt*sin(θm-θrd) 1相励磁,两相出力

传感器应用电路设计.

传感器应用电路设计 电子温度计 学校:贵州航天职业技术学院 班级:2011级应用电子技术 指导老师: 姓名: 组员:

摘要 传感器(英文名称:transducer/sensor)是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。 本文将介绍一种基于单片机控制的数字温度计。在件方面介绍单片机温度控制系统的设计,对硬件原理图做简洁的描述。系统程序主要包括主程序、读出温度子程序、温度转换命令子程序、计算温度子程序、显示数据刷新子程序。软硬件分别调试完成以后,将程序下载入单片机中,电路板接上电源,电源指示灯亮,按下开关按钮,数码管显示当前温度。由于采用了智能温度传感器DS18B20,所以本文所介绍的数字温度计与传统的温度计相比它的转换速率极快,进行读、写操作非常简便。它具有数字化输出,可测量远距离的点温度。系统具有微型化、微功耗、测量精度高、功能强大等特点,加之DS18B20内部的差错检验,所以它的抗干扰能力强,性能可靠,结构简单。 随着科技的不断发展,现代社会对各种信息参数的准确度和精确度的要求都有了几何级的增长,而如何准确而又迅速的获得这些参数就需要受制于现代信息基础的发展水平。在三大信息信息采集(即传感器技术)、信息传输(通信技术)和信息处理(计算机技术)中,传感器属于信息技术的前沿尖端产品,尤其是温度传感器技术,在我国各领域已经引用的非常广泛,可以说是渗透到社会的每一个领域,人民的生活与环境的温度息息相关,在工业生产过程中需要实时测量温度,在农业生产中也离不开温度的测量,因此研究温度的测量方法和装置具有重要的意义。 测量温度的关键是温度传感器,温度传感器的发展经历了三个发展阶段:①传统的分立式温度传感器②模拟集成温度传感器③智能集成温度传感器。 目前的智能温度传感器(亦称数字温度传器)是在20世纪90年代中期问世的,它是微电子技术、计算机技术和自动测试技术(ATE)的结晶,特点是能输出温度数据及相关的温度控制量,适配各种微控制器(MCU)。社会的发展使人们对

旋转变压器分类及接口电路

摘要:本文简要介绍编码器、旋转变压器应用特点和接口方法,其中重点介绍产品通信协议和硬件接口电路以及专用的接收芯片AU5561应用方法。 编码器发展历史 早期的编码器主要是旋转变压器,旋转变压器IP值高,能在一些比较恶劣的环境条件下工作,虽然因为对电磁干扰敏感以及解码复杂等缺点而逐渐退出,但是时至今日,仍然有其特有的价值,比如作为混合动力汽车的速度反馈,几乎是不可代替的,此外在环境恶劣的钢铁行业、水利水电行业,旋转变压器因为其防护等级高同样获得了广泛的应用。随着半导体技术的发展,后来便有霍尔传感器和光电编码器,霍尔传感器精度不高但价格便宜,而且不能耐高温,只适合用在一些低端场合,光电编码器正是由于克服了前面两种编码器的缺点而产生,它精度高,抗干扰能力强,接口简单使用方便因而获得了最广泛的应用。 编码器的生产厂家很多,这里以多摩川的产品为例进行介绍。 下面以旋转变压器、增量式编码器、绝对式编码器为例逐一进行介绍。 旋转变压器 简称旋变是一种输出电压随转子转角变化的信号元件。当励磁绕组以一定频率的交流电压励磁时,输出绕组的电压幅值与转子转角成正余弦函数关系,或保持某一比例关系,或在一定转角范围内与转角成线性关系。 按励磁方式分,多摩川旋转变压器分BRT和BRX两种,BRT是单相励磁两相输出;BRX是双相励磁单相输出。用户往往选择BRT型的旋变,因为它易于解码。 旋转变压器解码 图4旋转变压器电气示意图。 旋变的输入输出电压之间的具体函数关系如下所示: 设转子转动角度为θ,初级线圈电压(即励磁电压):ER1-R2=E*Sin2πft f:励磁频率,E:信号幅度 那么输出电压ES1-S3=K*E*Sin2πft*Cosθ; ES2-S4=K*E*Sin2πft*Sinθ K:传输比, θ:转子偏离原点的角度 令θ=ωt,即转子做匀速运动,那么其输出信号的函数曲线可表示为图5所示, 图中信号频率为f,即励磁信号频率,最大幅度为E,包络信号为Sinωt和Cosωt,解码器就是通过检测这两组输出信号获取旋变位置信息的。 不难看出,励磁频率越高,旋变解码精度也就越高,而励磁电压幅度则对解码没有很明显的影响。只需达到一定的电压数值即可,一般来讲3V~1.2倍额定电压都可满足解码需求。 多摩川为自己的旋变开发了专门的解码芯片AU6802N1,并且艾而特公司有现成的解码板可供使用,解码板支持10KHZ励磁频率,0.5的传输比,可以同时提供增量式和绝对式信号输出,增量式输出

实验报告的设计和填写

实验报告的设计和填写 实验报告的设计能够从以下几方面来做:先考虑用物理方法,然后考虑化学方法, 先简单,后难,也能够物理和化学方法共同结合使用。 看颜色:例如氯化铁,氯化铜,氯化钠三种溶液就能够根据溶液颜色的不同来做。 闻气味:例如酒精,白醋,盐水三种不同的液体就能够根据物质气味的不同实行设计。 看溶解性:三种白色的粉末碳酸钙,氯化钠,硫酸铜就能够根据物质溶于水后的不同现象来做。 二.化学方法:任选试剂:(1)有盐酸,氢氧化钠溶液,水三种无色的液体就能够根据物质的酸碱性不同用石蕊试液或者测量PH就能够检验出来,请完成下题。 (2)两种碱一种酸能够考虑加入碳酸钠就能够一步到位。 请设计实验方案:任选一种试剂鉴别出氢氧化钙,氢氧化钠,稀盐酸三种无色的液体

2.实验室有几瓶失去标签的液体,分别是硫酸铜溶液,氢氧化钠溶液,氯化镁溶液和水,不用其它试剂,

三.有时也能够考虑物理和化学方法相结合,一般先考虑用物理方法,在考虑用化学方法。 现需要鉴别三包失去标签的白色固体粉末,可能是碳酸钙,碳酸钠和硫酸钠,现在要鉴别它们,请设计方 练习:1.实验室中有失去标签的四瓶无色的溶液:氯化镁,氯化钠,盐酸,氢氧化钠,现实验桌上只有一 2.某化学小组的同学围绕澄清的石灰水与碳酸钠溶液反应后的溶液中的溶质成分展开如下探究活动。(1)完成澄清石灰水与碳酸钠反应的化学方程式:。 (2)请设计实验,探究反应后的溶液中的溶质成分。 提出假设:假设1:有氢氧化钠和碳酸钠;假设2:有氢氧化钠和氢氧化钙;假设3: 。 某同学取少量溶液于试管中,加入过量的稀盐酸,发现无气泡产生。说明假设是不成立的。

粮仓智能传感器设计

用于粮仓领域的智能温度传感器的设计 摘要: 近年来随着计算机在社会领域的渗透, 单片机的应用正在不断地走向深入, 同时带动传统控制检测日新月益更新。在实时检测和自动控制的单片机应用系统中,单片机往往是作为一个核心部件来使用,仅单片机方面知识是不够的,还应 根据具体硬件结构,以及针对具体应用对象特点的软件结合,以作完善。 系统以AT89C51 单片机为控制核心,利用新型一线制温度传感器DS18B20 测量温度值,实现粮仓环境温度的检测和报警。本文给出了由AT89C51 单片机和 DS18B20 构成的单总线温度测量系统的硬件电路及软件流程图。该系统具有测点多、精度高、速度快、稳定性好、报警及时等特点,也可应用于其它相关的温度控制系统,通用性较强。 关键词:一线总线;DS18B20;AT89C51;数字温度传感器 Abstract:The system for the control of the core is AT89C51,the temperature sensors DS18B20 is used to measure temperature and this system can realize ambient temperature measurement and alarm. This article introduces the hardware circuit which the software flow chart constitutes by AT89C51 monolithic integrated circuit and DS18B20. This system has many measuring point, high-precision, wide range of temperature monitoring, good stability and alarms timely, it may also be applied in other related temperature control system and the versatility is strong. Keywords:1-Wire TM;DS18B20;AT89C51;Digit Temperature Densor

负阻抗变换器和回转器的设计

负阻抗变换器和回转器的设计 摘要 本文简要介绍了负阻抗变换器(NIC )和回转器的原理,通过实验研究NIC 的性能,并应用NIC 性能作为负内阻电源研究其输出特性,还将这负电阻应用到R LC 串联电路中, 从中观察到除过阻尼、临界阻尼、负阻尼外的无阻尼等幅振荡和总电阻小于零的负阻尼发散震荡;并且利用负阻抗变换器实现回转器,进而利用回转器将电容回转成模拟纯电感,还利用模拟的电感组成RLC 并联谐振电路。 关键字 负阻抗变换器 运算放大器 二端口网络 回转器 回转电导 模拟电感 并联谐振 1.负阻抗变换器的原理 负转换器是一种二端口网络,通常,把一端口处的U 1和I 1称为输入电压和输入电流,而把另一端口’处的U 2和-I 2称为输出电压和输出电流。U 1、I 1和U 2、I 2的指定参考方向如下图中所示。根据输入电压和电流与输出电压和电流的相互关系,负阻抗变换器可分为电流反向型(INIC)和电压反向型(VNIC)两种, 电路图分别如下图的(a )(b )所示: 图中U 1和I 1称为输入电压和输入电流, U 2和-I 2称为输出电压和输出电流。U 1、I 1和U 2、I 2的指定参考方向如图1-1、1-2中所示。根据输入电压和电流与输出电压和电流的相互关系,负阻抗变换器可分为电流反向型(INIC)和电压反向型(VNIC)两种,对于INIC ,有U 1 =U 2 ;I 1=( 1K -)(2I -)式中K 1为正的实常数,称为电流增益。由上式可见,输出电压与输入电压相同,但实际输出电流-I 2不仅大小与输入电流I 1不同(为I 1的1/ K 1倍)而且方向也相反。换言之,当输入电流的实际方向与它的参考方向一致时,输出电流的实际方向与它的参考方向

半导体传感器应用电路设计

东北石油大学 课程设计 2012年6 月25

任务书 课程传感器课程设计 题目半导体传感器应用电路设计 专业测控技术与仪器姓名学号 主要内容: 利用温度传感器和热电偶设计制作一个温度测量系统。参考利用半导体温度传感器AD590和单片机技术设计制作一个显示室温的数字温度计的设计提示与分析。进一步了解有关温度传感器的工作原理,制定设计方案,确定温度传感器的型号等参数,掌握温度的检测方法。 基本要求: 1、详细了解所选用的温度传感器的工作原理,工作特性等 2、设计合理的信号调理电路,并列出制作该装置的元器件。 主要参考资料: [1]刘爱华,满宝元.传感器原理与应用技术[M].北京:人民邮电出版社,2006.45-48. [2]王雪文,张志勇.传感器原理及应用[M].北京:航空大学出版社,2004.27-34. [3]张福学.现代实用传感器电路[M].北京:中国计量出版社,1997.16-24. [4]缪家鼎,徐文娟,牟同升.光电技术[M].杭州:浙江大学出版社,1987.22-27. 完成期限2012.6.25—2012.6.29 指导教师 专业负责人 2012年6 月25 日

摘要 传感器属于信息技术的前沿尖端产品,尤其是温度传感器被广泛用于工农业生产、科学研究和生活等领域,数量高居各种传感器之首。半导体传感器是利用某些半导体的电阻随温度变化而变化的特性制成的。半导体具有很宽的温度反应特性,各种半导体的温度反应区段不同。利用半导体温度传感器AD590 设计制作一个温度测量系统,AD590是一种集成温度传感器,其实质是一种半导体集成电路。集成温度传感器的线性度好、精度适中、灵敏度高、体积小、使用方便,得到广泛应用。集成温度传感器的输出形式分为电压输出和电流输出两种。 关键词:关键词传感器;半导体;温度传感器;AD590

仪器分析设计实验实验报告

气相色谱法测定异丙醇 赵宏2011051780 应用化学 一、实验目的 1.了解气相色谱法的分离原理和特点 2.熟悉气相色谱仪的基本构造和一般使用方法 二、实验原理 气相色谱法是一种高效、快速而灵敏的分离分析技术。当样品溶液由进样口注入后立即被汽化,并载气带入色谱柱,经过多分配而得以分离的各个组分逐一出色谱柱进入检测器,检测器把各组分的浓度信号转变成电信号后由记录仪或工作站软件记录下来,得到相应信号大小随时间变化的曲线即色谱图。利用色谱峰的保留值可以进行定性分析,利用峰面积或峰高可以进行定量分析。 内标法是一种常用的色谱定量分析方法。在一定量(m)的样品中加入一定量(m is )的内标物。根据待测组分和内标物的峰面积及内标物的质量计算计算待测组分质量(m i )的方法。被没组分的质量分数可用下式计算: P i = %100%100m m i i ??=?m m A f A is is i 式中,A i 为样品溶液中待测组分的峰面积,A is 为样品溶液中内标物的峰面积;m is 为样品溶液中内标物的质量;m 为样品的质量;f i 为待测组分i 相对于内标物的相对定量因子,由标准溶液计算: f i = is i is i is is i i A A m A A m m m f f is i ''''=''?''='' 式中,i A '为标准溶液中待测组分i 的峰面积;is A '为标准溶液中内标物的峰面积;is m '为标准溶液中内标的质量;i m '为标准溶液中标准物质的质量。 用内标法进行定量分析必须选定内标物。内标物必须满足以下条件: 1.就是样品中不存在的、稳定易得的纯物质; 2.内标峰应在各待测组分之间或与相近; 3.能与样品互溶但无化学反应; 4.内标物浓度应恰当,峰面积与等测组分相差不大。 三、实验仪器 气相色谱仪带有氢火焰检测器(FID )和色谱工作站,微量注射器,无水异丙醇(A.R.)无水正丙醇(A.R.),待测液。 四、实验步骤 根据文献资料、理论计算及实验操作,实验小组得出以下色谱操作的最佳条件: 柱温,104度;汽化室温度,160度;检测器温度,140度;N 2(载气)流速,15 mL/min ;H 2流速,50 mL/min ;空气流速,600 mL/min 。其中内标物为正丙醇。 定量标准溶液的配制:准确移取0.50mL 无水异丙醇和0.50mL 正丙醇于10mL 容量瓶中,用乙醚定容,摇匀。

旋转变压器(resolver)原理

§4—1旋转变压器 旋转变压器是一种常用的转角检测元件,由于它结构简单,工作可靠,且其精度能满足一般的检测要求,因此被广泛应用在数控机床上。 一、旋转变压器的结构 旋转变压器的结构和两相绕线式异步电机的结构相似,可分为定子和转子两大部分。定子和转子的铁心由铁镍软磁合金或硅钢薄板冲成的槽状心片叠成。它们的绕组分别嵌入各自的槽状铁心内。定子绕组通过固定在壳体上的接线柱直接引出。转子绕组有两种不同的引出方式。根据转子绕组两种不同的引出方式,旋转变压器分为有刷式和无刷式两种结构形式。 图4-1是有刷式旋转变压器。它的转子绕组通过滑环和电刷直接引出,其特点是结构简单,体积小,但因电刷与滑环是机械滑动接触的,所以旋转变压器的可靠性差,寿命也较短。 图4-1 有刷式旋转变压器

图4-2 无刷式旋转变压器 图4—2是无刷式旋转变压器。它分为两大部分,即旋转变压器本体和附加变压器。附加变压器的原、副边铁心及其线圈均成环形,分别固定于转子轴和壳体上,径向留有一定的间隙。旋转变压器本体的转子绕组与附加变压器原边线圈连在一起,在附加变压器原边线圈中的电信号,即转子绕组中的电信号,通过电磁耦合,经附加变压器副边线圈间接地送出去。这种结构避免了电刷与滑环之间的不良接触造成的影响,提高了旋转变压器的可靠性及使用寿命,但其体积、质量、成本均有所增加。 常见的旋转变压器一般有两极绕组和四极绕组两种结构形式。两极绕组旋转变压器的定子和转子各有一对磁极,四极绕组则有两对磁极,主要用于高精度的检测系统。除此之外,还有多极式旋转变压器,用于高精度绝对式检测系统。 二、旋转变压器的工作原理 由于旋转变压器在结构上保证了其定子和转子(旋转一周)之间空气间隙内磁通分布符合正弦规律,因此,当激磁电压加到定子绕组时,通过电磁耦合,转子绕组便产生感应电势。图4-3为两极旋转变压器电气工作原理图。图中Z为阻抗。设 加在定子绕组的激磁电压为

辉光盘实验报告设计

辉光盘实验报告设计 一、实验目的 观察平板晶体中的高压辉光放电现象。 二、实验仪器 辉光盘演示仪 三、实验原理 闪电盘是在两层玻璃盘中密封了涂有荧光材料的玻璃珠,玻璃珠间充有稀薄的惰性气体(如氩气等)。控制器中有一块振荡电路板,通过电源变换器,将12V低压直流电转变为高压高频电压加在电极上。 通电后,振荡电路产生高频电压电场,由于稀薄气体受到高频电场的电离作用二产生紫外辐射,玻璃珠上的荧光材料受到紫外辐射激发而发出可见光,其颜色由玻璃珠上涂敷的荧光材料决定。由于电极上电压很高,故所发生的光是一些辐射状的辉光,绚丽多彩,光芒四射,在黑暗中非常好看。 四、实验步骤 1.将闪电盘后控制器上的电位器调节到最小; 2.插上220V电源,打开开关; 3.调高电位器,观察闪电盘上图像变化,当电压超过一定域值后,盘上出现闪光; 4.用手触摸玻璃表面,观察闪光随手指移动变化; 5.缓慢调低电位器到闪光恰好消失,对闪电盘拍手或说话,观察辉光岁声音的变化。 五、注意事项 1.闪电盘为玻璃质地,注意轻拿轻放; 2.移动闪电盘时请勿在控制器上用力,避免控制器与盘面连接断裂; 3.闪电盘不可悬空吊挂。

实验报告要求: 学生在完成实验报告时,需要写出所观察到的实验现象及实验感悟。 个人对演示实验的认识: 演示实验形象直观,能够引起学生的学习兴趣,同时演示实验能激发学生对实验的思考。学生学习的特点就是好奇心强,所以作为老师应根据学生这一认知特点,在物理教学中恰当进行演示实验,激发学生学习的好奇心和兴趣。演示实验留下的印象远比单纯的讲解要深得多。比如这个辉光盘实验能使学生了解平板晶体中的高压辉光放电的原理,通电后,由于稀薄气体受到高频电场的电离作用二产生紫外辐射,玻璃珠上的荧光材料受到紫外辐射激发而发出可见光,其颜色由玻璃珠上涂敷的荧光材料决定,由于电极上电压很高,故所发生的光是一些辐射状的辉光,绚丽多彩,光芒四射,在黑暗中非常好看。

光照强度传感器及其变送电路设计(范文)复习过程

光照强度传感器及其变送电路设计(范文)

重庆工业职业技术学院 毕业设计 课题名称:单片机流水灯设计 专业班级: 09电子301 学生姓名:魏玉玺 指导教师:王雪萍 二零一二年四月

光照强度传感器及其变送电路设计 【摘要】光照强度传感器是现代工业和日常生活中经常出现的一种基于光强变化的 检测器件,它可以检测出其接收到的光强的变化,主要使用各种光电元件来将光信 号转换成电信号,再经信号取样电路、放大电路和模数转换电路处理,获取表示光 照度的数字信号,再交由微处理器或DSP处理。光电检测方法具有精度高,反应快,非接触等优点,而且可测参数多,传感器的结构简单,形式灵活多样,因此,光电式传感器在检测和控制中应用非常广泛。本设计利用传感器设计的基本方法,设计 制作一个可以感知外界光照度变化的传感器,以实现对光照度信号的测量。 【关键词】:光照强度;传感器;变送电路 目录

第一章绪论 (4) 1.1引言 (4) 1.2传感器的概述 (4) 第二章系统设计 (5) 2.1光电传感器及敏感元件 (5) 2.1.1光敏电阻器……………………………………………………………………....... 5 2.1.2光敏二极管.............................................................. . (5) 2.1.3光敏晶体管 (6) 2.2光电传感器概述 (6) 2.3光电传感器工作原理 (6) 2.4光照传感器的设计 (8) 2.4.1设计方案一 (8) 2.4.2设计方案二 (9) 2.5方案比较 (10) 第三章变送电路硬件设计 (10) 3.1变送电路简介................................................................................ (10) 3.2热电阻二线制变送器的设计 (12) 3.2.1信号采集电路 (13) 3.2.2一级放大电路和线性化调整电路 (13) 3.2.3调零、电源平衡及二级放大电路……………………………………… 13 3.2.4调满电路和V/I转换电路…………………………………………………… 14 3.3 热电偶二线制变送器电路设计 (14) 3.3.1信号采集和一级放大电路 (14) 3.3.2 线性化调整电路和二级放大电路 (15)

电路实验

图14-1 实验十四 交流电路频率特性的测定 一.实验目的 1.研究电阻、感抗、容抗与频率的关系,测定它们随频率变化的特性曲线; 2.了解滤波器的原理和基本电路; 3.学习使用信号源、交流毫伏表。 二.原理说明 1.单个元件阻抗与频率的关系 对于电阻元件,根据?∠=0R R R I U ,其中R I U =R R ,电阻R 与频率无关; 对于电感元件,根据L L L j X I U = ,其中fL X I U π2L L L ==,感抗X L 与频率成正比; 对于电容元件,根据C C C j X I U -= ,其中fC X I U π21 C C C ==,容抗X C 与频率成反比。 测量元件阻抗频率特性的电路如图14—1所示,图中的r 是提供测量回路电流用的标准电阻,流过被测元件的电流(I R 、I L 、I C )则可由r 两端的电压U r除以r 阻值所得,又根据上述三个公式,用被测元件的电流除对应的元件电压,便可得到R 、X L 和X C 的数值。 2.交流电路的频率特性 由于交流电路中感抗X L 和容抗X C 均与频率有关,因而,输入电压(或称激励信号)在大小不变的情况下,改变频率大小,电路电流和各元件电压(或称响应信号)也会发生变化。这种电路响应随激励频率变化的特性称为频率特性。 若电路的激励信号为Ex(jω),响应信号为R e(jω),则频率特性函数为 )()() j () j ()j (x e ω?ωωωω∠== A E R N 式中,A (ω)为响应信号与激励信号的大小之比,是ω的函数,称为幅频特性; ?(ω)为响应信号与激励信号的相位差角,也是ω的函数,称为相频特性。 A A f f f a) (b) (c) (图21-2 C C C1C2

旋转变压器开关应用

旋转变压器在开关电源上的应用 摘要:介绍了非接触式旋转高频链变压器在旋转机构电源上的应用,CRFT 的使用代替了传统的电能传递方式,即电刷电能传递方式,大大延长了旋转机构电源系统的使用寿命和使用可靠性。采用软开关技术,减少了电能在磁场中传递而进行变换产生的电磁干扰,解决了与静止供电完全没有物理接触的旋转电路的供电问题。实验证明,CRFT 完全可以在旋转机构供电场合代替电刷及滑环。 关键词:开关电源/ 非接触式旋转高频链变压器;旋转机构 ------------------------------------------------------------------------------------ 引言 任何电子设备都需要电源,旋转机构系统也是如此,如石油钻井、造纸机械、直升机旋翼等机构上的传感器及测试设备的供电,卫星、雷达等需要将电能传递到旋转用电设备的场合等。 以卫星电源为例,卫星在绕地球轨道运行的过程中,自身始终以一定的角速率旋转。而卫星的太阳能电池板为了最大限度地利用太阳能,必须始终正对太阳照射的向。随着卫星在轨道上位置的变化,伺服机构实时调节太阳能电池板的朝向。太阳能电池板和卫星星体之间的电能传递传统上是通过石墨电刷与铜制滑环之间的接触实现的。石墨电刷因相对运动产生磨损,从而导致碳粉的掉落、接触的松动、供电不稳以及产生电火花等不良影响,最终导致电刷与滑环脱离接触,无法完成供电,成为该类旋转机构电源寿命延长的瓶颈。 而使用非接触式旋转高频链变压器,则可以从根本上解决接触磨损的问题。美国在1996 年成功研制出传递功率达400 W 的非接触式旋转变压器电源,但使用的是400 Hz 的中频硅钢片变压器,重量较大。2002 年,欧洲和法国玛特拉宇航系统公司联合研制 出了传递功率达到100 W 的旋转高频链开关电源,该电源系统不仅可以传递电能,还可以传递19.2 k/s 的信息数据[1]。非接触式旋转高频链逆变器可用于所有需向旋转机 构提供电能的领域。 1 CRFT 的结构和基本原理 CRFT 的工作频率为100 kHz 左右,因此,变压器所使用的磁性材料为锰锌铁氧体,它具有磁导率和电阻率较高,矫顽力较低的特点。在实际应用中,使绕组产生激磁电流就能产生较高的磁感应强度,传递较大的功率,同时具有较小的铁耗和涡流损耗。 图1 示出在CRFT 内部绕组放置的位置系。为防止意外的摩擦,绕组之间相互留有间隙。磁心之间也留有相对运动的间隙。旋

相关文档
最新文档