《一元一次方程的解法》PPT课件
合集下载
5.2 解一元一次方程第4课时 利用去分母解一元一次方程(共31张PPT)【人教2024版七上数学】
![5.2 解一元一次方程第4课时 利用去分母解一元一次方程(共31张PPT)【人教2024版七上数学】](https://img.taocdn.com/s3/m/a75b5089988fcc22bcd126fff705cc1755275f8c.png)
解得x=360.
答:该单位参加旅游的职工有360人.
5.清人徐子云《算法大成》中有一首诗: 巍巍古寺在山林,不知寺中几多僧. 三百六十四只碗,众僧刚好都用尽. 三人共食一碗饭,四人共吃一碗羹. 请问先生名算者,算来寺内几多增?
诗的意思: 3个僧人吃一碗饭,四个僧人吃一碗羹,刚好用了 364只碗,请问寺内有多少僧人?
移项 合并同类项
移项法则
合并同类项法 则
两边同除以未知 等式性质2 数的系数
移项要变号 系数相加,不漏项 不要把分子、分母搞颠倒
3
6
2
A.x=1 B.x=2 C.x=4
D.x=6
2
解方程
5 6
6 5
x-1
=2.
下面几种解法中,较简便
的是( C )
A.先两边同乘6
B.先两边同乘5
C.先去括号再移项
D.括号内先通分
3. 解下列方程:
(1) x 3 3x 4; 5 15
(2) 5y 4 y 1 2 5y 5 .
解:设寺内有x个僧人,依题意得 1 x 1 x 364. 34
解得x=624.
答:寺内有624个僧人.
课堂小结
✓ 归纳总结 ✓ 构建脉络
课堂小结
步骤 去分母
根据
等式性质2
注意事项
1.不要漏乘不含分母的项 2. 分子是多项式应添括号
去括号
分配率 去括号法则
1.不要漏乘括号中的每一项 2.括号前是“—”号,要变号
去括号,得
18x+3x-3 =18-4x +2. 移项,得
18x+3x+4x =18 +2+3. 合并同类项,得
25x = 23. 系数化为1,得
答:该单位参加旅游的职工有360人.
5.清人徐子云《算法大成》中有一首诗: 巍巍古寺在山林,不知寺中几多僧. 三百六十四只碗,众僧刚好都用尽. 三人共食一碗饭,四人共吃一碗羹. 请问先生名算者,算来寺内几多增?
诗的意思: 3个僧人吃一碗饭,四个僧人吃一碗羹,刚好用了 364只碗,请问寺内有多少僧人?
移项 合并同类项
移项法则
合并同类项法 则
两边同除以未知 等式性质2 数的系数
移项要变号 系数相加,不漏项 不要把分子、分母搞颠倒
3
6
2
A.x=1 B.x=2 C.x=4
D.x=6
2
解方程
5 6
6 5
x-1
=2.
下面几种解法中,较简便
的是( C )
A.先两边同乘6
B.先两边同乘5
C.先去括号再移项
D.括号内先通分
3. 解下列方程:
(1) x 3 3x 4; 5 15
(2) 5y 4 y 1 2 5y 5 .
解:设寺内有x个僧人,依题意得 1 x 1 x 364. 34
解得x=624.
答:寺内有624个僧人.
课堂小结
✓ 归纳总结 ✓ 构建脉络
课堂小结
步骤 去分母
根据
等式性质2
注意事项
1.不要漏乘不含分母的项 2. 分子是多项式应添括号
去括号
分配率 去括号法则
1.不要漏乘括号中的每一项 2.括号前是“—”号,要变号
去括号,得
18x+3x-3 =18-4x +2. 移项,得
18x+3x+4x =18 +2+3. 合并同类项,得
25x = 23. 系数化为1,得
(完整版)一元一次方程的解法PPT课件
![(完整版)一元一次方程的解法PPT课件](https://img.taocdn.com/s3/m/f5dccdd131b765ce04081470.png)
2345 + 12x = 5129.
①
利用等式的性质,在方程①两边都减去2345,
得
2345+12x-2345= 5129-2345,
即
12x=2784.
②
方程②两边都除以12,得x=232 .
因此,热气球在后12h飞行的平均速度为232 km/h.
我们把求方程的解的过程叫做解方程. 在上面的问题中,我们根据等式性质1,在方程① 两边都减去2345,相当于作了如下变形:
-22334455 + 12x = 5129
从变形前后的两个方程可以看出,这种变形, 就是把方程中的某一项改变符号后,从方程的一边 移到另一边,我们把这种变形叫做移项.
必须牢记:移项要变号.
在解方程时,我们通过移项,把方程中含未知 数的项移到等号的一边,把不含未知数的项移到等 号的另一边.
例1 解下列方程:
解方程
应改为 4 x +6 =2+x 2(2x+3)=2+x
解 去括号,得 4x+3=2+x 应改为 4 x – x = 2-6
移项,得 4x +x = 2-3
化简,得
5x = -1
应改为 3x =-4
方程两边都除以5 ,得
方程两边都除以3,得
x
=
-
1 5
应改为
x
=
-4 3
2. 解下列方程.
(1) (4y+8)+2(3y-7)= 0 ; (2) 2(2x -1)-2(4x+3)= 7; (3) 3(x -4)= 4x-1.
y
;
(2)
5
+3x 2
解一元一次方程课件(共20张PPT)人教版初中数学七年级上册
![解一元一次方程课件(共20张PPT)人教版初中数学七年级上册](https://img.taocdn.com/s3/m/09edef13842458fb770bf78a6529647d272834c7.png)
x=20
(四)例题规范,巩固新知
1.解方程:2x- 5 x=6-8 2
解:合并同类项,得- 1 x=-2 2
系数化为1,得 x=4
(三)例题规范,巩固新知
2.解方程:7x-2.5x+3x-1.5x=-154-6 3. 解:合并同类项,得 6x= 78.
系数化为1,得 x= 13.
(四)基础训练,学以致用
还有不同的设法吗? 还可以列怎样的方程?
方法二:
方法三:
设去年购买计算机x台. 设今年购买计算机x台.
x +x+2x=140 2
x + x +x=140 42
(三)合作探究,归纳方法
如何将此方程转化为x=a(a为常数)的形式?
x+2x+4x=140
合并同类项
7 x=140
系数化为1
等式性质2 理论依据?
1. 什么是同类项?
2.计算:(1)3x-x (2)10x+0.5x (3)7xy-3xy+8ab-2xy-5ab
3.等式的基本性质有哪些?
二.新授
(一)介绍数学史,创设情境
约公元820年,中亚细亚数学家阿尔-花 拉子米写了一本代数书,重点论述怎样 解方程.这本书的拉丁文译本取名为 《对消与还原》.“对消”与“还原”是 什么意思呢?
1.解下列方程:
(1)5 x-2 x=9 (2)x + 3x =7
22 (3)-3 x+0.5 x=10
(4)7x-4.5x=2.5 3-5
例2 有一列数,按一定规律排列成1,-3,9,-27
81,-243,…。其中某三个相邻数的和-1701,这
三个数各是多少?
解:设所求三个数分别是x,-3x,9x. 由三个数的和是-1701,得
4.2 一元一次方程及其解法(课件)苏科版(2024)数学七年级上册
![4.2 一元一次方程及其解法(课件)苏科版(2024)数学七年级上册](https://img.taocdn.com/s3/m/3310b4ada0c7aa00b52acfc789eb172ded639983.png)
②③
解析:
序号
是否为等式
等号两边是否均为整式
是否只含有一个未知数
未知数的次数是否都为1
结论
①
√
×
否
②
√
√
√
√
是
③
√
√
√
√
是
④
√
√
√
×
否
⑤
×
否
⑥
√
√
×
否
示例
解一元一次方程
_
概念
方程中的某些项改变符号后,可以从方程的一边移到另一边,这样的变形叫作移项.
依据
等式的基本性质1.
目的
把含有未知数的项移到方程的一边,把常数项移到另一边.
典例4 方程 去分母得( )
B
A. B. C. D.
解析:方程两边各项同乘各分母的最小公倍数6,分子是多项式,去分母后,加上小括号,得 .
1.解一元一次方程的基本思路:解一元一次方程就是通过变形最终将方程转化为为常数 的形式.2.解一元一次方程的一般步骤
变形名称
依据
具体做法
注意事项
移项
等式的基本性质1.
把含有未知数的项移到方程的一边,把常数项移到另一边.
(1)移项要变号;(2)不要漏掉任何一项.
变形名称
依据
具体做法
注意事项
合并同类项
合并同类项法则.
系数相加,字母及字母的指数不变,把方程化成, 为常数,且 的形式.
(1)未知数及其指数不变;(2)未知数的系数不要漏掉符号.
变形名称
第4章 一元一次方程
4.2 一元一次方程及其解法
七上数学 SK
1.理解一元一次方程的概念,能判断一个方程是不是一元一次方程,发展抽象能力.2.能根据等式的基本性质解一元一次方程,掌握解一元一次方程的方法.3.了解解一元一次方程的一般步骤,能熟练地解数字系数的一元一次方程.4.能根据一元一次方程的特点,灵活选择合适的步骤解一元一次方程,提高运算能力.
解析:
序号
是否为等式
等号两边是否均为整式
是否只含有一个未知数
未知数的次数是否都为1
结论
①
√
×
否
②
√
√
√
√
是
③
√
√
√
√
是
④
√
√
√
×
否
⑤
×
否
⑥
√
√
×
否
示例
解一元一次方程
_
概念
方程中的某些项改变符号后,可以从方程的一边移到另一边,这样的变形叫作移项.
依据
等式的基本性质1.
目的
把含有未知数的项移到方程的一边,把常数项移到另一边.
典例4 方程 去分母得( )
B
A. B. C. D.
解析:方程两边各项同乘各分母的最小公倍数6,分子是多项式,去分母后,加上小括号,得 .
1.解一元一次方程的基本思路:解一元一次方程就是通过变形最终将方程转化为为常数 的形式.2.解一元一次方程的一般步骤
变形名称
依据
具体做法
注意事项
移项
等式的基本性质1.
把含有未知数的项移到方程的一边,把常数项移到另一边.
(1)移项要变号;(2)不要漏掉任何一项.
变形名称
依据
具体做法
注意事项
合并同类项
合并同类项法则.
系数相加,字母及字母的指数不变,把方程化成, 为常数,且 的形式.
(1)未知数及其指数不变;(2)未知数的系数不要漏掉符号.
变形名称
第4章 一元一次方程
4.2 一元一次方程及其解法
七上数学 SK
1.理解一元一次方程的概念,能判断一个方程是不是一元一次方程,发展抽象能力.2.能根据等式的基本性质解一元一次方程,掌握解一元一次方程的方法.3.了解解一元一次方程的一般步骤,能熟练地解数字系数的一元一次方程.4.能根据一元一次方程的特点,灵活选择合适的步骤解一元一次方程,提高运算能力.
湘教版数学七年级上册3.3 一元一次方程的解法课件(共25张PPT)
![湘教版数学七年级上册3.3 一元一次方程的解法课件(共25张PPT)](https://img.taocdn.com/s3/m/480f7b43fd4ffe4733687e21af45b307e871f990.png)
6.清人徐子云《算法大成》中有一首诗: 巍巍古寺在山林, 不知寺中几多僧. 三百六十四只碗, 众僧刚好都用尽. 三人共食一碗饭, 四人共吃一碗羹. 请问先生名算者, 算来寺内几多增?
诗的意思:3个僧人吃一碗饭,四个僧人吃一碗羹,刚好用了364只碗,请问寺内有多少僧人?
课后作业
1.从课后习题中选取;2.完成练习册本课时的习题。
同学们再见!
授课老师:
时间:2024年9月1日
去括号,得 2x +2+x-1 = 4,
去分母时,方程两边的每一项都要乘各个分母的最小公倍数.
做一做
解方程:.
去括号,得 15x -5+2x-4= 10x.
合并同类项,得 7x = 9.
移项,得 15x +2x-10x=5+4 .
例 3
例题讲解
B
解析:根据题意,得 .去分母,得 8x-10=2x-1.移项、合并同类项,得 6x=9.系数化为1,得 .
4(2x-1)=3(x+2)-12
去分母,得2(2x-1)=8-(3-x) =8-3+x
D
2.将方程=1-去分母后,正确的结果是( )A.2x-1=1-(3-x) B.2(2x-1)=1-(3-x)C.2(2x-1)=8-3-x D.2(2x-1)=8-3+x
5.已知方程与关于y的方程y+的解相同,求a的值.
6.火车用 26 s 的时间通过一个长 256 m 的隧道(即从车头进入入口到车尾离开出口),这列火车又以 16 s 的时间通过了长 96 m 的隧道,求火车的长度.
解:设火车的长度为x m,列方程:
解得 x =160. 答:火车的长度为160 m.
新课导入
诗的意思:3个僧人吃一碗饭,四个僧人吃一碗羹,刚好用了364只碗,请问寺内有多少僧人?
课后作业
1.从课后习题中选取;2.完成练习册本课时的习题。
同学们再见!
授课老师:
时间:2024年9月1日
去括号,得 2x +2+x-1 = 4,
去分母时,方程两边的每一项都要乘各个分母的最小公倍数.
做一做
解方程:.
去括号,得 15x -5+2x-4= 10x.
合并同类项,得 7x = 9.
移项,得 15x +2x-10x=5+4 .
例 3
例题讲解
B
解析:根据题意,得 .去分母,得 8x-10=2x-1.移项、合并同类项,得 6x=9.系数化为1,得 .
4(2x-1)=3(x+2)-12
去分母,得2(2x-1)=8-(3-x) =8-3+x
D
2.将方程=1-去分母后,正确的结果是( )A.2x-1=1-(3-x) B.2(2x-1)=1-(3-x)C.2(2x-1)=8-3-x D.2(2x-1)=8-3+x
5.已知方程与关于y的方程y+的解相同,求a的值.
6.火车用 26 s 的时间通过一个长 256 m 的隧道(即从车头进入入口到车尾离开出口),这列火车又以 16 s 的时间通过了长 96 m 的隧道,求火车的长度.
解:设火车的长度为x m,列方程:
解得 x =160. 答:火车的长度为160 m.
新课导入
5.2一元一次方程的解法第2课时课件2024-2025学年北师大版数学七年级上册
![5.2一元一次方程的解法第2课时课件2024-2025学年北师大版数学七年级上册](https://img.taocdn.com/s3/m/8e873015a517866fb84ae45c3b3567ec112ddc5b.png)
【典例2】(教材再开发·P143例5强化)设P=2y-2,Q=2y+3,且3P-Q=1,求y的值.
【自主解答】因为P=2y-2,Q=2y+3,3P-Q=1,
所以3(2y-2)-(2y+3)=1,
6y-6-2பைடு நூலகம்-3=1,
4y-9=1,
4y=10,
y=2.5.
【变式训练】
1.如果关于x的方程5(x+b)-10=bx+4的解为x=4,那么b的值为( A)
B.由2x-3(4-2x)=6,得2x-12-6x=6
C.由2x-3(4-2x)=6,得2x-12+6x=6
D.由2x-3(4-2x)=6,得2x-12+2x=6
1
3x-15=1-2x+6
3.(2024·深圳质检)将15( x-1)=1-2(x-3)去括号后,方程转化为_________________.
2 5
5
2
(2)由(1)得:m= ,则(m+2) (2m- )=( +2)×(2× - )= × −
2
5
=-1.
北师大版七年级数学上册课件
5.2 一元一次方程的解法
第2课时
课时目标
素养达成
1.掌握用等式的基本性质解一元一
次方程的基本过程
2.掌握移项“变号”法则
运算能力、推理能力
3.掌握去括号的方法
4.会用移项解一元一次方程
5.会用去括号解一元一次方程
应用意识
【课前预习】
【要点归纳】
1.移项
(1)移项依据:等式的基本性质(加减性质).
5.(2024·广州质检)解方程:
(1)3x=10-2x;
一元一次方程 课件ppt
![一元一次方程 课件ppt](https://img.taocdn.com/s3/m/4fb19170590216fc700abb68a98271fe910eaf2a.png)
例子:例如,解方程 2x + 5 = 7,首先移项得 2x = 7 - 5,然后合并同类项得 2x = 2,最后系数化为1得 x = 1。
图像法
定义:图像法是一种通过绘制函数图像来解一元一次方 程的方法。 1. 确定函数:根据方程的形式确定表示该方程的函数。
3. 标记解:在图像上标记交点的坐标,即为方程的解。
型,例如成本、价格、利润等问题的计算。
物理问题的数学模型建立
03
在物理领域中,一元一次方程可以用于建立各种问题的数学模
型,例如速度、加速度、时间等问题的计算。
04
一元一次方程的变式
移项
概念
移项是将方程中的项改变符号后 移动到另一边的过程。
目的
通过移项,将方程中的未知数系 数变为正数,以便更容易求解。
步骤
2. 绘制图像:绘制函数的图像,将坐标轴上的交点作 为方程的解。
例子:例如,解方程 x + 2 = 5,确定函数为 y = x + 2,绘制图像后,交点为 (3,5),因此方程的解为 x = 3 。
实际应用法
定义:实际应用法是一种通过实际应用案例来解一元一次 方程的方法。
步骤
1. 分析问题:分析实际问题中涉及到的变量和关系。
2. 建立方程:根据实际问题建立一元一次方程。
3. 解方程:通过解方程得到未知数的值,解决实际问题 。
例子:例如,解方程 3x + 2 = 14,分析问题为求解 x 的 值使得 3x + 2 = 14,建立方程为 3x + 2 = 14,解方程 得 x = 4。因此,x 的值为4。
03
一元一次方程的应用
THANKS
感谢观看
06
一元一次方程的注意事项和易错点
图像法
定义:图像法是一种通过绘制函数图像来解一元一次方 程的方法。 1. 确定函数:根据方程的形式确定表示该方程的函数。
3. 标记解:在图像上标记交点的坐标,即为方程的解。
型,例如成本、价格、利润等问题的计算。
物理问题的数学模型建立
03
在物理领域中,一元一次方程可以用于建立各种问题的数学模
型,例如速度、加速度、时间等问题的计算。
04
一元一次方程的变式
移项
概念
移项是将方程中的项改变符号后 移动到另一边的过程。
目的
通过移项,将方程中的未知数系 数变为正数,以便更容易求解。
步骤
2. 绘制图像:绘制函数的图像,将坐标轴上的交点作 为方程的解。
例子:例如,解方程 x + 2 = 5,确定函数为 y = x + 2,绘制图像后,交点为 (3,5),因此方程的解为 x = 3 。
实际应用法
定义:实际应用法是一种通过实际应用案例来解一元一次 方程的方法。
步骤
1. 分析问题:分析实际问题中涉及到的变量和关系。
2. 建立方程:根据实际问题建立一元一次方程。
3. 解方程:通过解方程得到未知数的值,解决实际问题 。
例子:例如,解方程 3x + 2 = 14,分析问题为求解 x 的 值使得 3x + 2 = 14,建立方程为 3x + 2 = 14,解方程 得 x = 4。因此,x 的值为4。
03
一元一次方程的应用
THANKS
感谢观看
06
一元一次方程的注意事项和易错点
求解一元一次方程ppt课件
![求解一元一次方程ppt课件](https://img.taocdn.com/s3/m/f851857a2e60ddccda38376baf1ffc4ffe47e20b.png)
第五章 一元一次方程
第2节 求解一元一次方程(3)
导入新课
讲授新课
课堂小结
随堂训练
学习目标
1.掌握解一元一次方程中“去分母”的方法.(重点) 2.掌握含分母的一元一次方程的解法并归纳解一元一次方程的 步骤.(难点)
情境引入
(1) 9=8-2x (2) 3x-5=5x+1 (3) 6x-5(15+2x)=-11 (4) -4(3x+5)=16
去括号,得 6x + 90 = 15 -10x + 70.
移项、合并同类项,得 16x = -5.
方程两边同除以16,得 x= 5 .
16
新课讲解
归纳总结
解一元一次方程,一般要通过去分母、去括号、移项、合并 同类项、未知数的系数化为1等步骤,把一个一元一次方程“转 化”成x=a的形式.
新课讲解
典例析
?×28
1 (x 14) 1 (x 20).
4(x 14) 7(x 20).
7
4
结论 方程的左、右两边同时乘各分母的最小公倍数可去掉分母.
依据是等式的基本性质2.
新课讲解
典例分析
例1.解方程:1 ( x 15) 1 1 ( x 7).
5
23
解:去分母,得 6(x + 15) = 15 - 10(x- 7).
3
4
这个变形( )
A.分母的最小公倍数找错了
B.漏乘了不含分母的项
C.分子中的多项式没有添括号,符号不对
D.正确
当堂小练
3.如果代数式 3x +2与- 2x-1互为相反数,那么x的值
2
3
是( )
A.- 6 B.- 18
5
13
第2节 求解一元一次方程(3)
导入新课
讲授新课
课堂小结
随堂训练
学习目标
1.掌握解一元一次方程中“去分母”的方法.(重点) 2.掌握含分母的一元一次方程的解法并归纳解一元一次方程的 步骤.(难点)
情境引入
(1) 9=8-2x (2) 3x-5=5x+1 (3) 6x-5(15+2x)=-11 (4) -4(3x+5)=16
去括号,得 6x + 90 = 15 -10x + 70.
移项、合并同类项,得 16x = -5.
方程两边同除以16,得 x= 5 .
16
新课讲解
归纳总结
解一元一次方程,一般要通过去分母、去括号、移项、合并 同类项、未知数的系数化为1等步骤,把一个一元一次方程“转 化”成x=a的形式.
新课讲解
典例析
?×28
1 (x 14) 1 (x 20).
4(x 14) 7(x 20).
7
4
结论 方程的左、右两边同时乘各分母的最小公倍数可去掉分母.
依据是等式的基本性质2.
新课讲解
典例分析
例1.解方程:1 ( x 15) 1 1 ( x 7).
5
23
解:去分母,得 6(x + 15) = 15 - 10(x- 7).
3
4
这个变形( )
A.分母的最小公倍数找错了
B.漏乘了不含分母的项
C.分子中的多项式没有添括号,符号不对
D.正确
当堂小练
3.如果代数式 3x +2与- 2x-1互为相反数,那么x的值
2
3
是( )
A.- 6 B.- 18
5
13
《解一元一次方程》一元一次方程PPT课件(第2课时利用移项解一元一次方程)
![《解一元一次方程》一元一次方程PPT课件(第2课时利用移项解一元一次方程)](https://img.taocdn.com/s3/m/3d22943d1fd9ad51f01dc281e53a580216fc503e.png)
探究新知
学生活动三 【一起探究】
解下列方程 (1)3x + 7 = 32 – 2x
解:移项,得
3x + 2x = 32 – 7 合并同类项,得
5x = 25 系数化为1,得 x = 5
探究新知
(2)x-3= 3 x+1 2
解:移项,得 x- 3 x=1+3. 2
合并同类项,得 - 1 x=4. 2
课后作业 完成课后练习题.
合并同类项,得-
3x 5
=3.
系数化为1,得x=-5.
巩固练习
(2)移项,得4x-5x=-4+3.
合并同类项,得-x=-1. 系数化为1,得x=1. (3)移项,得3x - 2x+3x=1 - 4. 合并同类项,得4x=-3. 系数化为1,得x=- 34.
巩固练习
6.将一堆糖果分给幼儿园某班的小朋友,如果每人2颗, 那么就多8颗;如果每人3颗,那么就少12颗,这个班共有 多少名小朋友? 解:设这个班共有x名小朋友.根据题意,
探究新知
学生活动一 【一起归纳】
上面方程的变形,相当于把原方程左边的20变为 –20移到右边,把右边的4x变为–4x移到左边.
像上面那样把等式一边的某项变号后移到另一边, 叫做移项.
探究新知
学生活动二 【一起探究】
思考:上面解方程中“移项”起了什么作用? 通过移项,含未知数的项与常数项分别位
于方程左右两边,使方程更接近于x=a的形式.
则货物的重量:4×3+2=14(吨)
巩固练习
1.下列移项正确的是 ( C ) A. 由2+x=8,得到x=8+2 B. 由5x=-8+x,得到5x+x= -8 C. 由4x=2x+1,得到4x-2x=1 D. 由5x-3=0,得到5x=-3
7.3.2解一元一次方程 课件(共13张PPT)青岛版数学七年级上册
![7.3.2解一元一次方程 课件(共13张PPT)青岛版数学七年级上册](https://img.taocdn.com/s3/m/9952fa4e3069a45177232f60ddccda38376be122.png)
2、2(x-1)=4-(3+x)的解为x=
1
。
2x+1 10x+1
=1时,去分母后,正确的结果是 (
3
6
A.4x+1-10x+1=1
B.4x+2-10x-1=1
3、解方程
C.4x+2-10x-1=6
D.4x+2-10x+1=6
C
).
4、指出下列解方程哪步变形是错误的,并指出错误的原因。
合并同类项,得
-6x=5
系数化为1,得
x-
5
6
解方程的一般步骤为:
(1)去分母;
(2)去括号;
(3)移项;
(4)合并同类项;
(5)未知数的系数化为1.
去分母时需要注意什么?
①去分母时,方程两边所有的项都要乘各分母的最小公倍数.
②去分母后,分子作为整体要加括号
1、解方程
3
−
−6
12
=2
2
−
7.3.2 解一元一次方程
解下列方程:
(1)3x-7=x+1
(2)8-x=x-5
(3)5x+2=7x-8
一元一次方程的解法我们学了哪几步?
移项
合并同类项
系数化为1
学习目标:
1.正确的运用移项法则、去括号法则,正确地去分母;
2.掌握解方程的一般步骤。
重点:正确地去分母,去括号;
难点:准确的解一元一次方程。
②去分母后,分子作为整体要加括号
作业:
P162 练习、习题7.3
同步练习册
3x+18=9-5+10x
3x-10x=9-5-18
1
。
2x+1 10x+1
=1时,去分母后,正确的结果是 (
3
6
A.4x+1-10x+1=1
B.4x+2-10x-1=1
3、解方程
C.4x+2-10x-1=6
D.4x+2-10x+1=6
C
).
4、指出下列解方程哪步变形是错误的,并指出错误的原因。
合并同类项,得
-6x=5
系数化为1,得
x-
5
6
解方程的一般步骤为:
(1)去分母;
(2)去括号;
(3)移项;
(4)合并同类项;
(5)未知数的系数化为1.
去分母时需要注意什么?
①去分母时,方程两边所有的项都要乘各分母的最小公倍数.
②去分母后,分子作为整体要加括号
1、解方程
3
−
−6
12
=2
2
−
7.3.2 解一元一次方程
解下列方程:
(1)3x-7=x+1
(2)8-x=x-5
(3)5x+2=7x-8
一元一次方程的解法我们学了哪几步?
移项
合并同类项
系数化为1
学习目标:
1.正确的运用移项法则、去括号法则,正确地去分母;
2.掌握解方程的一般步骤。
重点:正确地去分母,去括号;
难点:准确的解一元一次方程。
②去分母后,分子作为整体要加括号
作业:
P162 练习、习题7.3
同步练习册
3x+18=9-5+10x
3x-10x=9-5-18
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x 25 9
1.理解移项法则,准确进行移项;
2.能用移项的方法求解简单的一元一次 方程。
颗粒归仓
1. :一般地, 把方程中的某些项 改变符号后,从方程 的一边移到另一边, 这种变形叫做移项。
2.解一元一次方程需 要移项时我们把含未 知数的项移到方程的 一边(通常移到左 边),常数项移到方 程的另一边(通常移
性质2
等式两边都乘以(或除以)同 一个数(除数不为零),所得的结 果仍是等式.
1、利用等式的性质解下列方程:
(1) 5x – 2 = 8 . (2)3x=2x+1
2、自学课本第159页(例1以前的)内容,独 立完成下列各题:
(1)用你自己的语言描述:什么是移项? (2)移项的依据是什么?移项应注意什么问题? (3)下面的变形是移项吗?从x+5=7,得到5+x=7 (4)移项与交换两项的位置的区别是什么?
移移项项的的依依据据是是什等么式?的移基项本时性,质应1 注意什么? 移项应注意:移项要变号
(1) 2x+6=1 (2) 3x+3=2x+7
1 4
x
1 2
x
3
3、尝试用移项法解例1、例2,回答下列问题:
(1)移项时,通常把 含有未知数的项 移到 等号的左 边;把 常数项 移到等号的右边。
(2)移项应注意什么问题? 移项要变号 。
例题:判断下列方程的解法对不对。如果不对错
在哪里?应怎样改?
(1)9x 4,得x 9 4
(2) 3 x 5 ,得x 1 53
解:(1)不对。错在系 数化1这一步上。方 程两边都除以9而不 是4。应改为:
x4 9
(2)不对。错在系
数化1这一步上。方
程两边都除以 3 即
乘以
5
5 。应改为:
3
例题:解方程 2x 3 3x 2
解: 移项,得 2x 3x 2 3 合并同类项,得 x 1 系数化为1,得 x 1
在解方程时,经过移项、合并同类项后方程化为 ax=b(a≠0)的形式,这时要求方程的解,只要将 方程两边都除以未知数的系数a就可以得到方程的解
x=b/a。
注意:因为除数不能为0,所以a≠0
46、活在昨天的人失去过去,活在明 天的人 失去未 来,活 在今天 的人拥 有过去 和未来 。 47、你可以一无所有,但绝不能一无 是处。
48、通过辛勤工作获得财富才是人生 的大快 事。— —巴尔 扎克 49、相信自己能力的人,任何事情都 能够做 到。
自学反馈3:
找一找,错在何处?
1.3x+7=2-2x,移项,得3x-2x=2-7.
错 正确答案:3x+2x=2-7.
2.化简:2x+8y-5x =2x+5x-8y =7x-8y.
错 正确答案:2x+8y-5x=2x-5x+8y
= -3x+8y.
➢化简多项式交换两项位置时不改变项的符号; ➢解方程移项时必须改变项的符号.
5x=10 x=2
解方程 3__x__=___2__x__+____1
解:方程两边同时减去2x,得 3x-2x=2x+1-2x 即3_x_-___2_x_=__1__ 化简,得x=1
5x -2 =8
3x = 2x + 1
5x=8 +2 3x -2x =1
把方程中的某一项改变符号后,从方程的一
边移到另一边,这种变形叫移项。
第七章 一元一次方程
(1) 通过具体例子,归纳移项法则,体会移项则的 优越性。 (2)明确移项法则的依据及移项过程中容易出现的 错误。 (3)并能用移项的方法求解简单的一元一次方程。
⒈重点:理解移项法则,准确进行移项;
⒉难点:准确进行移项求解简单的一元一次 方程。
导入课题:
性质1
等式的两边都加上(或减去) 同一个数或同一个式子,所得 的结果仍是等式.
3、尝试用移项法解例1,回答下列问题:
(1)移项时,通常把
移到 等号的左边;
把
移到等号的右边。
(2)移项应注意什么问题?
。
(3)解这样的方程可分三步:
第一步:
;
第二步:
;
第三步:
;ห้องสมุดไป่ตู้
解方程:5_x__-__2_=___8_ 解:方程两边都加上2,得 5x-2+2=8+2 _5_x_=_8_+__2
1.解下列方程:
(1)10x-3=9
x6 5
(2)5x-2=7x+8 x 5
(3)x
3 2
x
16
x 32
(4)1
3 2
x
3x
5 2
x 1 3
正确理解“移项”:将方程中的某些项改变符号 后,从方程的一边移到另一边的变形叫做移项。
注意:(1)所移动的是方程中的项,并且是从方 程一边移到另一边,而不是在方程的一边“交换” 两项的位置;这里所说的“一边”和“另一边”, 是指等号的左边或者右边;(2)移项时要变号 (没有移项的不变号);(3)在解方程时,通常 把含有未知数的项移到方程的左边,把常数项移到 方程的右边,这样便于求出未知数的值。
自学反馈2
1.下面的移项对不对?如果不对,应当 怎样改正? (1)从5+x=10,得x=10+5
(2)从3x=8-2x,得3x+2x=-8 2.下面方程的解法对吗?如果不对,应怎样 改正? 解方程 -2x + 5=4 - 3x 3x-2x=4-5 移项,得 3x-2x=4+5 X=-1 合并同类项,得 x=9
到右边).
3.移项要改变符号.
某航空公司规定:乘坐飞机普通舱旅客一 人最多可免费托运20千克行李,超过部分 每千克按飞机票价的1.5%购买行李票。 一名旅客托运了35千克行李,机票连同行 李费共付1323元,求该旅客的机票票价。
3、后悔是崇高的理想就像生长在高山 上的鲜 花。如 果要搞 下它, 勤奋才 能是攀 登的绳 索。 44、幸运之神的降临,往往只是因为 你多看 了一眼 ,多想 了一下 ,多走 了一步 。 45、对待生活中的每一天若都像生命 中的最 后一天 去对待 ,人生 定会更 精彩。
(3)解这样的方程可分三步:
第一步: 移项
;
第二步: 合并同类项 ; 第三步: 系数化为1 ;
自学反馈1:把下列方程进行移项变换
(1)2x 5 12 移项2x 12 __5___ (2)7x x 2 移项7x _x___ 2 (3)4x x 10 移项4x _x___ 10 (4)8x 5 3x 1移项8x __3_x_ 1 __5__ (5) x 3 9x 7 移项x __9_x_ 7 __-_3_