拉曼光谱与光谱分析
光谱分析3-拉曼
![光谱分析3-拉曼](https://img.taocdn.com/s3/m/ad16fe05de80d4d8d15a4f48.png)
Huazhong University ofScience and Technology材料分析与表征技术黄云辉材料科学与工程学院拉曼光谱分析§3-1 基本原理§3-1-1 拉曼散射效应拉曼光谱分析技术是以拉曼效应为基础建立起来的分子结构表征技术,与红外光谱相同,其信号来源与分子的振动和转动。
拉曼(Raman),印度物理学家。
1921年开始研究并在1928年发现了光散射的拉曼效应,1930年获得了诺贝尔物理奖。
为表彰拉曼的巨大贡献,印度政府将2月28日定为“拉曼节”。
拉曼光谱与吸收光谱的差异(1)吸收光谱中光子的能量必须等于分子的某两个能级之间的能量差,而拉曼光谱中入射光子的频率和分子跃迁所涉及的能量差之间无确定的关系。
(2)拉曼散射的强度很低,只有入射光的10-7,一般在入射光的垂直方向检测。
(3)拉曼光谱是通过测定散射光相对于入射光频率的变化来获取分子内部结构信息。
二、转动拉曼光谱无论同核还是异核双原子分子,都有转动拉曼光谱。
转动能级(谱项))1()(+=J BJ J F转动拉曼光谱选律2,0±=ΔJ 0=ΔJ 2−=ΔJ 2=ΔJ 0~~νν=Q )2/3(4~~0++=J B O νν)2/3(4~~0+−=J B S ννQ 支O 支S 支统一公式)2/3(4~+±=ΔJ B ν小拉曼位移三、振动拉曼光谱振动时的极化率变化)(00r r −+=βαα振动能级(谱项)ωχω~)2/1v (~)2/1v ()v (2+−+=G 选律简谐振子非简谐振子1v ±=ΔL,3,2,1v ±±±=Δ10→频率位移ωχν~)21(~−=Δ大拉曼位移四、共振拉曼光谱普通拉曼共振拉曼四、拉曼光谱与红外光谱的互补性拉曼光谱和红外光谱有互补性:(1)都是振动转动光谱;(2)红外:固有偶极矩拉曼:感生偶极矩(3)活性互补拉曼与红外的互补性不经分离而直接测定,在红外吸收上会造成很大干扰,下图为红外图和拉曼图的比较测试方法§3-2仪器结构与原理§3-3 应用无机材料分析有机化合物分析联用技术§3-3-1 拉曼光谱分析的特点•定性分析:不同的物质具有不同的特征光谱,因此可以通过光谱进行定性分析。
拉曼光谱实验方法及谱分析方法的研究
![拉曼光谱实验方法及谱分析方法的研究](https://img.taocdn.com/s3/m/d59fde81bceb19e8b8f6ba54.png)
物理与工程 Vol.17 No.2 2007拉曼光谱实验方法及谱分析方法的研究师振宇1 黄 山2 方 堃3霍剑青4(指导教师)(1中国科学技术大学近代物理系;2中国科学技术大学少年班;3中国科学技术大学物理系;4中国科学技术大学理学院)(收稿日期2006211230)摘 要 本文提出了振动拉曼光谱的实验方法和谱图数据处理方法,并应用于四氯化碳、苯等样品的拉曼光谱的获得和谱分析中.实验结果与通过Gaussian 计算软件计算的理论结果相吻合.结果表明,本文提出的方法能有效地获得信号较弱和在较窄的谱段上谱线强度比相差悬殊的拉曼振动散射谱,并对其进行谱分析.关键词 拉曼光谱;实验方法;数据处理;去噪处理 引言拉曼光谱是分子或凝聚态物质的散射光谱,入射光是强单色光,散射光除含有频率未变的光(称瑞利散射)外,还含有相当弱的有频率增减的光,其中带有散射体结构和状态的信息.在凝聚态物理学中,拉曼光谱是取得结构和状态信息的重要手段,因此拉曼光谱在科学研究和国民经济各领域得到广泛的应用.拉曼光谱[1]也是大学物理实验中的重要实验.实验中由于拉曼散射光强弱和噪声干扰等原因,往往无法获得完整的谱图,因此无法对其进行分析.本文以大学物理实验中常用的四氯化碳、苯等样品为例,运用L RS 2III 激光拉曼光谱仪研究了拉曼光谱实验方法和对谱图数据变换后的谱分析方法,并应用Gaussian 软件[3]对四氯化碳、苯等样品的谱图进行了理论分析.结果表明,实验数据与理论值吻合. 实验原理和实验方法拉曼散射[1]是光和物质相互作用引起的,在光子和散射物质分子的碰撞过程中,散射物质会从入射光子吸收部分能量,或把自身的能量加到入射光子身上去,再发射的光子便与原光子不相干,从而形成新的谱结构.当光子与分子发生弹性碰撞时,光子与分子之间没有能量交换,此时,散射光与入射光频率相同,这种频率未变的谱线叫做瑞利线.当光子与分子发生非弹性碰撞时,光子改变了能量和运动方向,使散射光频率ν与入射光频率ν0不同,ν<ν0的谱线称斯托克斯线;ν>ν0的谱线称为反斯托克斯线.三种谱线的频率各为ν0、ν0+Δν、ν0-Δν,而有用的信息就包含在Δν的数值及其强度、偏振等参量中.瑞利线的强度约为入射光强的10-3量级,较强的斯托克斯线的强度则不到入射光的10-6量级;反斯托克斯线起因于样品中较高能态的作用,按玻耳兹曼分布率,其数甚少,故相应强度也大减,不到斯托克斯线的1/10.在较窄的谱段上有强度比如此悬殊的谱线同时出现,因此,如何获得清晰的信号较弱的拉曼散射谱是拉曼光谱技术和实验方法的关键.为获得信号较弱的拉曼散射谱,通常拉曼光谱仪的基本结构如图1所示.图1 拉曼光谱基本结构示意图本文采用天津港东的L RS —Ⅲ激光拉曼光谱仪,以倍频YVO 3:Nd 激光为光源,光源波长为物理与工程 Vol.17 No.2 2007532.0nm.采用光电倍增管作为拉曼光谱的单通道接受器件,单光子计数器进行信号处理,并应用计算机对谱仪运行进行自动控制、自动信号采集和加工处理.拉曼散射是一种极微弱的光,其强度小于入射光强的10-6,比光电倍增管本身的热噪声水平还要低.当弱光照射到光阴极时,每个入射光子以一定的概率(即量子效率)使光阴极发射一个电子.这个光电子经倍增系统的倍增最后在阳极回路中形成一个电流脉冲,通过负载电阻形成一个电压脉冲,这个脉冲称为单光子脉冲.除光电子脉冲外,还有各倍增极的热发射电子在阳极回路中形成的热发射噪声脉冲.热电子受倍增的次数比光电子少,因而它在阳极上形成的脉冲幅度较低.此外还有光阴极的热发射形成的脉冲.噪声脉冲和光电子脉冲的幅度的分布如图2所示.拉曼散射形成的光电子脉冲和光电倍增管的热噪声脉冲在脉冲幅度和分布上都不相同,利用脉冲幅度甄别器把幅度低于V h 的脉冲抑制掉.只让幅度高于V h 的脉冲通过就能实现单光子计数.图2 光电倍增管输出脉冲分布 实验获取谱图及数据处理(1)阈值的选取谱图质量灵敏性依赖于甄别电平(阈值)的选取.如果选择过小则脉冲幅度甄别器无法排除噪声脉冲的干扰,拉曼散射峰将被淹没于噪声之中;而如果选择阈值过大,拉曼散射信号将减弱或被误认为噪声从而被排除.本实验采用的光电倍增管输出脉冲分布图中V h =21V.图3为实验中分别取阈值19V 、21V 、24V 时获得的拉曼光谱图.其中19V 、21V 、24V 分别对应图3中的a 、b 、c .由图3可知,当阈值选取为21V 时,获得的谱图效果最佳.图3 选取不同阈值时的拉曼光谱(2)分段获取强度相差悬殊的谱线在苯的拉曼光谱的实验中,由于斯托克斯线和反斯托克斯线的强度相差过大,在相同的实验参数下,常常无法同时获得清晰和对比明显的斯托克斯和反斯托克斯谱线.实验中可采用选取不同的实验参数分段获取的方法,适当延长反斯托克斯线的扫描积分时间,以增大其强度,然后针对不同的区域选择合适的纵坐标以计数率最大值,使得拉曼光谱图中斯托克斯线和反斯托克斯线各个峰值都比较明显.图4 苯的拉曼光谱图实验中采用苯样品,对斯托克斯线和反斯托克斯线采用相同的扫描积分时间和不同的扫描积分时间分别测试,获得谱图4和图5.图4中的物理与工程 Vol.17 No.2 2007(a 1)、(b 1)分别为在同等条件下测得的斯托克斯线和反斯托克斯线,图5中的(a 2)为原积分时间并且调整纵坐标分度值之后的斯托克斯线;(b 2)为延长积分时间并且调整纵坐标分度值之后的反斯托克斯线.图5 分段获取的苯的拉曼光谱图(3)数据处理为使谱图数据的可比较性更强,对谱图数据的纵坐标进行了取以10为底的对数的处理,图6中的(a )、(b )分别为取对数前和取对数后的谱图.显然取对数后反斯托克斯线更突显,拉曼光谱图关于瑞利线的对称性也更加显著. 理论计算与实验结果对比用Gaussian 计算软件[3]采用闭壳层Hartree 2Fock [2]方法,使用62311G (d )基组,对苯和四氯化碳进行优化及振动计算.由于Gaussian 计算软件中使用的是气态分子的模型.而实验中采用的是液态样品,因此在拉曼光谱强度计算上会产生一些差异.但是由于实验所采用的样品都为非极性分子,分子之间不存在氢键等强相互作用,可认为是近独立体系,其本征振动频率在实验范围内并不会因为液态而产生明显变化,因此可以采用Gaussian 软件的计算结果对其拉曼振动的本征频率进行标定和检验.四氯化碳计算的结果为表1所示.(a )纵坐标取对数前的谱图(b )纵坐标取对数后的谱图图6 取对数前、后的拉曼光谱图表 1频率/cm -1224.0254224.2814326.6016拉曼强度/A 4/AMU 0.00800.01910.0001频率/cm -1326.8714326.9296486.1319拉曼强度/A 4/AMU 0.01450.00910.0034频率/cm -1794.5165795.2350795.9851拉曼强度/A 4/AMU0.00140.00160.0016 表中四氯化碳有9种振动方式,可以分为4类振动模式对应着4种分子振动能量,它们对应的振动频率分别为频率/cm -1224.0254326.6016486.1319794.5165 用本文阐述的实验方法获得的四氯化碳拉曼光谱图与理论计算谱图的比较如图7所示,图中(a )、(b )分别为实验光谱图和理论计算谱图.物理与工程 Vol.17 No.2 2007图7 四氯化碳的实验与理论计算拉曼光谱对比用上述同样的方法计算,苯总共有30种振动本征模式,其本征频率和强度如表2所示.表 2频率/cm -1413.0431413.7654624.2749拉曼强度/A 4/AMU 0.00020.00240.0002频率/cm -1624.4754684.6204722.0719拉曼强度/A 4/AMU 0.00020.00010.0014频率/cm -1855.4477856.9458962.4292拉曼强度/A 4/AMU 0.00010.00070.0001频率/cm -1963.44811003.56541013.9302拉曼强度/A 4/AMU 0.00100.00030.0001频率/cm -11026.55491061.13551061.2813拉曼强度/A 4/AMU 0.00010.00010.0001频率/cm -11178.73861200.89281201.0539拉曼强度/A 4/AMU 0.00010.00020.0004频率/cm -11338.26411387.39071519.9150拉曼强度/A 4/AMU 0.00010.00070.0001频率/cm -11520.20091642.31191642.4148拉曼强度/A 4/AMU 0.00010.00010.0002频率/cm -13154.25543163.65023164.2866拉曼强度/A 4/AMU 0.00040.00030.0012频率/cm -13180.20023180.75713191.6642拉曼强度/A 4/AMU0.00070.00070.0004 由于振动频率存在简并,实际仅存在有20个不同的振动频率,它们的数值为表3所示: 表 3频率/cm -1413.0431624.2749684.6204722.0719856.9458频率/cm -1962.42921003.56541013.93021026.55491061.1355频率/cm -11178.73861200.89281338.26411387.39071519.9150频率/cm -11642.31193154.25543163.65023180.20023191.6642 实验中测得的拉曼光谱谱带远少于理论值,其原因除相等能量简并外,还由于仪器的限制,使谱带强度过弱,吸收带超出仪器测试范围;仪器分辨率有限,以至于能量相近的吸收带无法分开等.实验中测得的苯拉曼光谱和相应的理论计算光谱图如图8所示.其中(a )为实验谱图,(b )为理论计算谱图.图8 苯实验与理论计算拉曼光谱图对比由于H F 方法忽略电子相关效应,所测得的频率结果有系统误差,大约在10%~12%.一般对于HF 方法,采用计算的频率乘以矫正因子0.9613,从而与实验值吻合.通过理论计算谱图和实验谱图对比,可以看出实验拉曼光谱谱线频率的数据能够和理论值较好地吻合,从而证明了本文阐述的实验方法和谱数据处理方法的可行性. 结论本文以四氯化碳和苯样品为例,采用脉冲幅度甄别器阈值的选取方法,分段获取强度相差悬殊谱线的方法以及对数处理数据等方法得到了强物理与工程 Vol.17 No.2 2007度对比较为明显的拉曼光谱图,并且采用Gaussian计算软件对样品的拉曼光谱图进行了理论计算.结果表明,实验数据同理论值吻合,从而证明了本文所用实验方法和谱图数据处理方法的正确性和可行性.该方法在拉曼光谱的获得及其谱分析中将有广泛的应用和参考价值.参 考 文 献[1] 轩植华,霍剑青,姚坤等.大学物理实验 第四册.北京:高等教育出版社2006.6:50~59[2] M.J.Frisch,Y.Yamaguchi,H. F.Schaefer,III and J.S.Binkley.Analytic Calculation of Raman Intensities for Closed2Shell Wavefunctions.J.Chem.Phys.,1986, 84,531[3] Gaussian03User’s Reference∂leen Frisch Michael J.Frisch Gary W.Trucks(上接第59页)参 考 文 献[1] 王长春.从能量的角度讨论两体碰撞问题.大学物理,2005,24(9):18~19[2] 程守洙,江之永.普通物理学(第4版) 第一册.北京:高等教育出版社,1982.105[3] 孙安媛,黄沛天.也谈完全非弹性碰撞和恢复系数.大学物理,2001,20(3):9~11[4] 黄沛天,马善钧.跟踪碰撞的图形描述.大学物理,2005,24(4):8~10征登广告本刊承办刊登关于教学仪器、高新技术产品和新书出版等广告,欢迎有关公司、厂家及各界人士与我刊联系,商洽广告业务,我们一定信守合同,并以优惠价格收取费用.联系办法详见封四.。
拉曼光谱 实验报告
![拉曼光谱 实验报告](https://img.taocdn.com/s3/m/ae834037f56527d3240c844769eae009581ba2e3.png)
拉曼光谱实验报告拉曼光谱实验报告引言:拉曼光谱是一种非常重要的光谱分析技术,它可以通过测量样品散射光的频率变化来获得样品的结构和化学成分信息。
本实验旨在通过拉曼光谱仪对不同样品进行测量,探索其在分析和研究中的应用。
实验方法:1. 实验仪器:本实验使用的拉曼光谱仪为XXXX型号,工作波长范围为XXXX。
2. 样品准备:选取不同种类的样品,包括有机物和无机物,如苯、甲苯、硫酸铜等。
将样品制成均匀的固体样品或溶液。
3. 实验步骤:将样品放置在拉曼光谱仪的样品台上,调整仪器参数,如激光功率、激光波长等。
进行拉曼光谱扫描,并记录光谱数据。
实验结果与分析:1. 苯的拉曼光谱:对苯样品进行拉曼光谱扫描,观察到苯分子的振动模式对应的峰位。
根据拉曼光谱图,可以确定苯的分子结构和键的振动情况,进而推断出苯的化学成分。
2. 甲苯的拉曼光谱:同样地,对甲苯样品进行拉曼光谱扫描,观察到甲苯分子的振动峰位。
通过对比苯和甲苯的拉曼光谱图,可以发现它们的振动模式有所不同,这可以用于区分不同的有机化合物。
3. 硫酸铜的拉曼光谱:将硫酸铜样品进行拉曼光谱测量,可以观察到与硫酸铜晶格振动相关的峰位。
通过分析光谱图,可以了解硫酸铜的晶体结构和相应的振动模式,这对于研究材料的物理性质和化学反应机理非常重要。
实验应用:1. 化学分析:拉曼光谱可以用于化学物质的定性和定量分析。
通过测量样品的拉曼光谱,可以快速确定样品的化学成分和结构信息,为化学分析提供重要的依据。
2. 材料研究:拉曼光谱可以用于材料的表征和研究。
通过测量材料的拉曼光谱,可以了解材料的晶体结构、晶格振动模式等信息,为材料的设计和改进提供指导。
3. 药物研究:拉曼光谱可以用于药物的分析和研究。
通过测量药物的拉曼光谱,可以确定药物的分子结构和化学成分,为药物的研发和质量控制提供重要的依据。
结论:本实验通过拉曼光谱仪对不同样品进行测量,探索了拉曼光谱在分析和研究中的应用。
拉曼光谱可以用于化学分析、材料研究和药物研究等领域,具有广泛的应用前景。
拉曼光谱分析法
![拉曼光谱分析法](https://img.taocdn.com/s3/m/8b18e71968eae009581b6bd97f1922791688be22.png)
3)环状化合物的对称呼吸振动常常是最强的拉曼谱带。
4)在拉曼光谱中,X=Y=Z,C=N=C,O=C=O-这类键 的对称伸缩振动是强谱带,反这类键的对称伸缩振 动是弱谱带。红外光谱与此相反。
5)C-C伸缩振动在拉曼光谱中是强谱带。
Infrared and Raman Spectra of Benzene
IR
Raman
拉曼光谱与红外光谱分析方法比较
拉曼光谱
红外光谱
光 谱 范 围 40-4000C m -1
光 谱 范 围 400-4000C m -1
水可作为溶剂
样品可盛于玻璃瓶,毛细管等容器 中直接测定
固体样品可直接测定
水不能作为溶剂 不能用玻璃容器测定 需要研磨制成 KBR 压片
• spectrum independent of excitation wavelength (488, 632.8, or 1064 nm)
Spectrum of CCl4, using an Ar+ laser at 488 nm.
Raman Spectroscopy
Another spectroscopic technique which probes the rovibrational structure of molecules. C.V. Raman discovered in 1928; received Nobel Prize in 1931. Can probe gases, liquids, and solids. Must use a laser source for excitation. Resurgence in recent years due to the development of new detectors with improved sensitivity. Shift back away from FT-Raman to dispersive Raman with multichannel detector systems.
材料表征方法 第八章-拉曼光谱
![材料表征方法 第八章-拉曼光谱](https://img.taocdn.com/s3/m/ff3e4157be23482fb4da4cf6.png)
拉曼频率及强度等标志着散射物质的性质。从 这些资料可以导出物质结构及物质组成成分的知识。 这就是拉曼光谱具有广泛应用的原因。 拉曼效应起源于分子振动(和点阵振动)与转动, 因此从拉曼光谱中可以得到分子振动能级(点阵振 动能级)与转动能级结构的知识。 拉曼散射强度是十分微弱的,大约为瑞利散射 的千分之一。在激光器出现之前,为了得到一幅完 善的光谱,往往很费时间。激光器的出现使拉曼光 谱学技术发生了很大的变革。
红外吸收要服从一定的选择定律,即分子振 动时伴随着分子偶极矩发生变化才能产生红外吸 收。同样,在拉曼光谱中,分子振动的产生也要 服从一定的选择定则,即必须伴随着分子极化度 发生变化的分子振动模式才能具有拉曼活性,产 生拉曼散射。 极化度是指分子改变其电子云分布的难易程 度,因此只有分子极化度发生变化的振动才能与 入射光的电场E相互作用,产生诱导偶极矩。
散射光谱
拉曼散射光谱(Raman)
拉曼光谱和红外光谱都反映了分子振动 的信息,但其原理却有很大的差别,红外光 谱是吸收光谱,而拉曼光谱是散射光谱。红 外光谱的信息是从分子对入射电磁波的吸收 得到的,而拉曼光谱的信息是从入射光与散 射光频率的差别得到的。
拉曼效应
拉曼光谱为散射光谱。当辐射通过介质 的时候,引起介质内带电粒子的受迫振动, 每个振动的带电粒子向四周发出辐射就形成 散射光。如果辐射能的光子与分子内的电子 发生弹性碰撞,光子不失去能量,则散射光 的频率与入射光的频率相同。1871年,瑞 利发现了这种散射光与入射光频率相同,这 种散射光就称为瑞利散射。
拉曼光谱适合同原子的非极性键的振动。如C-C,S-S,N-N键等, 对称性骨架振动,均可从拉曼光谱中获得丰富的信息。而不同原 子的极性键,如C=O,C-H,N-H和O-H等,在红外光谱上有反映。 相反,分子对称骨架振动在红外光谱上几乎看不到。拉曼光谱和 红外光谱是相互补充的。
光谱拉曼光谱定性检测原理
![光谱拉曼光谱定性检测原理](https://img.taocdn.com/s3/m/7b36204aeef9aef8941ea76e58fafab069dc441c.png)
光谱拉曼光谱定性检测原理光谱拉曼光谱是一种非常常用的光谱分析技术,可用于化学物质的定性和定量分析。
其原理基于拉曼散射现象,通过测量样品散射光谱中的拉曼散射光,可以获取关于样品的结构、成分和物理性质的信息。
本文将详细讨论光谱拉曼光谱定性检测的原理。
光谱拉曼光谱定性检测原理是基于分子与光相互作用而形成的。
当光与物质相互作用时,其中一部分光会被吸收,而另一部分光则会散射出去。
光谱拉曼光谱定性检测利用了被称为拉曼散射的特殊散射效应。
拉曼散射是指入射光与样品相互作用后,散射光谱中的部分光子被物质分子散射后的光子所吸收,同时也包含了新的光子能量和频率。
这些新产生的频率差异可以提供关于物质的结构、成分和物理性质的信息。
拉曼光谱分为两种类型:拉曼散射光的波长与入射光一致的称为弹性散射或瑞利散射,它只包含入射光的频率和振幅。
另一种是指拉曼散射光有不同频率或波长与入射光不同的称为非弹性散射,其中散射光的频率就是拉曼散射光的频率差异。
非弹性散射包括斯托克斯拉曼散射和反斯托克斯拉曼散射。
斯托克斯拉曼散射是指散射光频率低于入射光频率的情况,而反斯托克斯拉曼散射则是指散射光频率高于入射光频率的情况。
拉曼光谱的测量原理基于拉曼散射光的频率差异。
当光束照射到样品上时,一部分光被吸收,而其他部分光发生弱弱的拉曼散射。
散射的光通过光谱仪进行测量,得到散射光谱。
拉曼光谱通常使用激光作为入射光源,因为激光具有高强度和单色性,可以提供高质量的拉曼光谱信号。
拉曼光谱的分析过程中最重要的组成部分是拉曼散射光的检测和光谱仪分析。
检测系统一般包括一个光源、一个激光器、一个样品台和一个光探测器。
光谱仪分析是通过调整光线的色散来测量散射光的频率。
典型的光谱仪有拉曼光谱仪和光子散射光谱仪,其中拉曼光谱仪在分析振动频率时更常用,光子散射光谱仪则更多用于分析自旋激发频率。
拉曼光谱检测原理主要基于拉曼散射线的强度和频率与分子振动特性之间的关系。
分子振动模式涉及化学键的伸缩、弯曲、旋转等。
拉曼光谱与红外光谱的区别
![拉曼光谱与红外光谱的区别](https://img.taocdn.com/s3/m/2ef294b29f3143323968011ca300a6c30c22f199.png)
拉曼光谱和红外光谱是两种常用的光谱分析技术,它们在分子结构和化学成分分析方面有 一些区别。
1. 原理:拉曼光谱是通过测量样品散射光的频移来分析样品的分子振动和转动模式。而红 外光谱是通过测量样品吸收红外光的频率来分析样品的分子振动模式。
2. 能量变化:拉曼光谱是非弹性散射,测量的是光子与分子相互作用后的能量变化。红外 光谱是通过分子吸收红外光的能量来分析分子的振动模式。
拉曼光谱与红外光谱的区别
3. 可测量的范围:拉曼光谱可以测量分子的振动和转动模式,包括低频和高频振动。红外 光谱主要用于测量分子的振动模式,包括伸缩振动和弯曲振动。
4. 样品要求:拉曼光谱对样品的要求相对较松,可以测量固体、液体和气态。
5. 信息获取:拉曼光谱提供了关于分子的化学键和结构的信息,能够检测非常细微的结构 变化。红外光谱提供了关于分子的官能团和官能团之间的化学键的信息,能够确定化合物的 功能团。
拉曼光谱与红外光谱的区别
总的来说,拉曼光谱和红外光谱是两种互补的光谱技术,可以提供不同层面的分子结构和 化学成分信息。选择使用哪种技术取决于所需的分析目的和样品特性。
拉曼光谱跟红外光谱的区别
![拉曼光谱跟红外光谱的区别](https://img.taocdn.com/s3/m/2569ff8609a1284ac850ad02de80d4d8d15a01ae.png)
拉曼光谱跟红外光谱的区别
拉曼光谱和红外光谱是两种不同的光谱技术,有以下几个主要区别:
1. 基本原理:红外光谱是通过测量分子吸收红外光的能量来分析样品的功能团信息,而拉曼光谱则是通过测量样品中分子振动引起的光散射来分析样品的化学结构。
2. 分析范围:红外光谱通常适用于分析样品中的官能团、化学键类型和某些结构特征,而拉曼光谱则可以提供更详细和全面的关于样品分子振动模式和化学结构信息。
3. 样品要求:红外光谱需要样品具有一定的吸收能力,因此大多数有机化合物和无机物都可以进行红外光谱测试。
而拉曼光谱对样品的要求相对较低,可以测试几乎所有类型的样品,包括固体、液体和气体。
4. 干扰因素:红外光谱对水分和二氧化碳有较强的吸收能力,因此在测试液体或气体样品时需要特别注意这些干扰因素。
而拉曼光谱对水和二氧化碳的干扰较小。
5. 仪器配置:红外光谱需要使用红外光源和红外检测器,且样品通常需要准备成KBr片或涂布在红外透明基板上。
而拉曼光谱则需要使用激光光源和拉曼散射检测器。
总的来说,虽然红外光谱和拉曼光谱都可以用于化学分析,但它们的原理、应用范围和仪器配置等方面有着一定的区别。
在
实际应用中,选择使用哪种光谱技术取决于需要分析的样品类型和所关注的分析信息。
【2024版】拉曼光谱分析法--ppt课件
![【2024版】拉曼光谱分析法--ppt课件](https://img.taocdn.com/s3/m/852c9399fbb069dc5022aaea998fcc22bcd143f4.png)
优 滤光片组
检测系统
Nd-YAG激光光源
点 ➢ 荧光背景出现机会小
➢ 分辨率高 ➢ 波数精度和重现性好 ➢扫描快,操作方便 ➢近红外光的特性(光纤维中传递性能好、可穿透生物组织)
PPT课件
29
✓近红 外激光 光源
Nd-YAG激光器代替可见光激光器; 产生1.064μm近红外激发光,比可见光 长约1倍,影响信噪比,FT技术克服; 激发光能量低于荧光所需阈值。
e
e
e
e
温度升高 概率大!
3振 电
2动 子
1 0
能 级
基 态
e e
Rayleigh 散射 PPT课件
Raman 散射 8
2、 拉曼光谱图
CCl4的散射光谱
Rayleigh scattering
Stocks lines
anti-Stockes lines
PPT课Δ件ν/cm-1
9
CCl4的拉曼光谱
适用于分子结构分析
PPT课件
11
3、拉曼光谱与分子极化率的关系 拉曼活性取决于振动中极化率是否变化。
若分子在电场E(光波的电磁场)中,产生诱导偶极距μ
μ = αE α为极化率
反映了分子中电子云 变形的难易程度
分子极化率是诱导偶极矩与外电场的强度之比
分子中两原子距离最大时,α也最大
拉曼散射强度与极化率成正比例关系
➢干涉滤光片组,由折射率高低不同 的多层材料交替组合而成。
✓检测器
➢室温下的铟鎵砷检测器 ➢液氮冷却的锗检测器
PPT课件
31
三、激光显微拉曼光谱仪
使入射激光通过显微镜聚焦到试样的微小部位 (直径小至5 μm ),可精确获取所照射部位的拉 曼光谱图。 ➢ 共焦显微激光拉曼光谱仪(使用CCD检测器): 显微镜的物镜和目镜的焦点重合于一点,排除了非 焦点处组分对成像的影响,可显示微区的不同深度 和三维结构信息。 ➢ 激光拉曼光纤探针:光导纤维传感技术与显微镜 耦合而成,可对远距离、特殊环境中试样的拉曼散 射进行原位遥感探测。
光谱分析培训资料
![光谱分析培训资料](https://img.taocdn.com/s3/m/46c6e9221fd9ad51f01dc281e53a580217fc5065.png)
光谱分析培训资料光谱分析是一种非常重要的分析方法,广泛应用于物质结构和化学性质的研究中。
光谱分析可以通过测量光的吸收、发射、散射等特性,来揭示物质的组成、结构和性质。
它可以用于分析无机和有机物质,包括溶液、固体和气体等不同状态的样品。
以下是一些关于光谱分析的基本知识和技术的培训资料。
一、光谱分析的基本原理1.光的电磁波性质:光的波长、频率、振幅等概念。
2.提到普朗克方程:E=hν。
解释了光的能量与频率的关系。
3.提到玻尔模型:ΔE=hν=Rh(1/n1^2-1/n2^2),解释了光的能量与波长之间的关系。
4.提到分子光谱,包括吸收光谱、发射光谱和拉曼光谱的概念。
5.提到原子光谱,包括光谱线和光谱图的解释。
二、光谱分析的基本技术1. 吸收光谱分析:介绍了UV-Vis吸收光谱和红外吸收光谱的基本原理和应用。
2.发射光谱分析:介绍了荧光光谱和磷光光谱的基本原理和应用。
3.拉曼光谱分析:介绍了拉曼散射光谱的基本原理和应用。
4.介绍了使用偏振光以及相干光进行光谱测量的原理和方法。
三、光谱仪器的使用和操作技巧1.介绍了常见的光谱仪器,如紫外可见分光光度计、红外光谱仪和拉曼光谱仪等。
2.解释了光谱仪器的基本构造和工作原理。
3.介绍了如何正确使用光谱仪器进行样品测量的方法和步骤。
4.提供了一些常见问题的解决方案,如测量误差的处理和仪器故障的排除方法等。
5.提供了一些实际操作的技巧和注意事项,以确保准确的测量结果。
四、常见的光谱分析应用案例1.利用吸收光谱分析测定物质的浓度和纯度,如紫外可见分光光度法测定硝基苯的浓度。
2.利用红外光谱分析鉴定和表征物质的结构,如红外光谱法鉴定有机化合物的官能团。
3.利用发射光谱分析研究物质的能级结构和化学反应,如荧光寿命测量和磷光光谱法研究光化学反应。
4.利用拉曼光谱分析物质的振动和转动特性,如拉曼光谱法鉴定无机盐的结构。
总结:以上是关于光谱分析的一些基本知识和技术的培训资料。
光谱分析是化学分析和材料研究领域中非常重要的方法,它可以提供丰富的信息来揭示物质的组成、结构和性质。
激光拉曼光谱分析法与红外光谱分析法
![激光拉曼光谱分析法与红外光谱分析法](https://img.taocdn.com/s3/m/244a373caf45b307e871973a.png)
材料微观结构分析法一、激光拉曼光谱分析法1.拉曼光谱的基本原理当用单色光照射透明样品是,大部分光透过而小部分会被样品在各个方向上散射。
这些光的散射又分为瑞利散射和拉曼散射两种。
1.1瑞利散射和拉曼散射若光子和样品分子发生弹性碰撞,即光子和分子之间没有能量交换,即光子的能量保持不变,散射光能量和入射光能量相同,但方向可以改变。
这种光的弹性碰撞,叫做瑞利散射。
当光子和样品分子发生非弹性碰撞时,散射光能量和入射光能量大小不同,光的频率和方向都有所改变,这种光的散射成为拉曼散射。
其散射光的强度约占总散射光强度的10-6~10-10。
拉曼散射的产生原因是光子与分子之间发生了能量交换,改变了光子的能量。
1.2拉曼散射的产生拉曼散射的产生可以从光子和样品分子作用时光子发生能级跃迁来解释。
样品分子处于电子能级和振动能级的基态,入射光子的能量远大于振动能级跃迁所需要的能量,但又不足以将分子激发到电子能级激发态。
样品分子在吸收了光子后,被激发到较高的不稳定的能态(虚态)。
当样品分子激发到虚态后又回到低能级的振动激发态,此时激发光能量大于散射光能量,散射光频率小于入射光。
这时在瑞利散射线较低频率侧就会出现一根拉曼散射线,这条线称为Stokes 线。
若光子与处于振动激发态(V 1)的分子相互作用,是分子激发到更高的不稳定能态后又回到振动激态(V 0),散射光的能量大于激发光,在瑞利散射线高频率侧会出现一拉曼散射线,这条线称为Anti-stokes 线。
1.3拉曼位移Stokes 与Anti-stokes 散射光的频率与激发光之间频率的差值ΔV 称为拉曼位移。
一般斯托克斯散射光比反斯托克斯散射光强度大得多,故在拉曼光谱分析中通常测定斯托克斯散射光线。
拉曼位移取决于分子振动能级的变化,不同的化学键或基态有不同的振动方式,决定了其能级间的能量变化,与之对应的拉曼位移是特征的。
这是拉曼光谱进行分子结构定性分析的理论依据。
拉曼散射机制图示虚态激发态基态V 0+ΔVAnti-stokes 线 V 0 瑞利散射 V 0+ΔV Stokes 线2 基本仪器及功能拉曼光谱仪一般由光源、外光路、色散系统、及信息处理与显示系统五部分组成。
拉曼光谱拉曼光谱分析
![拉曼光谱拉曼光谱分析](https://img.taocdn.com/s3/m/35d5e09c370cba1aa8114431b90d6c85ec3a88bf.png)
引言概述:拉曼光谱是一种非侵入性的光谱分析技术,可以用来研究物质的化学成分、结构和分子间相互作用等信息。
通过测量样品与激发光相互作用后反散射光的频移,可以得到样品的拉曼光谱图谱。
拉曼光谱具有快速、灵敏和无需样品处理等优势,因此在化学、材料科学、生物医学和环境科学等领域被广泛应用。
正文内容:一、理论基础1. 拉曼散射原理:介绍拉曼光谱的基本原理,包括应力引起的拉曼散射和分子振动引起的拉曼散射。
2. 基本理论模型:介绍拉曼光谱的基本理论模型,包括简谐振动模型和谐振子模型等。
二、仪器设备1. 激发光源:介绍常用的激发光源,如激光器和光纤激光器等,以及它们的特点和选择。
2. 光谱仪:介绍常用的拉曼光谱仪,包括激光外差光谱仪和光纤光谱仪等,以及它们的原理和优缺点。
3. 采样系统:介绍拉曼光谱的采样系统,包括反射式、透射式和光纤探头等,以及它们的适用范围和操作注意事项。
三、数据处理与分析1. 光谱预处理:介绍光谱预处理的方法,包括光谱平滑、噪声抑制和基线校正等,以提高数据质量和减少干扰。
2. 谱图解析:介绍拉曼光谱谱图的解析方法,包括峰拟合、峰识别和谱图比较等,以确定样品的化学成分和结构信息。
3. 定量分析:介绍拉曼光谱的定量分析方法,包括多元线性回归和主成分分析等,以快速准确地测量样品的含量和浓度。
四、应用领域1. 化学分析:介绍拉曼光谱在化学分析中的应用,包括有机物和无机物的定性和定量分析,以及催化剂和原位反应研究等。
2. 材料科学:介绍拉曼光谱在材料科学中的应用,包括纳米材料、多晶材料和聚合物等的表征和结构分析。
3. 生物医学:介绍拉曼光谱在生物医学中的应用,包括体液中代谢产物和蛋白质的检测,以及癌症和药物代谢研究等。
4. 环境科学:介绍拉曼光谱在环境科学中的应用,包括土壤和水体中有机物和无机物的检测,以及大气污染和环境污染物的监测等。
五、发展前景与挑战1. 发展前景:介绍拉曼光谱在未来的发展前景,包括高灵敏度和高分辨率的光谱仪、纳米尺度的光学探针和超快激光技术等。
光谱分析3-拉曼
![光谱分析3-拉曼](https://img.taocdn.com/s3/m/aab00543bcd126fff7050ba5.png)
I 为与激光电矢量相垂直的谱线强度; I 为与激光电矢量相平行的谱线强度。
四、拉曼光谱与红外光谱的互补性
拉曼光谱和红外光谱有互补性: (1)都是振动转动光谱; (2)红外:固有偶极矩
拉曼:感生偶极矩 (3)活性互补
拉曼与红外的互补性
同
同属分子振(转)动光谱
异红:外红:适外用于分研子究对不同红原外子光的极的性吸键收振动 -O强H,度-由C分=子O,偶-极C距-决X定
§3-1-2 拉曼光谱方法原理
一、 拉曼位移(Raman shift)
Δν=| ν0 – νs |
即散射光频率与激发光频之差 Δv取决于分子振动能级的改变 因此是特征的
与入射光波长无关
适用于分子结构分析
二、 拉曼光谱与分子极化率的关系
分子在静电场E中,如光波交变电磁场
正
极
电子
负
极
核
p = αE
分子中产生了 感应偶极距p
异拉:曼拉:适曼用于分研子究对同原激子光的的非极散性射键振动 -N-强N度-由, 分-子C-极C化-率决定
拉曼与红外的互补性
O=C=O
对称伸缩
O=C=O
反对称伸缩
偶极矩不变无红外活性 偶极矩变有红外活性 极化率变有拉曼活性 极化率不变无拉曼活性
拉曼与红外的互补性
结构分析:H4C4N4
拉曼C=C 1623 cm-1 强 红外C=C 1621 cm-1 强
激光器作光源,常用如下:
Ar+
Kr + He/Ne 二极管激光器
488/514 531/647 633
782/830nm
488nm Ar +光源的拉曼线强度比He/Ne大约3倍
半导体激光器荧光干扰非常低
波谱学课件——拉曼光谱6Raman
![波谱学课件——拉曼光谱6Raman](https://img.taocdn.com/s3/m/d14494cb69dc5022abea003c.png)
(3)从光的波动性分析拉曼散射的产生
光是电磁波,即它是沿某一方向传播的交变 电磁场。其交变电场可用下式描述:
E=E0cos(2πν′t)
E —在任意t时刻的电场强度; E0—入射光的交变电场强度; ν′为交变电场的频率
样品分子的电子云在交变电场的作用下会诱 导出电偶极矩:
μ=αE
式中 μ—样品分子诱导的偶极矩 E—入射光的交变电场强度 α—分子的极化率(polarizability)
例:
有较大偶极矩 变化的as (-NO2) IR吸收强, Raman谱带弱; 而苯环的骨架 (C=C)极性很 小,出现较强的 Raman谱带和很 弱的IR吸收。
有些谱峰在 两图谱中同时 出现,有些谱 峰只在某一图 谱中出现,两 谱互补,明显 增加了识别和 解释图谱的信 息来源。
Raman光谱适合于研究水溶液体系 水对于红外辐射几乎是完全不透明的,但却是 弱的散射体。这使得拉曼光谱最宜用于研究生 物样品。例:多肽的结构及在水溶液中的构象 测定, Raman光谱可提供重要的信息。
位移是分子振动的特征,是分子振动时极化率发生改 变所致。
(2)从光的粒子性分析Raman散射的产生
光子具有的能量 E=hv h—普朗克常数 v —频率
雷利散射:弹性碰撞,方向改变,能量未变, 散射光的频率也未变; 拉曼散射:非弹性碰撞,方向改变,能量也改 变,光的频率改变;
从分子能级的角度来讨论光子与物质分子的作用
对于结构的变化, Raman有可能比IR更敏感 例如海洛因、吗啡和可待因,三者的主体骨架相 同,仅是环上的取代基有差别。三者的Raman在 600-700cm-1的谱带有明显的不同,1600-1700cm-1 的峰也不同。
FT-Raman光谱也适合做差示光谱 例如要测定片剂中的有效药物成分
第5章拉曼光谱分析法ppt课件
![第5章拉曼光谱分析法ppt课件](https://img.taocdn.com/s3/m/a9b92a6342323968011ca300a6c30c225901f0f3.png)
拉曼散射光谱的基本概念
图6-33 散射效应示意图 (a)瑞利和拉曼散射的能级图 (b)散射谱线
拉曼散射光谱的基本概念
处于基态的分子与光子发生非弹性碰撞,获得能量跃迁 到激发态可得到斯托克斯线,反之,如果分子处于激发态, 与光子发生非弹性碰撞就会释放能量而回到基态,得到反斯 托斯线。
拉曼位移:斯托克斯线或反斯托克斯线与入射光频率之 差称为拉曼位移。拉曼位移的大小和分子的跃迁能级差一样。 因此,对应于同一分子能级,斯托克斯线与反斯托克斯线的 拉曼位移应该相等,而且跃迁的几率也应相等。在正常情况 下,由于分子大多数是处于基态,测量到的斯托克斯线强度 比反斯托克斯线强得多,所以在一般拉曼光谱分析中,都采 用斯托克斯线研究拉曼位移。
1—反射镜 2—多通道池 3—锲型镜 4—液体
拉曼光谱在材料研究中的应用
激光拉曼散射光谱法
拉曼光谱的选择定则与高分子构象
由于拉曼与红外光谱具有互补性,因而二者结 合使用能够得到更丰富的信息。这种互补的特点, 是由它们的选择定则决定的。凡具有对称中心的分 子,它们的红外吸收光谱与拉曼散射光谱没有频率 相同的谱带,这就是所谓的“互相排斥定则”。例 如聚乙烯具有对称中心,所以它的红外光谱与拉曼 光谱没有一条谱带的频率是一样的。
而碳链的振动用拉曼光谱表征更为方便 对于链状聚合物来说,碳链上的取代基用 红外光谱较易检测出来
激光拉曼散射光谱法
激光拉曼光谱与红外光谱比较
红外与拉曼光谱在研究聚合物时的区别可以聚乙烯为例加以说明(图 6-34)。
聚乙烯分子中具有对称中心,红外与拉曼光谱呈现完全不同的振动模 式。在红外光谱中,CH2振动为最显著的谱带。而拉曼光谱中,C-C振动有 明显的吸收。
生物大分子的拉曼光谱研究
拉曼光谱的分析与拉曼光谱仪
![拉曼光谱的分析与拉曼光谱仪](https://img.taocdn.com/s3/m/56b8ce3dcbaedd3383c4bb4cf7ec4afe04a1b1cf.png)
拉曼效应相关参数
• 拉曼峰的强度
拉曼散射强度IR可用下式表达:
IL-激发光强度 ;N-散射分子数 v-分子振动频率 ;v0-激光频率 μ-振动原子的折合质量; α‘a-极化率张量的平均值不变量; γ’a-极化率张量的有向性不变量
IR
24 3
45 32 c4
hILN 0 4 1 eh KT
• 三原子分子情况——三种振动模式:对称伸缩、弯曲变形和不对称伸 缩。
H2O
CO2
18
拉曼效应相关参数
• 红外活性和拉曼活性振动
① 红外活性振动 ⅰ永久偶极矩;极性分子存在固有的偶极矩; ⅱ瞬间偶极矩;非对称分子;
eE
r e
红外活性振动—伴有偶极矩变化的振动可以产生红外吸收谱带. ②拉曼活性振动
非极性基团,对称分子;
• 上面简述了分子振动引起的拉曼散射,分子转动也引起拉曼散射。它 来源于一振动能级内转动能级之间的跃迁,是纯转动峰,也可能来源 于不同振动能级间的跃迁,为转动-振动峰。通常只占几个波数,很 窄,但在小的双原子分子的气相状态下,常出现易于分辨测转动和转 动-振动峰。
20
拉曼效应相关参数
• 温度和压力对拉曼峰的影响
• 温度和压力会改变拉曼峰高度、宽度、退偏振率和积分面积。 • 对化学平衡状态的影响。化学平衡的偏移讲引起试样真实成分的变化; • 振动非等效构象子之间的平衡与温度和压力都有关,观察到的拉曼光
谱是各个构象子以他们相对浓度作权重相加的总和; • 温度和压力引起试样折射率、密度或相转变会导致拉曼光谱发生变化; • 施加于晶体上的不均匀压力将使晶格发生扭曲; • 试样温度的变化将导致振动和转动激发态数目的变化。 • 增大压力或提高温度使分子碰撞率增大,将导致拉曼峰变宽。
半焦炭的红外光谱与拉曼光谱分析
![半焦炭的红外光谱与拉曼光谱分析](https://img.taocdn.com/s3/m/3d985a347ed5360cba1aa8114431b90d6c85892e.png)
半焦炭的红外光谱与拉曼光谱分析引言:半焦炭是一种常见的石墨质材料,具有多种应用领域,如电池、催化剂和碳基材料等。
了解半焦炭的结构和性质对其应用和优化具有重要意义。
红外光谱和拉曼光谱是两种常用的表征半焦炭结构和组分的研究方法。
本文将分别介绍半焦炭的红外光谱与拉曼光谱,并讨论这两种光谱在半焦炭研究领域中的应用。
红外光谱分析:红外光谱(IR)是一种通过测量物质吸收红外辐射的技术。
半焦炭在红外光谱中显示了许多特征峰,这些峰对应着材料中各种化学基团的振动模式。
通过分析半焦炭的红外光谱,可以确定其化学组成和结构。
在半焦炭的红外光谱中,常见的峰包括C-H伸缩振动峰、C=O伸缩振动峰、C=C伸缩振动峰等。
C-H伸缩振动峰的存在表明半焦炭中存在一定量的碳氢键。
C=O伸缩振动峰通常表示半焦炭中存在的羰基官能团,可能与氧化物或酮类相关。
C=C伸缩振动峰则指示了半焦炭中存在的芳香环结构。
此外,在红外光谱中,还可以观察到其他不同强度和位置的特征峰,这些峰对应着半焦炭的其他可能功能基团或结构。
通过比对半焦炭样品的红外光谱与已知化合物的光谱图谱进行分析,可以确定半焦炭样品的组成和结构。
拉曼光谱分析:拉曼光谱(Raman)是通过测量物质散射光的频率变化来研究物质的光谱。
与红外光谱不同,拉曼光谱对于半焦炭的研究提供了一种独特的结构信息。
在半焦炭的拉曼光谱中,常见的峰有D峰、G峰和2D峰。
D峰位于约1350cm^-1处,与材料中存在的有短程有序结构和无定形键相关。
G峰位于约1580cm^-1处,与材料中存在的芳香环结构和纵波光学声子相互作用有关。
2D峰则位于约2700 cm^-1处,与材料中存在的二维晶格振动模式有关。
通过分析拉曼光谱中这些特征峰的相对强度和位置,可以研究半焦炭的石墨化程度、晶格结构和微观缺陷等信息。
例如,G峰与D峰的强度比值(I_G/I_D)可以用来评估半焦炭的结晶度和石墨化程度。
应用领域:半焦炭的红外光谱和拉曼光谱分析在多个领域具有重要应用价值。
拉曼光谱 红外光谱区别
![拉曼光谱 红外光谱区别](https://img.taocdn.com/s3/m/877bc228ae1ffc4ffe4733687e21af45b307fed6.png)
拉曼光谱红外光谱区别
拉曼光谱和红外光谱都是分析物质结构的光谱技术,但它们的原理和应用场景有所不同。
红外光谱是利用物质对红外光的吸收来分析物质结构的一种光谱技术。
当红外光照射到物质上时,物质中的分子会吸收特定频率的红外光,从而产生振动能级的跃迁。
通过检测吸收的红外光的频率和强度,可以得到物质的红外光谱。
红外光谱主要用于分析有机物的结构和官能团,如羰基、羟基、胺基等。
拉曼光谱则是利用物质对激光的散射来分析物质结构的一种光谱技术。
当激光照射到物质上时,物质中的分子会与激光相互作用,产生散射光。
散射光的频率会发生变化,这种变化与分子的振动和转动能级有关。
通过检测散射光的频率和强度,可以得到物质的拉曼光谱。
拉曼光谱可以用于分析无机物、有机物、生物大分子等各种物质的结构和组成。
红外光谱主要用于分析有机物的官能团和结构,而拉曼光谱则更适用于分析无机物、有机物和生物大分子等各种物质的结构和组成。
此外,拉曼光谱还具有无需制样、快速、灵敏等优点,因此在材料科学、化学、生物等领域得到了广泛的应用。
红外光谱分析和拉曼光谱分析的区别-科邦实验室
![红外光谱分析和拉曼光谱分析的区别-科邦实验室](https://img.taocdn.com/s3/m/a43e3962c8d376eeaeaa31ae.png)
红外光谱分析和拉曼光谱分析的区别红外光谱分析和拉曼光谱分析都是常用的分析手段,这篇文章让带您了解其中的异同红外光谱:当样品受到频率连续变化的红外光照射时,分子吸收某些频率的辐射,并由其振动运动或转动运动引起偶极矩的净变化,产生的分子振动和转动能级从基态到激发态的跃迁,使相应于这些吸收区域的透射光强度减弱,将测得的吸收强度对入射光的波长或波数做图,就是红外光谱。
而利用材料对红外光区辐射的选择性吸收进行结构分析、定性和定量方法,称之为红外吸收光谱法。
拉曼光谱:当光照射到物质使,光子与分子内的电子碰撞,发生非弹性碰撞,光子就有一部分能量传递给电子,此时散射光的频率就不等于入射光的频率,这种散射被称为拉曼散射,所产生的光谱被称为拉曼光谱。
据此可以通过测定散射光相对于入射光频率的变化来获取分子内部结构信息,这就是拉曼光谱分析法。
相同点对于一个给定的化学键,其红外吸收频率与拉曼位移相等,均代表第一振动能级的能量。
因此,对某一给定的化合物,某些峰的红外吸收波数和拉曼位移完全相同,红外吸收波数与拉曼位移均在红外光区,两者都反映分子的结构信息。
拉曼光谱和红外光谱一样,也是用来检测物质分子的振动和转动能级。
区别1:红外光谱是红外光子与分子振动、转动的量子化能级共振产生吸收而产生的特征吸收光谱。
它是吸收光谱,信息是从分子对入射电磁波的吸收得到的。
拉曼光谱一般也是发生在红外区,它不是吸收光谱,而是散射光谱,是在入射光子与分子振动、转动量子化能级共振后以另外一个频率出射光子。
入射和出射光子的能量差等于参与相互作用的分子振动、转动跃迁能级。
它的信息是从入社光频率的差别得到的。
2:要产生红外光谱效应,需要分子内部有一定的极性,也就是说存在分子内的电偶极矩。
在光子与分子相互作用时,通过电偶极矩跃迁发生了相互作用。
因此,那些没有极性的分子或者对称性的分子,因为不存在电偶极矩,基本上是没有红外吸收光谱效应的。
拉曼光谱产生的机理是电四极矩或者磁偶极矩跃迁,并不需要分子本身带有极性,因此特别适合那些没有极性的对称分子的检测。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中国科学技术大学物理系
在直流测量法中,增大光电倍增管的响应时 间,使其倒数大于光子到达速率,则与各个光子对 应的脉冲不可分辨,流向光电倍增管的负载电阻的 电流是连续的,电流的大小与射到光电阴极的光强 成正比,经过直流放大后,可用笔式记录仪记录。 光子计数器适合于探测微弱信号。它的计数范 围为每秒101~ 105个脉冲,相邻的两个脉冲的时间 间隔为 0.1s ~ 10μS,而光电倍增管内光电子脉冲 形成的时间为0.1~10μS,因此光电倍增管中所产 生的电脉冲信号是分立的。光子计数器就是要算出 这些脉冲数目。光电子脉冲和噪声脉冲在幅度大小
中国科学技术大学物理系
4.3 激发功率 提高激发光强度或增加缝宽能够提高信噪比, 但在进行低波数测量时这样做常常会因增加了杂散 光而适得其反。一般应首先尽量降低杂散光,例如 ,适当减小狭缝宽度,保证仪器光路准直等;然后 再考虑用重复扫描,增加取样时间或计算机累加平 均等方法来消除激光器、光电倍增管及电子学系统 带来的噪声。
中国科学技术大学物理系
3.2 外光路系统及样品装置
激光器之后到单色仪之前为外光路系统和试 样装置,它的作用是为了要在试样上得到最有 效的照射,最大限度地收集散射光,还要适合 于作不同状态的试样在各种不同条件(如高, 低温等)下的测试。
中国科学技术大学物理系
由于喇曼散射的效率很低,试样装置要能以 最有效的方式照射样品和聚集散射光,它的光学 设计是非常重要的。通常采用聚焦激光束照射到 试样上,以提高试样上的辐照度,产生喇曼散射 。一般用透镜 L1 聚焦激光束,使其最集中的区域 (束腰处直径可达 10μm)照射到试样上,试样 上的辐照度大约可增大一千倍。如功率密度太高 会损坏样品时,则不用透镜。透镜 L2 把样品上被 激光束照明的焦柱部分准确地成象在单色仪的入 射
喇曼光谱与光谱技术
尹 民 中国科学技术大学物理系
中国科学技术大学物理系
喇曼效应
当光照射到物质上时会发生非弹性散射,散 射光中除有与激发光波长相同的弹性成分(瑞利 散射)外,还有比激发光波长长的和短的成分, 后一现象统称为喇曼效应。由分子振动、固体中 的光学声子等元激发与激发光相互作用产生的非 弹性散射称为喇曼散射,一般把瑞利散射和喇曼 散射合起来所形成的光谱称为喇曼光谱。由于喇 曼散射非常弱,所以一直到1928年才被印度物理 学家喇曼等所发现。
中国科学技术大学物理系
1. 喇曼光谱基本原理
喇曼效应的机制和荧光现象不同,并不吸收 激发光,因此不能用实际的上能级来解释,玻恩 和黄昆用虚的上能级概念说明了喇曼效应。下图 是说明喇曼效应的一个简化的能级图。
中国科学技术大学物理系
设散射物分子原来处于基电子态,振动能级如 图所示。当受到入射光照射时,激发光与此分子的 作用引起的极化可以看作为虚的吸收,表述为电子 跃迁到虚态( Virtual state ),虚能级上的电子 立即跃迁到下能级而发光,即为散射光。设仍回到 初始的电子态,则有如图所示的三种情况。因而散 射光中既有与入射光频率相同的谱线,也有与入射 光频率不同的谱线,前者称为瑞利线,后者称为喇 曼线。在喇曼线中,又把频率小于入射光频率的谱 线称为斯托克斯线,而把频率大于入射光频率的谱 线称为反斯托克斯线。
中国科学技术大学物理系
瑞利线与喇曼线的波数差称为喇曼位移,因此 喇曼位移是分子振动能级的直接量度。下图给 出的是一个喇曼光谱的示意图。
(from Larry G. Anderson, University of Colorado at Denver, US)
中国科学技术大学物理系
请注意: 1). 在示意图中斯托克斯线和反斯 托克斯线对称地分布于瑞利线的两侧,这是由于 在上述两种情况下分别相应于得到或失去了一个 振动量子的能量。2). 反斯托克斯线的强度远小 于斯托克斯线的强度,这是由于 Boltzmann 分布, 处于振动基态上的粒子数远大于处于振动激发态 上的粒子数。实际上,反斯托克斯线与斯托克斯 线的强度比满足公式:
中国科学技术大学物理系
喇曼频率及强度、偏振等标志着散射物质的 性质。从这些资料可以导出物质结构及物质组成 成分的知识。这就是喇曼光谱具有广泛应用的原 因。 喇曼效应起源于分子振动(和点阵振动)与转 动,因此从喇曼光谱中可以得到分子振动能级 (点阵振动能级)与转动能级结构的知识。 喇曼散射强度是十分微弱的,大约为瑞利散 射的千分之一。在激光器出现之前,为了得到一 幅完善的光谱,往往很费时间。激光器的出现使 喇曼光谱学技术发生了很大的变革。
中国科学技术大学物理系
中国科学技术大学物理系
狭缝上,以最佳的立体角聚集散射光,并使之与 单色仪的集光立体角相匹配。试样室内的凹面镜 M1 和 M2 是用以提高散射强度的, M1 把透过试样的 激光束反射回来多次通过试样,以增强激光对试 样的激发效率。对于透明试样照射光的强度增大 五倍以上。M2则把反方向的散射光收集起来反射 回去,可将进入单色仪的散射光的立体角增加一 倍。在做单晶体的喇曼散射实验时,由于 M1 和 M2 改变了散射的几何配置,所以不用这两个反射镜 。
中国科学技术大学物理系
喇曼光谱一些典型应用
Material checks: anorganic and organic contaminations, stress Corrosions products: identification of different oxides Carbon diamond - CVD and natural amorphous carbon carbon fibres Adsorbates on catalysts and electrode surfaces Forensic detection & identification of drugs, explosives, fabrics etc. Mineralogy and Gemmology characterisation inclusions purity Art identification of materials and paintings, (restauration!)
“for his work on the scattering of light and for the discovery of the effect named after him”
Sir Chandrasekhara Venkata Raman (1888 – 1970) Calcutta University Calcutta, India
I Anti Stokes i 4 ( ) e I Stokes i
h kT
中国科学技术大学物理系
其中 是激发光的频率 , i 是振动频率, h 是 Planck常数,k是Boltzmann常数,T是绝对温度。
中国科学技术大学物理系
中国科学技术大学物理系
2. 喇曼光谱与红外光谱
中国科学技术大学物理系
这是由于激光器输出的激光具有很好的单色 性、方向性,且强度很大,因而它们成为获得喇 曼光谱的近乎理想的光源,特别是连续波氩离子 激光器。于是喇曼光谱学的研究又变得非常活跃 了,其研究范围也有了很大的扩展。除扩大了所 研究的物质的品种以外,在研究燃烧过程、探测 环境污染、分析各种材料等方面喇曼光谱技术也 已成为很有用的工具。以下是其一些典型应用。
中国科学技术大学物理系
3.4 探测,放大和记录系统
喇曼光谱仪的探测器为光电倍增管。用不同波 长的激发光,散射光在不同的光谱区,要选用合适 的光谱响应的光电倍增管。为了减少其暗电流降低 噪声,以提高信噪比,需用致冷器冷却光电倍增管 。处理光电倍增管输出的电子脉冲的方法有直流放 大法,交流放大法和光子计数法。当输出电流大于 10-9A 时用直流放大器,小于 10-10A 时用光子计数器 。交流放大法目前已较少采用。
中国科学技术大学物理系
4.2 孔径角的匹配
由于分辨率是光栅宽度的线性函数,如果收 集光系统不能照明整个光栅,则仪器分辨率将 会下降。自己组装光谱仪系统时更应注意这一 点,要使收集散射光的立体角与单色仪的集光 立体角相匹配。实际测量中也应注意把散射光 正确地聚焦到入射狭缝上,否则不但降低了分 辨率也影响了信号灵敏度。
中国科学技术大学物理系
下图是天津港东的激光喇曼/荧光光谱仪 的外光路系统及样品装置。
中国科学技术大学物理系
3.3 分光系统
分光系统是喇曼谱仪的核心部分,它的主要 作用是把散射光分光并减弱杂散光。分光系统要 求有高的分辨率和低的杂散光,一般用双联单色 仪。两个单色仪耦合起来,色散是相加的,可以 得到较高的分辨率(约 1cm-1 )。双联单色仪的杂 散光(在50cm-1处)可以达到10-11。为了进一步降 低杂散光,有时再加一个联动的第三单色仪,此 时分辨率提高了,但谱线强度也相应减弱。
中国科学技术大学物理系
中国科学技术大学物理系
3.1 激光光源
激光出现以前主要用低压水银灯作为光源,目 前已很少使用。为了激发喇曼光谱,对光源最主要 的要求是应当具有相当好的单色性,即线宽要窄, 并能够在试样上给出高辐照度。气体激光器能满足 这些要求,自准性能好,并且是平面偏振的。各种 气体激光器可以提供许多条功率水平不同的分立波 数的激发线。最常用的是氩离子激光,波长为 514.5nm 和 488.0nm 的谱线最强,单频输出功率为 0.2~1W左右。也可以用氦氖激光(632.8nm,约
中国科学技术大学物理系
4.1 狭缝
出射入射和中间狭缝是喇曼光谱仪的重要部 分。入射、出射狭缝的主要功能是控制仪器分辨 率,中间狭缝主要是用来抑制杂散光。对于一υ的光谱分布。这主要是由 仪器光栅,光学系统的象差,零件加工及系统调 整等因素造成的,并由此决定了仪器的极限分辨 率。在实际测量中,随着狭缝宽度加大,分辨率 还要线性下降,使谱线展宽。
中国科学技术大学物理系