孔特性对力学性能的影响

孔特性对力学性能的影响
孔特性对力学性能的影响

技术研发TECHNOLOGY AND MARKET

V〇1.24,N〇.8,2017

孔特性对力学性能的影响

耿静亚,孔佑方

(华北水利水电大学,河南郑州450045)

摘要:综述孔隙率、孔径分布以及孔形貌对材料力学性能的影响。表明:材料强度随孔隙率的增大而减小;同容重下,气孔呈圆形且分布均匀的质量好,强度要高。在此基础上,对蒸压加气混凝土的研究方向进行展望。

关键词:孔特性;力学性能;孔隙率;孔径分布;孔形貌

doi:10. 3969/j.issn.1006 - 8554.2017. 08. 035

〇引言

对于材料细微观结构的研究,常用模型法来确定微观结构

与宏观性能的关系,从而改善材料性能。许多学者都建立了孔

结构与材料强度关系模型,包括孔隙率与强度关系模型、孔径

分布与强度关系、孔的形貌与强度关系。

1孔隙率与强度关系

对于孔隙率与强度关系模型的研究相对孔径分布、孔级配

较多。早在1896年,法国学者R.Feret提出下列关系[1]:

丄y (1)

c +w+a

式中^为混凝土的强度,为水泥的绝对体积,犯为水的绝对

体积,a为空气的绝对体积,K为经验常数。虽然,该公式反映的是空气的体积与混凝土强度的关系,但从侧面反映了孔隙率与混凝土强度的关系。

1918年美国学者D ?A ?Abrams提出了混凝土强度和水灰比之间的关系[1]:

R(2) K J

式中:R为混凝土强度,称^、&为经验常数。该公式虽没有直接表明孔结构与强度之间的关系,但已有研究表明水灰比取决于孔隙率,故该公式实际上是间接的反映了孔隙率与强度之 间的关系。

60年代T ?C ?Powers提出了胶空比理论公式如下[2]:

R二A?r(3)式中:为凝胶体强度,X为胶空比,为回归系数。

常用的关于材料孔隙率与强度的关系表达式有[3]:

1)Balshin公式:

^=^c(1~P)n⑷

其中■为孔隙率为P时的材料强度,〇■。一孔隙率为零时的材料强度,P为孔隙率,为经验常数。

2 )Ryshkewich公式:

a P(5)

其中■为孔隙率为P时的材料强度,〇■。为孔隙率为零时的材

料强度,为经验常数。

90

3 )Schiller公式:

a=乃In p p(6)

其中为材料强度为零时的孔隙率为经验常数。

4)T ?C ?Hanson公式:

R=R0(1 -1.21^)(7)其中:p为孔隙率,R0为孔隙率为零时的强度,R—孔隙率为& 时的强度。

以上公式适用于范围广泛,都反映了材料强度随孔隙率的 增大而减小。孔隙率不仅影响材料的抗压强度,也影响着材料的劈拉强度以及弹性模量,且随着孔隙率的增大而减小[]。虽 然上述四个公式都能够反映总孔隙率与强度之间的关系,但相 关性较低,因此也说明了影响强度的孔结构参数,并不仅仅有孔隙率[]。而对于蒸压加气混凝土,一些学者也做了比较深人的研究。孙抱真[5]等认为前三个公式是统计的经验公式,数据 是由数理统计回归得到的,公式中的系数很难用物理概念加以 解释,并对H a s n表达式的系数进行了修正。郑万廪[6]认为 气孔率与毛细孔率对蒸压加气混凝土都有很大影响,虽然影响 不同,但都可以用B a lh in公式表示。

2孔径分布及孔级配与强度的关系

混凝土的宏观力学性质和孔径有密切的联系,当孔隙率相 同时,混凝土的强度随着孔径的增加呈非线性减小[]。1979 年,吴中伟教授在混凝土科学技术近期发展方向的探讨中提出 改善孔级配将显著提高材料的强度性能[8]。在1980年第七届 国际水泥化学会议上,?Jamber提出了即使是孔隙率相同的不同水化产物,由于不同的孔径分布,强度也可能相差很大,认 为当平均孔半径为100埃时,抗压强度大于140 MPa,当平均孔 半径为250埃时,抗压强度为40 M Pa左右,当孔半径为1 000 埃时,抗压强度小于10 MPa,当平均孔半径为5 000 ~ 10 000埃 时,抗压强度小于5 MPa[5]。因此,可以得出孔径对于强度的影响非常明显。

由Griffith断裂理论可知,当材料应力大于临界应力时,材 料将会发生破坏。临界应力计算公式为

力学性能作业

第一章 1什么是材料力学性能?什么是材料力学性能指标?主要有哪些?影响因素是什么? 2 材料力学性能主要表征有哪些?举例说明应用。如何得到材料的力学性能? 3金属拉伸试验经历哪几个阶段?拉伸试验可以测定哪些力学性能?4拉伸曲线有何作用?拉伸曲线各段图形分别意味着什么? 5不同材料的拉伸曲线相同吗?为什么? 6材料的拉伸应力应变曲线发现了哪几个关键点?这几个关键点分别有何意义? 7塑性材料和脆性材料的应力应变曲线有何不同? 8 弹性变形的实质是什么? 9弹性模量E的物理意义?E是一个特殊的力性指标,表现在哪里?10比例极限、弹性极限、屈服极限有何异同? 11你学习了哪几个弹性指标? 12弹性不完整性包括哪些方面? 13 什么是滞弹性?举例说明滞弹性的应用? 14内耗、循环韧性、包申格效应? 15什么是屈服强度?如何度量屈服强度? 16如何强化屈服强度? 17屈服强度的影响因素有哪些? 18 屈服强度的实际意义?

19真实应力应变曲线与工程应力应变曲线有何不同?有何意义?真实应力应变曲线的关键点是哪个点? 20什么是应变硬化指数n?有何特殊的物理意义?有何实际意义? 21 什么是颈缩?颈缩条件、颈缩点意义? 22 抗拉强度σb和实际意义。 23塑性及其表示和实际意义; 24静力韧度的物理意义。 25静拉伸的断口形式; 26静拉伸断口三要素及其意义; 27解理断裂及其微观断口特征; (27解理面、解理刻面、解理台阶、河流花样; 28解理舌、二次解理、撕裂棱;) 29穿晶断裂、沿晶断裂;脆性断裂、韧性断裂; 30微孔聚集断裂及其微观断口特征。 第二章 1应力状态软性系数α及其意义; 2压缩、弯曲、扭转各有什么主要特点? 3 缺口试样在弹性状态和塑性状态下的应力分布特点; 4缺口效应及其产生原因; 5缺口强化; 6应力集中系数和缺口敏感度; 7什么是金属硬度?意义何在?

织构的测定

第二节织构类型 2.1.形变织构:经金属塑性加工的材料,如经拉拔﹑挤压的线材或经轧制的金属板材,在塑性变形过程中常沿原子最密集的晶面发生滑移。滑移过程中,晶体连同其滑移面将发生转动,从而引起多晶体中晶粒方位出现一定程度的有序化。这种由于冷变形而在变形金属中直接产生的晶粒择优取向称为形变织构。形变织构常有纤维织构、板织构等几种类型。 1)纤维织构金属材料中的晶粒以某一结晶学方向平行于(或接近平行于)线轴方向的择优取向。 具有纤维织构的材料围绕线轴有旋转对称性,即晶粒围绕纤维轴的所有取向的几率是相等的。例如冷拉铝线,其中多数晶粒的[111]方向平行于线轴方向,其余则对线轴有不同程度的偏离,呈漫散分布。这种线材的织构称[111]纤维织构。纤维织构是最简单的择优取向,因其只牵涉一个线轴方向,需要解决的结晶学问题仅为确定纤维轴的指数。纤维织构的类型和完整度(即取向分布的漫散程度)主要和材料的组成、晶体结构类型和变形工艺有关。 除冷拉和挤压工艺外,有时由热浸﹑电沉积或蒸发形成的材料的涂覆层以及材料经氧化和腐蚀后表层所生成的产物都可能产生纤维织构。在实际材料中经常存在不止一种的纤维织构,如铜线中<111>和<100>织构同时出现。 2)板织构在轧制过程中,随着板材的厚度逐步减小,长度不断延伸,多数晶粒不仅倾向于以某一晶向平行于材料的某一特定外观方向,同时还以某一晶面(hkl)平行于材料的特定外观平面(板材表面),这种类型的择优取向称为板织构,一般以(hkl)[hkl]表示,晶粒取向的漫散程度也按两个特征来描述。 图8-1 轧制后部分晶粒取向示意图 如图为经轧制后的纯铁板材的部分晶粒取向示意图﹐其(100)面平行于轧面,[011]方向平行于轧向﹐说明该板材具有一种(100)[011]织构。 2.2 再结晶织构 具有形变织构的冷加工金属,经过退火、发生再结晶以后,通常仍具有择优取向,称为退火织构或再结晶织构。 再结晶织构依赖于所牵涉的再结晶过程,分为初次再结晶和二次再结晶织构。对

Mg-Gd-(Y)合金中溶质拖曳效应对织构演变及力学性能的影响

Mg-Gd-(Y)合金中溶质拖曳效应对织构演变及力学性能的影响镁合金中基面滑移和孪生是主要的变形模式,这是镁合金中形成强织构的原因。研究表明稀土的添加可以有效的弱化织构,从而提高镁合金的成形性能。 但镁稀土合金的织构演变依然依赖于合金元素匹配及热加工工艺。开展镁合金织构弱化机理的研究尤为重要。 目前有关镁稀土合金织构弱化机理的讨论主要聚焦于稀土溶质原子的拖曳效应。而且溶质原子对位错的拖曳会导致动态应变时效(DSA)效应,而DSA效应的表现为拉伸曲线上的锯齿状波动。 所以,稀土溶质的拖曳效应会对镁合金的织构演变和力学性能产生影响。但有关于镁合金中溶质拖曳效应的实验研究非常缺乏。 本文采用电子背散射衍射分析(EBSD)、高角度环形暗场扫描透射电镜(HAADF-STEM)和高温拉伸实验手段研究Mg-Gd-(Y)合金中的溶质拖曳效应对织构演变和力学性能的影响。研究结果表明:相同变形条件下,Mg-1wt.%Gd合金中有较多的剪切带,织构也比对比合金AZ31的织构弱。 不同温度反挤压的Mg-1wt.%Gd样品的EBSD结果表明Mg-1wt.%Gd在400℃反挤压第一次出现了稀土织构<2111>。针对Mg-1wt.%Gd合金中出现稀土织构<2111>//挤压方向(ED)的样品,利用HAADF-STEM表征,发现了大量的<c+a>非基面位错开动,并且在剪切带内的小角度晶界附近,发现Gd原子在伯氏矢量为1/3<1120>的位错上偏聚。 溶质原子在基面位错上的偏聚,对基面位错产生拖曳作用,阻碍基面位错的滑移,增加非基面滑移的比例,增强了Mg-1wt.%Gd合金的协调性变形,最终有效弱化合金织构。Mg-2wt.%Gd和GW83(Mg-8wt.%Gd-3wt.%Y)合金的高温拉伸结果表

影响材料力学性能测试的因素

影响材料力学性能测试的因素 1 拉伸实验强度和延性丈量的准确度和偏向取决于能否严厉恪守指定实验办法并受设备和材料要素、试样制备和实验、丈量误差的影响。 2 关于相同材料的复验协商分歧取决于材料的平均性、试样制备的反复性、实验条件和拉伸实验参数的测定。 3 可影响实验结果的设备要素包括:拉伸实验机的刚性、减震才能、固有的频率和运动部件重量;力的指针准确度和实验机不同范围内力的运用;恰当的加力速度、用适宜的力使试样对中、夹具的平行度、夹持力、控制力的大小、引伸计的适用性和标定、热的消散(经过夹具、引伸计或辅助安装)等等。 4 能影响实验结果的材料要素包括:实验材料的代表性和平均性、试样型式、试样制备(外表光亮度,尺寸准确度,标距端部过渡圆弧,标距内锥度,弯曲试样,螺纹质量等等)。 a、有些材料对试样外表光亮度十分敏感(见注8) 必需研磨至理想光亮度,或者抛光至得到正确结果。 b、关于铸造的、轧制的、锻造的或其他非加工外表状态的试样,实验结果可能受外表特性影响(见注14)。 c、取自部件或构件隶属部位的试样,像外延局部或冒口,或者独立消费的铸件(例如, 脊形试块)可能产生不具部件或构件代表性的实验结果。 d、试样尺寸可能影响实验结果。关于圆柱形的或矩形的试样,改动试样尺寸普通对屈从强度和抗拉强度影响很小,但假如呈现改动,则可影响上屈从强度、伸长率和断面收缩率。用下式比拟不同试样测定的伸长率值: L0/(A0)1 / 2 ( 1) 其中: L0 = 试样的原始标距 A0 = 试样的原始横截面积 1 具有较小的L0/(A0)1 / 2 比值的试样普通会得出较大的伸长率和断面收缩率,例如矩形拉伸试样的宽度或厚度增加后,状况即如此。 2 坚持L0/(A0)1 / 2r比值固定最小值,但影响不大。由于增加图8比例试样的尺寸可发现伸长率和面积收缩有所增加或减少,这取决于材料和实验条件。 e、标距内有一个允许的1 %的锥度可招致伸长率值降低。1 %的锥度会使伸长率降低15 % 。

织构对铝合金性能的影响

内蒙古科技大学本科生 课程论文 题目:织构对铝合金性能的影响学生姓名:张治国 学号:200861107112 专业:金属材料工程 班级:材料2008-1班 指导教师:孙浩

织构对铝合金性能的影响 摘要 铝合金是工业中应用最广泛的一类有色金属结构材料,在航空、航天、汽车、机械制造、船舶及化学工业中已大量应用。铝合金阳极已经发展到三元甚至更多元合金,而且所应用的范围也越来越广。 铝合金结构在一定条件下可以是比钢结构更好的选择,其具有轻质、可模性好、耐腐蚀等优点。热处理制度决定着材料的微观组织, 而微观组织又决定着材料的力学性能。晶界组织与过时效态的晶界组织相似, 使合金具备了高强度、高抗应力腐蚀开裂性和高抗剥落腐蚀性。 高强度铝合金中应用量最大和应用领域最广的仍然具有广阔的应用前景。 关键词:铝合金;结构;影响;组织

Structural on the properties of aluminum alloy influence Abstract Aluminium alloy is the most widely used in industry of a class of non-ferrous metal structure material, in aviation, aerospace, automotive, machinery manufacturing, shipping and the chemical industry has a large application. Aluminum alloy anode has developed to three yuan even more Multiple alloy, and the application range of the more and more widely. Aluminum alloy structure in certain conditions can be a better choice than steel structure, its has the advantages of good, can die, corrosion resistance, etc. Heat treatment system dec ides the microstructure of materials, and microstructure and determines the mechanical properties of materials. Grain boundaries organization and a ageing state grain boundaries of the organization, alloy has the similar high strength, high stress corrosio n cracking resistant and corrosion of spalling. High-strength aluminum alloy in the largest and the most widely application field of still has the broad application prospect. Key words: Aluminum alloy,structure,influence ,organization ,

红砂岩力学性能对路基长期稳定性影响的研究

文章编号:1009-6825(2010)35-0144-02 红砂岩力学性能对路基长期稳定性影响的研究 收稿日期:2010-08-28 作者简介:罗长林(1975-),男,工程师,湖南佳林建设有限公司,湖南长沙 410000 罗长林 摘 要:通过红砂岩的抗剪强度试验、C B R 强度试验、渗透试验等室内试验分析了红砂岩填料的工程性质对压实度、水、 级配等因素的反应敏感程度,进而研究了红砂岩填料的长期强度衰减对路基长期稳定性的影响。关键词:红砂岩,路基,稳定性,蠕变中图分类号:T U 452 文献标识码:A 红砂岩在我国有着广泛的区域性分布,湖南地区大部分为泥 状结构的粘土类岩和粒状结构的碎屑类岩。这类岩石的工程特性主要表现为:其强度因矿物成分和胶结物质的差异而变化颇大,受水浸湿或在大气环境下受干湿循环的作用,岩石呈块状或粒状崩解碎裂;或软化崩解成土,甚至泥化。因此,红砂岩作为路用填筑材料容易造成路基沉陷或软化膨胀失稳,承载力降低,路面严重开裂等多种病害。 1 红砂岩填料控制 为了保障路基的长期性,须选用合格的填料,满足足够的强度和抗变形能力,如透水的砂性土、碎石土等,在路基填筑前对路 基填料进行基本试验与分类处理。红砂岩种类复杂,为了便于红砂岩的路用性质归纳和总结,采用浸水试验,根据24h 后试样的崩解情况将红砂岩石进行分类,见表1。 表1 湘南红砂岩分类 岩石类型Ⅰ类岩Ⅱ类岩Ⅲ类岩天然密度/g ·c m -32.452.392.49天然含水量/%7.885.120.81土粒相对密度2.762.752.75天然干密度/g · c m -3 2.272.262.49孔隙比0.2035 0.2002 0.1127 抗压强度/M P a 0.238.5123.46水理特性 泥状崩解 块状崩解 不崩解 2 红砂岩填料长期性能2.1 红砂岩工程性质 1)红砂岩击实土的抗剪强度。含水量的变化,对三轴抗压强度的影响较大,饱和试样的三轴强度比最佳含水量试样的强度大幅度降低。红砂岩小于2m m 粉碎样三轴固结不排水抗剪强度曲线表明:饱和试样的粘聚力C=120k P a ,内摩擦角φ=17°,最佳含水量试样的粘聚力C=314k P a ,内摩擦角φ=20°。通过比较可以看出,饱和试样的粘聚力约为最佳含水量试样的38%,降低了62%;饱和试样的内摩擦角比最佳含水量试样低约15%。说明含水量的变化对三轴固结不排水试验试样的粘聚力影响较大,而对内摩擦角影响相对较小(见图1)。 三种不同级配的直剪试验结果表明87%,90%,93%,95%, 98%压实度时,试样粘聚力的变化范围分别为54k P a ~119k P a ,62k P a ~136k P a ,66.87k P a ~201.97k P a ,69.77k P a ~230.15k P a ;三组试样内摩擦角的变化范围分别为20°~31.65°,25°~31.2°,28.8°~46.28°,34.98°~58.45°(见图2)。总体上试样的抗剪强度指标随着压实度的增加而呈现逐渐增加的趋势,98%压实度时的粘聚力约为87%压实度时的1.29倍~1.93倍,内摩擦角为1.75倍~1.85倍,随压实度的变化,粘聚力变化的起伏较大,而内 风压f 1在一瞬间大于中间层的压力f 2到达一定时间后f 1=f 2,中间层空气压力和穿孔铝板外的压力相等,雨水在自重作用下下落到地面排出。 当瞬时外风压把雨水从铝板孔带入中间层后碰到内层玻璃幕墙上,由于形成的缝隙皆注以耐候硅酮密封胶。所有的缝已堵塞,故保证雨水不能从立面上渗入室内。 由于本幕墙为双层幕墙,因而增加幕墙施工面积(是单层幕墙的2倍),但从其长远使用时的安全性、节能、功能来看还是值得的。 幕墙工程即使有完善的、合理的设计,有切实可行的施工方案,还需要配备强有力的管理人员及素质高的有经验的施工队伍,这样才能把完善、合理的设计变为现实。 O n c h a r a c t e r i s t i c s o f c u r t a i n w a l l o f e n t e r p r i s e p a v i l i o ni n S h a n g h a i E X P Ob y S t a t e G r i d C o m p a n y J I T o n g -t i a n A b s t r a c t :T h e p a p e r i n t r o d u c e s t h e c h a r a c t e r i s t i c s o f c u r t a i n w a l l o f e n t e r p r i s e p a v i l i o n i n S h a n g h a i E X P Ob y S t a t e G r i d C o m p a n y ,a n d i n d i c a t e s f r o mt h e s a f e t y o f t h e c u r t a i n w a l l ,t h e e n e r g y -s a v i n g ,t h e e n v i r o n m e n t p r o t e c t i o n ,t h e c o m f o r t ,a n d t h e b e a u t y ,s o a s t o m a k e t h e c u r t a i n w a l l b e m o r e p e r f e c t a n d r e a s o n a b l e ,s o t h e c u r t a i nw a l l c a n b e f u r t h e r a p p l i e d .K e yw o r d s :g l a s s c u r t a i nw a l l ,s o l a r e n e r g y P Vp a n e l ,c h a r a c t e r i s t i c s · 144·第36卷第35期2010年12月 山西建筑S H A N X I A R C H I T E C T U R E V o l .36N o .35D e c . 2010 DOI :10.13719/j .cn ki .cn14-1279/tu .2010.35.019

影响钢材力学性能的因素2.

2.3影响钢材力学性能的因素 影响钢材力学性能的因素有: 化学成分冶金和轧制过程时效冷作硬化温度 应力集中和残余应力复杂应力状态 1.化学成分 钢的基本元素为铁(Fe),普通碳素钢中占99%,此外还有碳(C)、硅(Si)、锰(Mn)等杂质元素,及硫(S)、磷(P)、氧(O)、氮(N)等有害元素,这些总含量约1%,但对钢材力学性能却有很大影响。 碳:除铁以外最主要的元素。碳含量增加,使钢材强度提高,塑性、韧性,特别是低温冲击韧性下降,同时耐腐蚀性、疲劳强度和冷弯性能也显著下降,恶化钢材可焊性,增加低温脆断的危险性。一般建筑用钢要求含碳量在0.22%以下,焊接结构中应限制在 0.20%以下。 硅:作为脱氧剂加入普通碳素钢。适量硅可提高钢材的强度,而对塑性、冲击韧性、冷弯性能及可焊性无显著的不良影响。一般镇静钢的含硅量为0.10%~0.30%,含量过高(达1%),会降低钢材塑性、冲击韧性、抗锈性和可焊性。 锰:是一种弱脱氧剂。适量的锰可有效提高钢材强度,消除硫、氧对钢材的热脆影响,改善钢材热加工性能,并改善钢材的冷脆倾向,同时不显著降低钢材的塑性、冲击韧性。 普通碳素钢中锰的含量约为0.3%~0.8%。含量过高(达1.0%~1.5%以上)使钢材变脆变硬,并降低钢材的抗锈性和可焊性。 硫:有害元素。引起钢材热脆,降低钢材的塑性、冲击韧性、疲劳强度和抗锈性等。一般建筑用钢含硫量要求不超过0.055%,在焊接结构中应不超过0.050%。 磷:有害元素。虽可提高强度、抗锈性,但严重降低塑性、冲击韧性、冷弯性能和可焊性,

尤其低温时发生冷脆,含量需严格控制,一般不超过0.050%,焊接结构中不超过 0.045%。 氧:有害元素。引起热脆。一般要求含量小于0.05%。 氮:能使钢材强化,但显著降低钢材塑性、韧性、可焊性和冷弯性能,增加时效倾向和冷脆性。一般要求含量小于0.008%。 为改善钢材力学性能,可适量增加锰、硅含量,还可掺入一定数量的铬、镍、铜、钒、钛、铌等合金元素,炼成合金钢。钢结构常用合金钢中合金元素含量较少,称为普通低合金钢。 2.冶金轧制过程 ?按炉种分: 结构用钢我国主要有三种冶炼方法:碱性平炉炼钢法、顶吹氧气转炉炼钢法、碱性侧吹转炉炼钢法。 平炉钢和顶吹转炉钢的力学性能指标较接近,而碱性侧吹转炉钢的冲击韧性、可焊性、时效性、冷脆性、抗锈性能等都较差,故这种炼钢法已逐步淘汰。 ?按脱氧程度分: 沸腾钢、镇静钢和半镇静钢。 沸腾钢脱氧程度低,氧、氮和一氧化碳气体从钢液中逸出,形成钢液的沸腾。沸腾钢的时效、韧性、可焊性较差,容易发生时效和变脆,但产量较高、成本较低;半镇静钢脱氧程度较高些,上述性能都略好;而镇静钢的脱氧程度最高,性能最好,但产量较低,成本较高。 3.其他因素 时效

材料力学性能试题(卷)集

判断 1.由内力引起的内力集度称为应力。(×) 2.当应变为一个单位时,弹性模量即等于弹性应力,即弹性模量是产生100%弹性变形所需的应力。(√) 3.工程上弹性模量被称为材料的刚度,表征金属材料对弹性变形的抗力,其值越大,则在相同应力条件下产生的弹性变形就越大。(×) 4.弹性比功表示金属材料吸收弹性变形功的能力。(√) 5.滑移面和滑移方向的组合称为滑移系,滑移系越少金属的塑性越好。(×) 6.高的屈服强度有利于材料冷成型加工和改善焊接性能。(×) 7.固溶强化的效果是溶质原子与位错交互作用及溶质浓度的函数,因而它不受单相固溶合金(或多项合金中的基体相)中溶质量所限制。(×) 8.随着绕过质点的位错数量增加,留下的位错环增多,相当于质点的间距减小,流变应力就增大。(√) 9.层错能低的材料应变硬度程度小。(×) 10.磨损、腐蚀和断裂是机件的三种主要失效形式,其中以腐蚀的危害最大。(×) 11.韧性断裂用肉眼或放大镜观察时断口呈氧化色,颗粒状。(×) 12.脆性断裂的断裂面一般与正应力垂直,断口平齐而光亮,长呈放射状或结晶状。(√) 13.决定材料强度的最基本因素是原子间接合力,原子间结合力越高,则弹性模量、熔点就越小。(×) 14.脆性金属材料在拉伸时产生垂直于载荷轴线的正断,塑性变形量几乎为零。(√) 15.脆性金属材料在压缩时除产生一定的压缩变形外,常沿与轴线呈45°方向产生断裂具有切断特征。(√)

16.弯曲试验主要测定非脆性或低塑性材料的抗弯强度。(×) 17.可根据断口宏观特征,来判断承受扭矩而断裂的机件性能。(√) 18.缺口截面上的应力分布是均匀的。(×) 19.硬度是表征金属材料软硬程度的一种性能。(√) 20.于降低温度不同,提高应变速率将使金属材料的变脆倾向增大。(×) 21.低温脆性是材料屈服强度随温度降低急剧下降的结果。(×) 22.体心立方金属及其合金存在低温脆性。(√) 23.无论第二相分布于晶界上还是独立在基体中,当其尺寸增大时均使材料韧性下降,韧脆转变温度升高。(√) 24.细化晶粒的合金元素因提高强度和塑性使断裂韧度K IC下降。(×) 25.残余奥氏体是一种韧性第二相,分布于马氏体中,可以松弛裂纹尖端的应力峰,增大裂纹扩展的阻力,提高断裂韧度K IC。(√) 26.一般大多数结构钢的断裂韧度K IC都随温度降低而升高。(×) 27.金属材料的抗拉强度越大,其疲劳极限也越大。(√) 28.宏观疲劳裂纹是由微观裂纹的形成、长大及连接而成的。(√) 29.材料的疲劳强度仅与材料成分、组织结构及夹杂物有关,而不受载荷条件、工作环境及表面处理条件的影响。(×) 30.应力腐蚀断裂并是金属在应力作用下的机械破坏与在化学介质作用下的腐蚀性破坏的叠加所造成的。(×) 31.氢蚀断裂的宏观断口形貌呈氧化色,颗粒状。(√) 32.含碳量较低且硫、磷含量较高的钢,氢脆敏感性低。(×) 33.在磨损过程中,磨屑的形成也是一个变形和断裂的过程。(√)

力学性能指标

力学性能指标:拉伸强度、断裂伸长率、硬度、弹性模量、冲击强度。 影响力学性能的因素:温度、拉伸速度、环境介质、压力等。 弹性变形特点:可逆变形虎克定律弹性变形量很小,一般不超过0.5%-1% 材料的弹性模量主要取决于结合键的本性和原子间的结合力,而材料的成分和组织对它的影响不大共价键的弹性模量最高. 弹性比功:又称弹性比能,表示金属材料吸收弹性变形功的能力。一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。 滞弹性:在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象。 循环韧性的意义:循环韧性越高,机件依靠自身的消振能力越好,所以高循环韧性对于降机器的噪声,抑制高速机械的振动,防止共振导致疲劳断裂意义重大 金属材料常见的塑性变形方式滑移和孪生 金属应变硬化机理与高分子应变硬化机理的区别:金属机理:位错的增殖与交互作用导致的阻碍高分子机理:发生应变诱导结晶、分子链接近最大伸长 韧性断裂:金属断裂前产生明显的宏观塑性变形的断裂,有一个缓慢的撕裂过程,在裂纹扩展过程中不断消耗能量。脆性断裂:突然发生断裂,基本上不发生塑性变形,没有明显征兆,因此危害性很大。 α值越大,表示应力状态越“软”,金属越易于产生塑性变形和韧性断裂。α值越小,表示应力状态越“硬”,金属越不易于产生塑性变形而易于产生脆性断裂。拉伸时塑性很好的材料,在压缩时只发生压缩变形而不断裂。硬度:布氏、洛氏、维氏 缺口效应:缺口根部产生应力集中,同时缺口截面上的应力分布发生改变。 断裂韧性:由于裂纹破坏了材料的均匀连续性,改变了材料内部应力状态和应力分布,所以机件的结构性能就不再相似于无裂纹的试样性能,传统的力学强度理论就不再适用。 断裂力学就是在这种背景下发展起来的一门新型断裂强度科学,是在承认机件存在宏观裂纹的前提下,建立了裂纹扩展的各种新的力学参量,并提出了含裂纹体的断裂判据和材料断裂韧度。 分析裂纹体断裂问题的方法:应力应变分析方法:考虑裂纹尖端附近的应力场强度,得到相应的断裂K判据。(2) 能量分析方法:考虑裂纹扩展时系统能量的变化,建立能量转化平衡方程,得到相应的断裂G判 KI和KIC的区别:应力场强度因子KI增大到临界值KIC时,材料发生断裂,这个临界值KIC称为断裂韧度。KI是力学参量,与载荷、试样尺寸有关,而和材料本身无关。KIC是力学性能指标,只与材料组织结构、成分有关,与试样尺寸和载荷无关。根据KI和KIC的相对大小,可以建立裂纹失稳扩展脆断的断裂K判据,由于平面应变断裂最危险,通常以KIC为标准建立: 应力腐蚀现象:在应力和特定的化学介质共同作用下,经过一段时间后所产生的低应力脆性断裂现象。 应力腐蚀产生的条件:(1)必须有应力,特别是拉应力的作用, 远低于材料的屈服强度,是脆性断裂;(2)对一定成分的合金,只有在特定介质中才发生应力腐蚀断裂;(3)应力腐蚀断裂速度约为10-8-10-6 m/s数量级的范围内,远大于没有应力时的腐蚀速度,又远小于单纯力学因素引起的断裂速度。 机理:当应力腐蚀敏感的材料置于腐蚀介质中,首先在金属的表面形成一层保护膜,它阻止了腐蚀进行,即所谓“钝化”。由于拉应力和保护膜增厚带来的附加应力使局部地区的保护膜破裂,破裂处金属直接暴露在介质中,成为微电池的阳极,产生阳极溶解。阳极小阴极大,所以溶解速度很快,腐蚀到一定程度又形成新的保护膜,但在拉应力的作用下又可能重新破坏,发生新的阳极溶解。这种保护膜反复形成反复破裂的过程,就会使某些局部地区腐蚀加

材料力学性能复习资料全

一、说明下列力学性能指标的意义 1) P σ 比例极限 2) e σ 弹性极限 3) b σ抗拉强度 4) s τ扭转屈服强度 5) bb σ抗弯强度 6) HBW 压头为硬质合金球时的布氏硬度 7) HK 显微努氏硬度 8) HRC 压头为顶角120金刚石圆锥体、总试验力为1500N 的洛氏硬度 9) KV A 冲击韧性 10) K IC 平面应变断裂韧性 11) R σ应力比为R 下的疲劳极限 12) K th 疲劳裂纹扩展的门槛值 13) ISCC K 应力腐蚀破裂的临界应力强度因子 14) /T t εσ给定温度T 下,规定试验时间t 产生一定的蠕变伸长率δ的蠕变极限 15) T t σ给定温度T 下,规定试验时间t 发生断裂的持久极限 二、单向选择题 1)在缺口试样的冲击实验中,缺口越尖锐,试样的冲击韧性( b )。 a) 越大; b) 越小;c ) 不变;d) 无规律 2)包申格效应是指经过预先加载变形,然后再反向加载变形时材料的弹性极限( b )的现象。 a) 升高 ;b) 降低 ;c) 不变;d) 无规律可循 3)为使材料获得较高的韧性,对材料的强度和塑性需要( c )的组合。 a) 高强度、低塑性 ;b) 高塑性、低强度 ;c) 中等强度、中等塑性;d) 低强度、低塑性 4)下述断口哪一种是延性断口(d )。 a) 穿晶断口;b) 沿晶断口;c) 河流花样 ;d) 韧窝断口 5) 5)HRC 是( d )的一种表示方法。 a) 维氏硬度;b) 努氏硬度;c) 肖氏硬度;d) 洛氏硬度 6)I 型(开型)裂纹的外加应力与裂纹面(b );而II 型(滑开型)裂纹的外加应力与裂

力学性能整理

第一章 弹性比功——材料吸收弹性变形功的能力 滞弹性:在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象 滞弹性的影响因素 (1)材料的成分、组织 材料组织越不均匀,滞弹性越明显。 (2)试验条件:a) 温度T↑→滞弹性速率和滞弹性应变↑ b) 切应力愈大,滞弹性越明显。 消除办法: 采用长期回火 回火的作用是使间隙原子到位错空位和晶界去,自身变得比较稳定。 金属的内耗 加载时消耗于金属的变形功大于卸载时金属放出的变形功,因而有一部分变形 功为金属所吸收,这部分吸收的功就称为金属的内耗。 循环韧性:金属材料在交变载荷(振动)下吸收不可逆变形功的能力,称为金属的循环韧性, 也叫金属的内耗,表示材料吸收不可逆变形的能力,亦称消振性。 循环韧性的意义是:材料循环韧性愈高,则机件依靠材料自身的消振能力愈好。 包申格(Bauschinger )效应 金属材料经过预先加载产生少量塑性变形(残余应变小于1 -4%),而后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现 象。 消除方法(1)预先经受较大的塑性变形(2)在第二次反向受力前使金属材料于回复或再 结晶温度下退火 金属材料常见的塑性变形方式主要为滑移和孪生 屈服现象是金属材料开始产生宏观塑性变形时的标志。 屈服点σs :材料的在拉伸过程中试验力不增加(保持恒定)仍能 继续伸长时的应力。 σs =Fs/ A0 上屈服点σsu : 试样发生屈服而试验力首次下降前的最大应力。 σsu =Fsu/A0 下屈服点σsl : 当不计初始瞬时效应(指在屈服过程中试验力第一次发生下降)时的屈服阶 段的最小应力。 σsl =FsL/ A0 影响屈服强度的因素 (一) 影响屈服强度的内因素 1.金属本性和晶格类型(结合键、晶体结构) 不同的金属其晶格类型,位错运动所受的阻力不同,故彼此的屈服强度不同,单晶的屈服强 度从理论上说是使位错开始运动的临界切应力,其值与位错运动所受到的阻力(晶格阻力- -派拉力、位错运动交互作用产生的阻力)决定。 派拉力:

钢材力学性能实用实用标准一览表

钢材力学性能指标汇总表钢筋的公称横截面积与公称重量 公称直径,mm 公称横截面积mm 2 公称重量,Kg/m 6.5 33.18 8 50.27 0.395 10 78.54 0.617 12 113.1 0.888 14 153.9 1.21 16 201.1 1.58 18 254.5 2.00 20 314.2 2.47 22 380.1 2.98 25 490.9 3.85 28 615.8 4.83 32 804.2 6.31 36 1018 7.99 40 1257 9.87 50 1964 15.42 注:表中公称重按密度为7.85g/cm3计算。 一、钢筋混凝土用热轧带肋钢精GB1499-1998 1、力学性能 牌号公称直径mm 屈服点σsMpa 抗拉强度σbMpa 伸长率δs%

不小于 HRB335 6~25 28~50 335 490 16 HRB400 6~25 28~50 400 570 14 HRB500 6~25 28~50 500 630 12 2、弯曲性能(按下表规定的弯心直径弯曲180°后,钢筋受弯曲部位表面不得产生裂纹)牌号公称直径mm 弯曲试验弯心直径 HRB335 6~25 28~50 3a 4a HRB400 6~25 28~50 4a 5a HRB500 6~25 28~50 5a 7a 二、钢筋混凝土用热轧光圆钢筋GB13013-91 表面形状钢筋级别强度等级代号公称直径mm 屈服点σsMpa 抗拉强度σbMpa 伸长率δs% 冷弯d弯心直径a公称直径 不小于 光圆ΙR235 8~20 235 370 25 180°d=a 三、低碳钢热轧圆盘条GB/T701-1997 牌号屈服点σsMpa 抗拉强度σbMpa 伸长率δs% 冷弯180°d弯心直径a公称直径 不小于 Q215 215 375 27 d=0 Q235 235 410 23 d=0.5a 四、冷轧扭钢筋JG3046-1999 表一轧扁厚度、节距

钢材成分对机械性能的影响

钢材成分对机械性能的影响 一、碳(C):钢中含碳量增加,屈服点和抗拉强度升高,但塑性和冲击性降低,当碳含量超过0.23%时,钢的焊接性能变坏,因此用于焊接的低合金结构钢,含碳量一般不超过0.20%。碳量高还会降低钢的耐大气腐蚀能力,在露天料场的高碳钢就易锈蚀;此外,碳能增加钢的冷脆性和时效敏感性。 二、硅(Si):在炼钢过程中加硅作为还原剂和脱氧剂,所以镇静钢含有 0.15-0.30%的硅。如果钢中含硅量超过0.50-0.60%,硅就算合金元素。硅能显著提高钢的弹性极限,屈服点和抗拉强度,故广泛用于作弹簧钢。在调质结构钢中加入1.0-1.2%的硅,强度可提高15-20%。硅和钼、钨、铬等结合,有提高抗腐蚀性和抗氧化的作用,可制造耐热钢。含硅1-4%的低碳钢,具有极高的导磁率,用于电器工业做矽钢片。硅量增加,会降低钢的焊接性能。 三、锰(Mn):在炼钢过程中,锰是良好的脱氧剂和脱硫剂,一般钢中含锰0.30-0.50%。在碳素钢中加入0.70%以上时就算“锰钢”,较一般钢量的钢不但有足够的韧性,且有较高的强度和硬度,提高钢的淬性,改善钢的热加工性能,如16Mn钢比A3屈服点高40%。含锰11-14%的钢有极高的耐磨性,用于挖土机铲斗,球磨机衬板等。锰量增高,减弱钢的抗腐蚀能力,降低焊接性能。

四、磷(P):在一般情况下,磷是钢中有害元素,增加钢的冷脆性,使焊接性能变坏,降低塑性,使冷弯性能变坏。因此通常要求钢中含磷量小于 0.045%,优质钢要求更低些。 五、硫(S):硫在通常情况下也是有害元素。使钢产生热脆性,降低钢的延展性和韧性,在锻造和轧制时造成裂纹。硫对焊接性能也不利,降低耐腐蚀性。所以通常要求硫含量小于0.055%,优质钢要求小于0.040%。在钢中加入0.08-0.20%的硫,可以改善切削加工性,通常称易切削钢。 六、铬(Cr):增加耐磨损性,硬度,最重要的是耐腐蚀性。在结构钢和工具钢中,铬能显著提高强度、硬度和耐磨性,但同时降低塑性和韧性。性铬又能提高钢的抗氧化和耐腐蚀性,因而是不锈钢、耐热钢的重要合金元素,拥有13%以上的认为是不锈钢。 七、镍(Ni):镍能提高钢的强度,而又保持良好的塑性和韧性。镍对酸碱有较高的耐腐蚀能力,在高温下有防锈和耐热能力。但由于镍是较稀缺的资源,故应尽量采用其他合金元素代用镍铬钢。 八、钼(Mo):钼能使钢的晶粒细化,提高淬透性和热强性能,在高温时保持足够的强度和抗蠕变能力(长期在高温下受到应力,发生变形,称蠕变)。结构钢中加入钼,能提高机械性能。还可以抑制合金钢由于火而引起的脆性。在工具钢中可提高红性。

力学性能

2007~2008 学年第一学期期末考试试题答案及评分标准《材料力学性能》卷(B 共8 页)(考试时间:2008 年 1 月14 日)一、名词解释(每小题2 分,共12 分)1 弹性比功:指材料吸收变形功而不发生永久变形的能力,它标志着单位体积材料所吸收的最大弹性变形功,是一个韧度指标。2 分)(2 应变时效:经变形和时效处理后,材料塑性、韧性降低,脆性增加的现象 3 静力韧性:指材料在静载拉伸断裂前吸收塑性变形功和断裂功的能力。2 (分)4 脆性断裂:断裂前,材料未发生明显的宏观塑性变形的断裂,或指断裂应力低于材料屈服强度的断裂。2 分)(5 应力状态系数:应力状态中最大切应力和最大正应力的比值。2 分)(6 环境敏感断裂:料在环境介质中的力学行为是介质和应力共同作用的结材果;这种介质和应力相互促进、加速材料损伤、促使裂纹早期形成并加速其扩展和破坏的现象称作环境敏感断裂。2 分)(二、填空题(每空0.5 分,共22 分)1 通过静载拉伸实验可以测定材料的弹性极限、屈服极限、抗拉强度、断裂强度等强度指标,及延伸率、断面收缩率等塑性指标。2在材料的完整弹性变形中,加载的应力-应变曲线与卸载曲线完全重合;而对不完整的弹性变形,存在着弹性后效、弹性滞后、包辛格效应等弹性变形时加载线与卸载线不重合的现象。3 断口的三要素是纤维区、放射区和剪切唇。微孔聚集型断裂的微观特征是韧窝;解理断裂的微观特征主要有解理台阶和河流和舌状花样;沿晶断裂的微观特征为石状断口和冰糖块状断口。 4 测定材料硬度的方法主要有压入法、回跳法和刻划法;其中压入硬度法又可分为布氏硬度、洛氏硬度、维氏硬度、和努氏硬度等。3 分)( 5 在平面应变断裂韧性K I C 的测试过程中,对三点弯曲试样的厚度B、裂纹长K IC K IC度 a 和韧带长度W-a 的要求为:B 2.5 2 、a 2.5 2 、s s K ICW a 2.5 2 ,这样做的目的是为了保证裂纹尖端处于小范围屈服和平面s应变状态。6)材料的环境敏感断裂,可按材料或零件受力的性质划分为应力腐蚀开裂、氢脆、腐蚀疲劳和腐蚀磨损等形式。在应力腐蚀断裂中材料与介质的组合特定的;在腐蚀疲劳断裂中材料会在任何介质中出现。7)材料长期在高温条件下时,在恒应力下发生的塑性变形现象称作蠕变;而在恒应变下的应力降低现象称作应力松弛。8 )按照磨损机理,磨损包括粘着磨损,磨粒磨损,疲劳磨损,腐蚀磨损微动磨损和冲蚀磨损等六种基本类型。9)根据维度,纳米材料可分原子团簇、纳米微粒等0 维纳米材料,纳米线等1 维纳米材料,纳米薄膜等2 维纳米材料,及纳米块体等 3 维纳米材料。三、简答题(每小题4 分,共24 分)1)解释平面应力和平面应变状态,并用应力应变参数表述这两种状态。答:对薄板,由于板材较薄,在厚度方向上可以自由变形,即σ z0。这种只在两个方向上存在应力的状态称为平面应力。 2 分)(对厚板,由于厚度方向变形的约束作用,使得z方向不产生应变,即εz=0。这种状态称为平面应变。2 分)(2)形变强化的规律是什么?其工程意义有哪些?答:材料从屈服到产生颈缩间的形变强化阶段,遵从Hollo mo n公式SK ε n 。1 (分)形变强化的意义为:1)可使金属零件具有抵抗偶然超载的能力,保证安全;2)可强化材料;3)形变强化可以保证某些冷成形工艺的顺利进行。(3 分)3)缺口会引起哪些力学响应?如何评定材料的缺口敏感性?答:材料截面上缺口的存在,使得在缺口的根部产生应力集中、双向或三向应力,并试样的屈服强度升高,塑性降低。 2 分)(材料的缺口敏感性,可通过缺口静拉伸、偏

材料力学性能习题

第一章 1什么是材料力学性能?有何意义? 2金属拉伸试验经历哪几个阶段?拉伸试验可以测定哪些力学性能? 3 不同材料的拉伸曲线相同吗?为什么? 4塑性材料和脆性材料的应力应变曲线有何不同? 5 弹性变形的实质是什么? 6弹性模量E的物理意义?E是一个特殊的力性指标,表现在哪里?7比例极限、弹性极限、屈服极限有何异同? 8你学习了哪几个弹性指标? 9弹性不完整性包括哪些方面? 10 什么是滞弹性?举例说明滞弹性的应用? 11内耗、循环韧性、包申格效应? 12什么是屈服强度?如何度量屈服强度? 13如何强化屈服强度? 14屈服强度的影响因素有哪些? 15 屈服强度的实际意义? 16真实应力应变曲线与工程应力应变曲线有何不同?有何意义? 17 什么是应变硬化指数n?有何特殊的物理意义?有何实际意义? 18 什么是颈缩?颈缩条件、颈缩点意义? 19 抗拉强度σb和实际意义。 20塑性及其表示和实际意义; 21静力韧度的物理意义。 22 静拉伸的断口形式; 23静拉伸断口三要素及其意义; 24解理断裂及其微观断口特征; 25解理面、解理刻面、解理台阶、河流花样; 26解理舌、二次解理、撕裂棱; 27穿晶断裂、沿晶断裂;脆性断裂、韧性断裂; 28微孔聚集断裂及其微观断口特征。 第二章 1应力状态软性系数α及其意义; 2压缩、弯曲、扭转各有什么特点? 3 缺口试样在弹性状态和塑性状态下的应力分布特点; 4缺口效应及其产生原因; 5缺口强化; 6缺口敏感度; 7什么是金属硬度?意义何在? 8硬度测试方法有几种(三类)?有何不同? 9金属硬度测试的意义(或者硬度测试为什么广泛应用)? 10布氏硬度原理; 11布氏硬度的相似原理; 12布氏硬度的特点和适用范围;

第一章 机械力学性能习题参考答案

第一章 机械力学性能 习题参考答案 一、填空题 1.材料的力学性能的主要指标有 强度 、 硬度 、 冲击韧性 、 塑性 等。 2.HBS250~300应改为250~300 HBS ;600~650HBS 应改为600~650HBW 或600~650HV ;5~10HRC 应改为5~10HBS ;HRC70~75应改为 70~75HRA 。 3.σs 表示 屈服强度 ,σ r0.2:表示 条件屈服强度 ,其数值越大,材料抵抗 塑性变形 的能力越大。 4.材料常用的塑性指标有延伸率 和 面缩率 两种。其中用面缩率表示塑性更接近材料的真实变形。 二、是非题 ( F )1.机器中的零件在工作时,材料强度高的不会变形,材料强度低的一定会产生变形; ( F )2.材料的E 越大,其塑性越差; ( F )3.屈服点是表征材料抵抗断裂能力的力学性能指标; ( F )4.所有的金属材料均有明显的屈服现象。 三、思考题 1.现测得长、短两根圆形截面标准试样的δ5,和δ10均为25%,其原始直径为d 0=10mm,求两试样拉断后的标距长度是多少?哪一根试样的塑性好?为什么? 解:由下列公式 可算得: 不能判断试样塑性好坏;因为只有当L0 /d0为常数时,塑性值才有可比性。 2.标准规定,15钢的力学性能指标不应低于下列数值,σb ≥372(MPa),σs ≥225(MPa),δ5≥27%,ψ≥55%。现将购进的15钢制成d 0=10mm 的圆形截面短试样,经拉伸试验后测得F b =34500N ,F s =21100N ,L 1=65mm ,d l =6mm 。试问,这批15钢的力学性能是否合格? 解:由屈服强度和抗拉强度公式得 100100%l l l δ-=?()1100025%1010125mm d d L =?+=()150025%5562.5mm d d L =?+=()221100268.79103.142S MPa σ==?()234500439.49103.142b MPa σ==?56550100%30%50δ-=?=222 106100%64%10ψ-=?=

力学性能测试中各因素的影响

力学性能测试中各因素的影响 金属力学性能试验方法是检测和评定金属材料产品质量的重要手段之一。其中拉伸试验则是应用最广泛的力学性能试验方法。拉伸试验过程中的各项强度和塑性性能指标是反映金属材料力学性能的重要参数。结合国家标准、工作中出现的问题及查阅相关资料,现对影响拉伸试验结果准确度的因素,如试样的形状、尺寸、表面加工精度、加载速度、夹持器具及周围环境等做一次总结。 1样品的制备 1. 1样品制备对拉伸曲线和测试数据有影响 样品制备是很关键,准确的制样是获得准确实验数据的前提,GB /T2975 – 1998和GB/T 228.1-2010对试样的取材、形状、尺寸、加工精度和方法等都作了统一的规定。实际工作中,对于板材和管材的试样是平板和圆管弧板带肩试样,一是制样时一般采用铣削加工,在过渡圆处会停止进刀,如果最后一刀给尽量较大,在加工抗力的作用下,使平行段铣削时就有较多的让刀,到达过渡圆弧与平行段衔接处的截面积减小;二是过渡圆有应力集中的影响,拉伸中试样的标距外部分先进入屈服状态。对于圆管弧板带肩试样在夹紧时,展平夹紧部分使得试样产生弯曲应力,其最大值集中在过渡圆处,拉伸时也会产生曲线异常的现象,会影响测试数据。 1. 2样品制备要求 首先,根据要检验样品,按GB /T228.1 - 2010制备标准样品。国家标准对试样的取材、形状、尺寸、加工精度、试验的手段和方法以及数据的处理等都作了统一的规定。其次,对破坏性试验,如材料强度指标的测定,考虑到材料质地的不均匀性,为使实验结果能相互比较,获得准确可靠的数据,应制备多个试样,得出材料的性能指标,然后综合评定结果,对非破坏性试验,试样弹性模量、变形量等的测定,因为要借助于变形放大仪表,为减小测量系统引入的误差,一般也要采用多次重复,然后综合评定结果。第三,样品制备时,应尽量使过渡圆衔接处面积相等,提高加工精度,修磨光滑,不要有加工刀痕,减小应力集中,以减少试验结果误差。 2拉伸速度对试验结果的影响及控制要求 2. 1拉伸速度的影响 拉伸速度不仅对测试数据有影响,对拉伸曲线的形貌也有影响。板状拉伸试样拉伸时,会出现这种情况,其拉伸曲线在上屈服点处不是先沿弹性曲线向上到达上屈服点,然后再向下进入屈服过程,而是出现在沿弹性直线向上到达下屈服点时,曲线先向左、向上、再向右、向下画圈,最后进入屈服流动过程的现象。试样在被拉伸到屈服极限附近时,在引伸计标距范围内突然出现拉伸力几乎不变,引伸计测得的变形出现回弹,而不是快速增加这样的拉伸曲线现象,主要原因是:试样在被拉伸到屈服极限附近

相关文档
最新文档