高中数学——《函数的概念》说课
人教高中数学必修一B版《函数及其表示方法》函数的概念与性质说课教学课件复习(函数的概念)
![人教高中数学必修一B版《函数及其表示方法》函数的概念与性质说课教学课件复习(函数的概念)](https://img.taocdn.com/s3/m/30739a5166ec102de2bd960590c69ec3d5bbdbc5.png)
相应的 y 值为与该自变量值对应的函数值.y=f(x)仅仅是函数符号,
不表示“y 等于 f 与 x 的乘积”.在研究函数时,除用符号 f(x)外,还
常用 g(x),h(x)等来表示函数.
栏目导航
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
课件
(2)f(x)与 f(a)的区别与联系:f(a)表示当 x=a 时,函数 f(x)的值, 是一个常量,而 f(x)是自变量 x 的函数,一般情况下,它是一个变量, f(a)是 f(x)的一个特殊值,如一次函数 f(x)=3x+4,当 x=8 时,f(8) =3×8+4=28 是一个常数.
栏目导航
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
课件
2.两个函数相同 一般地,如果两个函数的定义域 相同 ,对应关系也 相同(即对 自变量的每一个值,两个函数对应的函数值都相等),则称这两个函 数就是同一个函数.
栏目导航
课件
课件
课件
课件
课件
课件
[解]
(1)对于A中的元素0,在f的作用下得0,但0不属于B,即A 课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
函数概念人教版说课稿
![函数概念人教版说课稿](https://img.taocdn.com/s3/m/feb4ffa1afaad1f34693daef5ef7ba0d4a736de7.png)
函数概念人教版说课稿一、说课背景本次说课的内容是人教版高中数学必修一中的“函数概念”单元。
函数作为数学中的一个核心概念,是高中数学教学的重要组成部分。
通过本单元的学习,学生将建立起函数的基本概念,理解函数的图像和性质,为后续的数学学习打下坚实的基础。
二、教学目标1. 知识与技能目标:使学生理解函数的定义,掌握函数的基本概念,如定义域、值域、函数的表示方法等;能够识别和绘制基本初等函数的图像。
2. 过程与方法目标:培养学生通过观察、归纳、抽象等方法发现数学规律的能力;训练学生运用函数知识解决实际问题的思维。
3. 情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的数学审美和创新意识,强化学生合作学习和交流的能力。
三、教学重点与难点1. 教学重点:函数的定义及其基本概念,如定义域、值域、函数的表示方法。
2. 教学难点:函数图像的绘制和理解,函数性质的抽象和应用。
四、教学过程1. 引入新课通过实际问题引入函数的概念,例如,通过速度与时间的关系来引出函数的概念,让学生感受到函数与现实生活的紧密联系。
2. 讲解新知详细讲解函数的定义,强调函数的三要素:定义域、对应关系和值域。
通过实例说明函数的表示方法,如表格法、解析式法和图象法。
3. 学生活动组织学生进行小组讨论,通过具体的例子来归纳函数的定义和性质。
让学生尝试绘制简单的函数图像,并进行交流和评价。
4. 巩固练习设计针对性的练习题,包括函数定义的填空题、绘制函数图像的作图题以及运用函数知识解决实际问题的应用题。
5. 课堂小结总结本节课的主要内容,强调函数的基本概念和性质,提醒学生注意函数图像与方程解的区别。
6. 布置作业布置适量的课后作业,包括基础题和拓展题,以巩固学生对函数概念的理解和应用。
五、教学方法采用启发式教学法和探究式学习法,通过问题引导学生自主学习和合作探究。
同时,运用多媒体教学工具辅助教学,使抽象的函数概念形象化、直观化。
六、教学评价1. 过程评价:通过小组讨论、课堂提问和学生作品的展示,评价学生对函数概念的理解和应用能力。
高中数学-函数的概念说课稿
![高中数学-函数的概念说课稿](https://img.taocdn.com/s3/m/f5165b07a216147917112838.png)
《函数的概念》说课稿说课人:张燕各位评委:大家好!今天我说课的内容是人教版高中数学必修1第一章第二节函数的概念第一课时。
我将从教材分析、教学目标、重点难点、教学过程设计及教学评价等方面来对本节课的教学进行说明。
一、教材分析——教材的特点、地位与作用本小节对函数概念的学习是在初中学过的函数概念的基础上从更严密的角度来定义函数.函数概念是整个中学数学中最重要的基本概念之一,它为后续学习指数函数、对数函数、幂函数等内容打下基础.而函数又是初等数学和高等数学中最基本最重要的内容之一,经常用到数学的各个分支里.它还是数形结合思想、函数与方程思想产生的载体.二、教学目标(1)知识与技能①理解函数的概念,初步学会用函数的定义判断函数.②会求一些最基本的函数的定义域、值域.③能通过函数的定义域和对应法则判断两个函数是否相等.(2)过程与方法①回顾初中函数的定义,然后通过三个背景实例,分别设置问题,在问题的引导下分析概括出三个实例的共同点,进而引出函数的概念.②在引入了函数概念的基础上给出函数的三要素.(3)情感、态度与价值观①通过对函数概念形成的探究,培养学生主动发现问题和分析问题的能力.②培养学生的抽象概括能力;学会数学表达和交流,发展数学应用意识.三、教学的重点和难点①重点:体会函数是描述变量之间相互依赖关系的重要数学模型,正确理解函数的概念、了解函数的三要素.②难点:对函数概念及符号()y f x的理解.四、教学过程设计为达到本节课的教学目标,突出重点,突破难点,我把教学过程设计为七个阶段:(1).回忆旧知,引出困惑问题一:请举出初中学过的一些函数.x y 2=,2x y =,x y 1=等. 问题二:请同学们回忆初中函数的定义是什么? 在一个变化过程中,有两个变量x 与y ,如果对于x 的每一个值,y 都有唯一确定的值和它对应,那么说y 是x 的函数,x 叫自变量.[设计意图]:通过回忆初中的函数及函数的定义,为探究问题三作好铺垫. 问题三:)(0R x y ∈=是函数吗?学生活动:先由学生思考回答,对产生的两种意见展开小组讨论,学生可能解决不了.[设计意图]:由于受认知能力的影响,利用初中所学函数知识很难回答这些问题,形成认知冲突,让学生带着悬念、带着认知冲突学习后面的知识,这样有利于激发学生的学习欲望,从而引出本节课的主题(用幻灯片打出课题).(2).创设情境,形成概念实例一:一枚炮弹发射后,经过s 26落到地面击中目标.炮弹的射高为m 845,且炮弹距地面的高度h (单位:m )随时间t (单位:s )变化的规律是:25130t t h -=.问题四1.t 的范围是什么?h 的范围是什么?2.t 和h 有什么关系?这个关系有什么特点?[设计意图]:引导学生用集合与对应的语言来刻画实例一,同时培养学生分析问题和提取信息的能力.事实上生活中这样的实例有很多,随着改革开放的深入,我们的生活水平越来越高,需求越来越大,对环境的影响也越来越重,下面请同学们自学有关臭氧层空洞的问题和恩格尔系数的问题(课本实例二、三):实例二:近几十年来,大气层中的臭氧迅速减少,因而出现了臭氧层空洞问题.图1中的曲线显示了南极上空臭氧层空洞的面积从2001~1979年的变化情况. 实例三:国际上常用恩格尔系数反映一个国家人民生活质量的高低,恩格尔系数越低,生活质量越高.表中恩格尔系数随时间(年)变化的情况表明,“八五”通过先对两个实例学生自学,然后请学生谈感受,老师提问,学生回答,师生共同完成.问题五:实例一、实例二、实例三的对应关系在呈现方式上有什么不同? 问题六:以上三个实例有什么相同的特征?学生活动:让学生分组讨论交流,总结归纳出.共同特点:①都有两个非空数集B A 、;②两个数集之间都有一种确定的对应关系;③对于数集A 中的每一个x ,按照某种对应关系f ,在数集B中都有唯一确定的y 值和它对应.[设计意图]:由前三个实例,抽象出函数概念的本质,未设计不是函数关系的对应图,这样处理有利于形成知识的正迁移.通过学生的“观察 分析 比较 归纳 概括 培养学生抽象思维的能力,同时也培养了学生的创新意识.问题七:满足以上共同特点的两个数集的对应关系,我们把它叫做什么呢?(先让学生说,老师再做补充)函数概念:设B A 、是非空的数集,如果按某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数)(x f 和它对应,那么就称B A f →:为集合A 到集合B 的一个函数,记作A x x f y ∈=),(. 其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 的值叫做函数值,函数值的集合})({A x x f ∈叫做函数的值域.显然,值域是集合B 的子集. 问题八:请同学们根据现在函数的定义判断前面三个实例是否表示两个集合的函数关系?问题九:)(0R x y ∈=是函数吗?问题十:用几何画板在平面直角坐标系中画出一段弧,并作平移和旋转,同时叫学生判断这些平移和旋转中的弧是否表示函数图像.方法引导:如何判断给定的两个变量间是否具有函数关系?可依据定义,依据定义中的哪几个要点?要注意函数概念中的哪些关键词? [设计意图]:是对函数概念的简单理解,同时也解决了问题三.(3).质疑解惑,辨析概念:问题十一:请同学们勾画出概念中的关键词,并用简洁的语言说明. 通过交流得出以下几点:① B A 、都是非空的数集;② 任意性与唯一性;③ 确定的对应关系,对应关系f 可以是解析式、图象、表格.问题十二:函数由几部分组成?三要素:定义域、值域、对应法则,缺一不可.问题十三:怎样理解符号)(x f ?在法则f 下,x 所对应的函数值,并结合生活实例说明.[设计意图]:目的在于帮助学生巩固函数的概念.(4).讨论研究,深化理解【例1】已知函数213)(+++=x x x f , (1)求函数的定义域;(2)求)32(),3(f f -的值;(3)当0>a 时,求)1(),(-a f a f 的值.想一想:函数的定义域该怎么求?符号()f a (a 为常数)与()f x 有哪些区别与联系?(学生先思考、计算,老师提问,师生共同完成)[设计意图]: 教师引导学生总结常见函数定义域的求法,使学生加深对定义域的认识;重在强化任意自变量的函数值是唯一的,加深对符号)(x f 的理解,体会由特殊到一般、具体到抽象的分析问题的方法,同时培养运算能力.这组问题重在加深对函数三要素的理解,以此培养学生观察问题、分析问题的能力.(5).即时训练,巩固新知练习1.求函数131)(-++-=x x x f 的定义域:练习2.已知函数,23)(3x x x f +=求)()2(a f f -+的值;学生活动:抽两位学生到讲台在黑板上分别完成(其他同学在下面完成),完成后,师生共同评价完善。
函数的定义说课稿
![函数的定义说课稿](https://img.taocdn.com/s3/m/26d23c0d4431b90d6c85c7e0.png)
函数概念的说课稿各位老师,大家好!我是2014级2班的数学老师王富.今天,我说课的题目是函数的概念. 首先,我对本教材进行简要的分析:一、教材分析《函数的概念》是中专教材基础版上册必修第三章第一节第一课时的内容.在此之前,学生已学习了一次函数,二次函数以及函数的传统定义,函数的后续内容主要有指数函数、对数函数和三角函数.函数是中专数学的主要内容,也是升学考试的主要内容,还是数学分析,复变函数的内容,在实践中应用广泛,是中专学生必须掌握的重点.二、教学目标按照教材课程标准的要求,根据上述对教材的分析,我确定本节课的教学目标是:1.知识与技能目标:掌握函数的概念;理解函数的特征. 2.过程与方法目标:通过对具体问题的分析,引导学生抽象概括出函数的定义,培养学生抽象概括的能力. 3.情感态度价值观目标:通过师生共同探索出函数的定义,总结出函数的特征,激发学生学习数学的兴趣,培养学生刻苦专研的精神.三、重点与难点重点:根据上述对教材的分析以及确定的教学目标,我确定本节课的教学重点为:函数的定义.难点:考虑到学生已有的知识基础与认知能力,我确定教学难点为对函数的定义的理解. 关键:学好本节课的关键是掌握对应法则、定义域、值域之间的关系.四、教学方法1.学情分析(1)生理特点:中专阶段是智力发展的关键年龄,学生逻辑思维从经验型逐步走向理论型发展,观察能力、记忆能力和想象能力也随之迅速发展.(2)心理特点:中专学生虽有好奇,好表现的因素,更有知道原理、明白方法的理性愿望,希望平等交流研讨,厌烦空洞的说教.(3)认知障碍:有的学生遗忘了学过的知识,有的学生知识断层严重连续性系统性较差,有的学生想象能力与提炼能力较差.2.教法学法根据上面的分析,从中专生的心理特点和认知水平出发,结合本班学生的实际情况与认知障碍,按照突出重点,突破难点,本节课采用学生广泛参与,师生共同探究的教学模式,运用启发式教学法指导学生学习。
函数的说课稿
![函数的说课稿](https://img.taocdn.com/s3/m/d459ce9b09a1284ac850ad02de80d4d8d15a01bb.png)
函数的说课稿尊敬的各位评委老师:大家好!今天我说课的题目是“函数”。
下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程、板书设计这几个方面来展开我的说课。
一、教材分析“函数”是中学数学中的重要概念之一,它不仅是数学学科的基础,也是解决实际问题的有力工具。
本节课选自人教版数学教材必修一,函数这一内容在教材中起着承上启下的作用。
函数的概念是在初中函数的基础上进行了深化和拓展,为后续学习指数函数、对数函数、幂函数等具体函数的性质和应用奠定了基础。
同时,函数的思想方法也贯穿于整个高中数学的学习中,对于培养学生的数学思维和解决问题的能力具有重要意义。
二、学情分析授课对象是高一年级的学生,他们在初中已经接触过函数的概念,对函数有了初步的认识。
但对于函数的本质和抽象概念的理解还存在一定的困难。
这个阶段的学生思维活跃,具有较强的好奇心和求知欲,但抽象思维能力和逻辑推理能力还有待提高。
因此,在教学中需要通过具体的实例和直观的图像,引导学生逐步理解函数的概念。
三、教学目标1、知识与技能目标理解函数的概念,能准确判断两个变量之间是否构成函数关系。
掌握函数的定义域、值域的求法。
会用区间表示函数的定义域和值域。
2、过程与方法目标通过对具体实例的分析和归纳,培养学生的观察、分析和概括能力。
经历函数概念的形成过程,体会从特殊到一般、从具体到抽象的数学思维方法。
3、情感态度与价值观目标让学生感受数学与生活的紧密联系,激发学生学习数学的兴趣。
通过合作探究,培养学生的团队合作精神和创新意识。
四、教学重难点1、教学重点函数的概念。
函数的定义域和值域的求法。
2、教学难点对函数概念中“唯一确定”的理解。
函数符号的理解和运用。
五、教法与学法1、教法启发式教学法:通过设置问题,引导学生思考,激发学生的学习积极性。
讲授法:对重点和难点知识进行详细讲解,使学生能够准确理解。
实例教学法:结合生活中的实际例子,让学生感受到函数的广泛应用,提高学生的学习兴趣。
《函数的概念》说课稿(通用9篇)
![《函数的概念》说课稿(通用9篇)](https://img.taocdn.com/s3/m/b83d80b950e79b89680203d8ce2f0066f533643a.png)
《函数的概念》说课稿(通用9篇)《函数的概念》说课稿(通用9篇)作为一位兢兢业业的人民教师,通常需要准备好一份说课稿,说课稿有助于提高教师的语言表达能力。
那么你有了解过说课稿吗?以下是小编整理的《函数的概念》说课稿,供大家参考借鉴,希望可以帮助到有需要的朋友。
《函数的概念》说课稿篇1一、说教材首先谈谈我对教材的理解,《函数的概念》是北师大版必修一第二章2.1的内容,本节课的内容是函数概念。
函数内容是高中数学学习的一条主线,它贯穿整个高中数学学习中。
又是沟通代数、方程、不等式、数列、三角函数、解析几何、导数等内容的桥梁,同时也是今后进一步学习高等数学的基础。
函数学习过程经历了直观感知、观察分析、归纳类比、抽象概括等思维过程,通过学习可以提高了学生的数学思维能力。
二、说学情接下来谈谈学生的实际情况。
新课标指出学生是教学的主体,所以要成为符合新课标要求的教师,深入了解所面对的学生可以说是必修课。
本阶段的学生已经具备了一定的分析能力,以及逻辑推理能力。
所以,学生对本节课的学习是相对比较容易的。
三、说教学目标根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:(一)知识与技能理解函数的概念,能对具体函数指出定义域、对应法则、值域,能够正确使用“区间”符号表示某些函数的定义域、值域。
(二)过程与方法通过实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用进一步加深集合与对应数学思想方法。
(三)情感态度价值观在自主探索中感受到成功的喜悦,激发学习数学的兴趣。
四、说教学重难点我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。
而教学重点的确立与我本节课的内容肯定是密不可分的。
那么根据授课内容可以确定本节课的教学重点是:函数的模型化思想,函数的三要素。
本节课的教学难点是:符号“y=f(x)”的含义,函数定义域、值域的区间表示,从具体实例中抽象出函数概念。
高中数学函数的说课稿(精选5篇)
![高中数学函数的说课稿(精选5篇)](https://img.taocdn.com/s3/m/7f71a742cbaedd3383c4bb4cf7ec4afe05a1b149.png)
高中数学函数的说课稿(精选5篇)高中数学函数的说课稿(精选5篇)作为一名教职工,时常需要用到说课稿,借助说课稿可以更好地组织教学活动。
那么大家知道正规的说课稿是怎么写的吗?下面是小编帮大家整理的高中数学函数的说课稿(精选5篇),供大家参考借鉴,希望可以帮助到有需要的朋友。
高中数学函数的说课稿1一、教材说明本节课是人教版高中数学必修I第一章《集合与函数概念》1.2.2函数的表示方法,该课时主要学习函数的三种表示方法:解析法,图像法,列表法,以及应用函数的表示方法解决一些实际问题1.教材所处低位和作用学习函数的表示,不仅是研究函数本身和应用函数解决实际问题所涉及的问题,而且是加深理解函数的概念的过程。
特别是在信息技术的环境下面可以使函数在数与形两方面的方式表示,因而使得学习函数的表示也是向学生渗透数形结合方法的重要过程。
2.学情分析学生的年龄特点和认知特点学生已具备的基本知识与技能二、教学目标知识与技能1.进一步理解函数概念,使学生掌握函数的三种表示法:解析法,列表法,图像法2. 能够恰当运用函数的三种表示方法,并借此解决一些实际问题:初步培养学生实际问题转化为数学问题的能力过程与方法1. 通过三种方法的学习,渗透数形结合的思想2.在运用函数解决实际问题的过程中,培养学生分析问题的能力增强学生运用数学的意识情感态度与价值:让学生体会数学在实际问题中的应用,培养学生学习兴趣三、教学重点,难点重点:函数的三种表示方法(因为学习本节课的目的就是为了掌握函数的三种不同表示方法)难点:根据不同的实际需要选择恰当的方法表示函数(因为恰当比较难把握)四、教法分析与学法指导本着以“学生发展为本”。
引导学生主动参与学习,指导学生学会学习方法,培养学生积极探索的精神,学生为主,教师指导。
整个教学过程主要用启发式教学方法,体现“分析”——“研究”——“总结”的学习环节,并以多媒体为教辅手段。
通过创设问题情境,营造学习氛围,组织学生讨论,让学生尝试探索中不断发现问题,以激发学生的求知欲,并在寻求解决问题的方法尝试的过程中获得自信心和成功感,在完成知识目标的同时,也完成情感目标的教育五、教学过程教学环节教学环节与教学内容设计意图引入定义表示法,这节课将更深入的了解、探讨这三种表示方法,先回顾函数解析法,图像法,列表法的定义;并给出一些众所周知的例子。
(数学说课稿)函数的概念和图象 说课稿
![(数学说课稿)函数的概念和图象 说课稿](https://img.taocdn.com/s3/m/95384a8259f5f61fb7360b4c2e3f5727a4e92449.png)
函数的概念和图象说课稿一.本课贯彻的教学理念老师作为课堂的支架,让同学学习函数的过程成为在老师指导下让同学在学习数学的过程中,用自己的体验,用自己的思维方式,重新制造函数概念的过程。
本堂课的教学过程是呈现同学学习行为的过程,是让同学的思维得到呈现的过程。
二.说教材1.教材分析函数一章在高中数学中,起着承上启下的作用,函数的思想贯穿高中数学的始终,学好这章不仅在学问方面,更重要的是在函数的思想、方法方面,将会让同学在今后的学习、工作和生活中受益无穷。
本小节介绍了函数概念和图象,我将本小节分为两课时,第一课时完成函数概念的教学,其次课时完成函数图象的教学。
这里我仅谈函数概念的教学。
函数的概念局部用三个实际例子设计数学情境,让同学探寻变量和变量的对应关系,结合学校学习的函数理论,在集合论的根底上,促使同学建构出函数的概念,体验结合旧学问,探究新学问,争辩新问题的欢快。
2.教学目标〔1〕学问目标1理解函数的概念,同学理解把怎样的对应关系才能称为函数;2理解函数定义域和值域的概念,并会求一些简洁函数的定义域。
〔2〕力量目标由实际问题动身,培育同学探究学问和抽象概括学问等方面的力量。
〔3〕情感目标通过对函数概念形成的探究过程培育同学发觉问题,探究问题,不断超越的创新品质3.教学重点和难点教学重点:对函数的概念的理解是重点。
本课通过同学对函数概念的建构过程和生疏稳固过程突出本课重点。
教学难点:从主观学问抽象成为客观概念是本课的难点。
本课通过老师创设多个教学情境,组织开展同学活动,老师作为同学活动的支架,解决本课的教学难点。
三.说教法曹一鸣博士认为:“突破教学模式,实现无模式教学,才是数学开展所追求的崇高境界。
〞在本课中,老师在教学过程中接受设问、引导、启发、发觉的方法,并机敏应用多媒体手段,以同学为主体,创设和谐、愉悦互动的环境,组织同学自主、合作的探究活动,引导同学探究新学问。
四.说学法首先,同学通过争辩老师在课堂上供应的实例和提出的问题,开放分析和争辩,发表个人的见解,接下来接受同学评价同学的方法提炼问题的中心思想。
函数的概念》说课稿 全国高中青年数学教师参赛优秀教案
![函数的概念》说课稿 全国高中青年数学教师参赛优秀教案](https://img.taocdn.com/s3/m/5054c03bbb1aa8114431b90d6c85ec3a87c28be8.png)
函数的概念》说课稿全国高中青年数学教师参赛优秀教案各位专家、评委,我今天要讲的是数学人教版普通高中新课程标准实验教科书必修1函数第一课时的教学内容。
我将从背景分析、教学目标设计、教法与学法选择、教学过程设计、教学媒体选择及教学评价设计六个方面来介绍我的教学设想。
一、背景分析1.研究任务分析函数是中学数学中的一个重要概念,它是非空数集到非空数集的一个对应关系。
函数思想是整个高中数学最重要的数学思想之一,而函数概念是函数思想的基础。
函数不仅对前面研究的集合作了巩固和发展,而且它是学好后继知识的基础和工具。
函数与代数式、方程、不等式、数列、三角函数、解析几何、导数等内容的联系也非常密切,函数的基础知识在现实生活、社会、经济及其他学科中有着广泛的应用。
函数概念及其反映出的数学思想方法已广泛渗透到数学的各个领域,是进一步研究数学的重要基础。
因此,本节课的教学重点是“函数概念的形成”。
2.学情分析从学生知识层面看,学生在初中已经学过函数的相关知识,有一定的基础。
通过高一第一节“集合”的研究,学生对集合思想的认识也日渐提高,为重新定义函数,从根本上揭示函数的本质提供了知识保证。
从学生能力层面看,通过以前的研究,学生已经具备了一定的分析、推理和概括能力,初步具备了研究函数概念的基本能力。
然而,在由实例抽象归纳出函数概念时,要求学生必须通过自己的努力探索才能得出,对学生的能力要求比较高。
因此,本节课的教学难点在于发展学生的抽象思维能力以及对函数概念本质的理解。
基于以上分析,我制定了本节课的教学目标。
二、教学目标设计目标:1.了解函数是非空数集到非空数集的一个对应关系,了解构成函数的三要素。
2.理解函数概念的本质,抽象的函数符号f(x)的意义,f(a)(a为常数)与f(x)的区别和联系,会求一些简单函数的定义域。
3.经历函数概念的形成过程,函数的辨析过程,函数定义域的求解过程以及求函数值的过程;渗透归纳推理,发展学生的抽象思维能力。
数学人教A版(2019)必修第一册3.1函数的概念及其表示 说课(共24张ppt)
![数学人教A版(2019)必修第一册3.1函数的概念及其表示 说课(共24张ppt)](https://img.taocdn.com/s3/m/a78041ead0f34693daef5ef7ba0d4a7302766cfe.png)
你认为这个说法正确吗?
设计意图:这个函数式在半小时后的运行状态不清楚,提醒学生注意t的范围。
问题3:请用集合的语言精确表示S与t的对应关系.
设计意图:从学生熟悉的情境引入,为学生归纳抽象出函数概念及数集A做铺垫,
质特征吗?
六、 教学过程
概念生成
共同特征有:
(1)都包含两个非空数集,用A,B来表示;
(2)都有一个对应关系 f ;
(3)对于数集A中的任意一个数x,按照对应关系,在数集B中都
有唯一确定的数y和它对应.
设计意图:通过小组合作,教师引导方式,让学生通过归纳四个实例
中函数的共同特征,体会数学抽象过程,概括出用集合与对应语言刻
设计意图:有情境1做铺垫,继续引导学生抽象出函数的概念。
问题5: 情境1和情境2中的函数有相同的对应关系,你认为它们是同一个函数吗?
为什么?
设计意图:与情境1做比较,进一步关注定义域、值域问题,为学生理解函
数的概念做引导。培养学生逻辑推理的数学核心素养。
六、 教学过程
情境创设
• 情境3:下图是北京市2016年11月23日的空气质量指数(Air Quality Index,简
五、教学方法
学情分析
通过活动
教学目标
教学重难点
教学方法
教学过程
板书设计
教学反思
创设情境
学生为主体
教师为主导
情境问题式
启发
引导
点拨
启发式
自主探究式
独立思考
自主学习交流合作来自六、 教学过程1
学情分析
2
教学目标
人教版函数的概念说课稿
![人教版函数的概念说课稿](https://img.taocdn.com/s3/m/25a56d3d03768e9951e79b89680203d8ce2f6aa7.png)
人教版函数的概念说课稿一、说课背景与目标在高中数学课程中,函数的概念是一个核心知识点,它是理解许多后续数学概念的基础。
本次说课的内容是人教版高中数学必修一中的“函数的概念”一章。
本章节的主要目标是让学生理解函数的定义、性质和基本的函数类型,为后续学习函数的图像、性质以及应用打下坚实的基础。
二、教学内容与学情分析1. 教学内容概述本节课的教学内容主要包括以下几个方面:- 函数的定义:介绍函数的数学定义,即一个从非空数集X到非空数集Y的映射。
- 函数的表示方法:包括函数的表达式、图像、表格等表示方式。
- 函数的基本概念:如定义域、值域、单调性、奇偶性等。
- 基本初等函数:包括一次函数、二次函数、指数函数、对数函数等。
2. 学情分析高中生已经具备了一定的数学基础,能够理解集合、映射等基本概念,但函数作为一个新的概念,对学生来说可能比较抽象。
因此,在教学过程中需要结合实际例子和图形,帮助学生形象地理解函数的概念和性质。
三、教学目标1. 知识与技能目标学生能够准确理解函数的定义,掌握函数的基本表示方法,了解函数的基本概念,如定义域、值域、单调性、奇偶性等,并能够识别和分析基本初等函数。
2. 过程与方法目标通过观察、比较、归纳等方法,培养学生的抽象思维能力和逻辑推理能力。
通过解决实际问题,提高学生运用函数知识解决实际问题的能力。
3. 情感态度与价值观目标激发学生对数学学习的兴趣,培养学生的数学探究精神和合作学习的意识。
四、教学重点与难点1. 教学重点- 函数的定义和基本概念。
- 函数的表示方法和基本性质。
- 基本初等函数的识别和性质。
2. 教学难点- 函数概念的抽象性,学生可能难以理解。
- 函数性质的理解和应用,尤其是对于函数图像的解读。
五、教学方法与手段1. 启发式教学法:通过提问引导学生思考,激发学生的好奇心和探究欲。
2. 直观教学法:利用图像、表格等直观材料帮助学生理解函数的概念。
3. 讨论式教学法:组织学生进行小组讨论,通过交流和合作深化对函数概念的理解。
2.1.1函数的概念(第一课时)说课稿
![2.1.1函数的概念(第一课时)说课稿](https://img.taocdn.com/s3/m/b2d0e9a9a32d7375a5178095.png)
及时反馈与调节原
[认知理论]
一切事物 都是相互联 系的辨证唯 物主义观。
4.总结提高
(1)函数的定义
一般地,设A,B是两个非空的数集,如果按某种对应法则f,对 于集合A中的每一个元数x,在集合B中都有唯一确定的元素y和它 对应,那么这样的对应叫做从A到B的一个函数(function),通常 记为
y=f(x),x∈A.
(1)每一个问题均涉及两个非空的数集A,B.
例如,在第一个问题中,一个集合A是由年份数组成,即 A={1949,1954,1959,1964,1969,1974,1979,1984,1989,1994,1999} 另一个集合B是由人口数(百万人)组成的,即 B={542,603,672,705,807,909,975,1035,1107,1177,1246}
4.总结提高过程的设计意图 指导思想与原则 认知理论
[设计意图]
[指导思想与原则 ]
使学生能够准
确理解并把握函 数的定义及函数 的三要素。
系统性与循序渐进 性相结合的原则。
[认知理论]
认识要不断 的深入和发展。
5.实践创新
例1:根据函数的定义判断下列对应是否为函数:
(1)x 2 , x 0, x R; x
古语中“函”通“含”。
(2)函数概念的分析
对于函数的意义,应从以下几个方面去理解:
(1) 对于变量x允许取的每一个值组成的集合A为函数y=f(x)的定义 域. (2)对于变量y可能取到的每一个值组成的集合B为函数y=f(x)的值 域. (3)变量x与y有确定的对应关系,即对于x允许取的每一个值,y都 有唯一确定的值与它对应。
若一物体下落2s,你能求出它下落距离吗? 这是通过代数表达式来体现:距离随时间的变化而变化
《函数的概念》说课稿
![《函数的概念》说课稿](https://img.taocdn.com/s3/m/5b7da9c29f3143323968011ca300a6c30c22f110.png)
《函数的概念》说课稿《函数的概念》说课稿以下是初中数学函数的慨念的说课稿范文,希望可以给大家借鉴的作用!第一大块教材分析一、本课时在教材中的地位及作用教材采用北师大版(数学)必修1,函数作为初等数学的核心内容,贯穿于整个初等数学体系之中,。
本章节9个课时,函数这一章在高中数学中,起着承上启下的作用,它是对初中函数概念的承接与深化。
在初中,只停留在具体的几个简单类型的函数上,把函数看成变量之间的依赖关系,而高中阶段不仅把函数看成变量之间的依赖关系,更是从“变量说”到“对应说”,这是对函数本质特征的进一步认识,也是学生认识上的一次飞跃。
这一章内容渗透了函数的思想,集合的思想以及数学建模的思想等内容,这些内容的学习,无疑对学生今后的学习起着深刻的影响。
本节课《函数的概念》是函数这一章的起始课。
概念是数学的`基础,只有对概念做到深刻理解,才能正确灵活地加以应用。
本课从集合间的对应来描绘函数概念,起到了上承集合,下引函数的作用。
也为进一步学习函数这一章的其它内容提供了方法和依据二、教学目标理解函数的概念,会用函数的定义判断函数,会求一些最基本的函数的定义域、值域。
通过对实际问题分析、抽象与概括,培养学生抽象、概括、归纳知识以及逻辑思维、建模等方面的能力。
通过对函数概念形成的探究过程,培养学生发现问题,探索问题,不断超越的创新品质,资料共享平台《《函数的概念》说课稿》(https://www.)。
三、重难点分析确定根据上述对教材的分析及新课程标准的要求,确定函数的概念既是本节课的重点,也应该是本章的难点第二大块说教法、学法四、一、教学基本思路及过程本节课《函数的概念》是函数这一章的起始课。
概念是数学的基础,只有对概念做到深刻理解,才能正确灵活地加以应用。
本课(借助小黑板)从集合间的对应来描绘函数概念,起到了上承集合,下引函数的作用,也为进一步学习函数这一章的其它内容提供了方法和依据。
⑴ 二、学情分析一方面学生在初中已经学习了变量观点下的函数定义,并具体研究了几类最简单的函数,对函数已经有了一定的感性认识;另一方面在本书第一章学生已经学习了集合的概念,这为学习函数的现代定义打下了基础。
高一数学教案:函数的概念4篇
![高一数学教案:函数的概念4篇](https://img.taocdn.com/s3/m/75d4f2916e1aff00bed5b9f3f90f76c660374c41.png)
高一数学教案:函数的概念高一数学教案:函数的概念精选4篇(一)教案标题:函数的概念教学目标:1. 理解函数的基本概念;2. 能够根据给定的函数定义进行函数值的计算;3. 能够掌握函数的图像表示方法。
教学准备:1. PowerPoint或黑板;2. 教材《高中数学》;3. 教学PPT或教学黑板稿。
教学步骤:步骤一:引入问题(5分钟)1. 通过生活中的例子引导学生思考“什么是函数?”;2. 引导学生记忆和理解“自变量”和“因变量”的概念。
步骤二:函数的定义(10分钟)1. 引导学生学习教科书上的函数定义;2. 解释函数的定义中自变量、因变量和对应规律的含义;3. 通过一些例子帮助学生理解函数的定义。
步骤三:函数的表示方法(10分钟)1. 引导学生学习函数的表示方法;2. 介绍函数的表格表示和解析式表示;3. 通过具体例子的计算来展示函数的表示方法。
步骤四:函数值的计算(15分钟)1. 引导学生学习函数值的计算方法;2. 通过给定函数和自变量求因变量的例子来演示函数值的计算。
步骤五:函数的图像表示(15分钟)1. 引导学生学习函数的图像表示方法;2. 通过函数表格和坐标系画出函数的图像;3. 解释图像上自变量和因变量的含义;4. 引导学生发现函数图像的特点,如单调性和奇偶性。
步骤六:练习与总结(10分钟)1. 给学生提供一些练习题,加深对函数的理解和掌握;2. 回顾课堂内容,让学生总结函数的概念和表示方法。
教学延伸:1. 引导学生进一步探究函数的性质,如定义域、值域、单调性等;2. 引导学生学习更复杂的函数概念,如反函数、复合函数等。
教学反思:通过讲解函数的概念和表示方法,学生能够初步理解函数的含义和计算方法。
在教学过程中,可以适当增加一些生动的例子和练习,培养学生的兴趣和动手能力。
在教学结束前,可以布置一些相关的课后作业,巩固学生的学习成果。
高一数学教案:函数的概念精选4篇(二)教学目标:1. 理解函数的概念,掌握函数的基本性质;2. 掌握函数的表示法:显式表示法、隐式表示法和参数表示法;3. 能够根据题目要求选择适当的函数表示法。
3.1函数的概念及其表示
![3.1函数的概念及其表示](https://img.taocdn.com/s3/m/d5c8f920a9114431b90d6c85ec3a87c240288aae.png)
《函数的概念》说课稿授课人:黄语辉各位评委:大家好!我说课的内容是高中新课标必修1中函数的概念。
“函数”是中学数学的核心概念.《函数的概念》这一节为2个课时,我主要针对第一课时的教学,谈谈我的理解与设计。
下面我从教材分析,教法学法,教学设计等五个环节来说明对这节课的认识.第一、教材分析函数这一章在高中数学中,起着承上启下的作用.本节《函数的概念》是函数这一章的起始课.它上承集合,下引性质.是派生数学概念.教学目标1. 理解函数的概念。
2. 掌握求函数值、定义域的方法;3. 理解函数的三要素及符号y=f(x)教学重难点教学重点:正确理解函数的概念教学难点:理解函数符号y=f(x)第二、学情分析在初中学生已经学习了变量观点下的函数定义;但对涉及函数本质的内容,要求是初步的.从认知能力看,高一学生抽象思维能力相对较弱,要从函数实例中抽象出函数概念还有较大的困难.第三、.教法学法教法:问题驱动、引导探究、启发讲授学法:观察法、探究法第四、教学设计在对函数概念这一课时有了充分认识之后,我的第三个环节教学设计将按以下五个步骤逐层推进:回顾迎新,引入课题。
从初中“变量说”下的函数概念出发;接着,以变量说为切入点,结合两个示例反复设问,实现概念认识的螺旋上升;在此基础上,概括抽象出对应观念下的函数概念;概念形成后,针对关键词,重点处理,加深本质理解;最后通过学生的自我总结和论述,达到认识上的升华.接下来我对这5个步骤作具体说明:探究新知首先抛出问题,请学生叙述举例.由于学生在初中主要接触的是用解析式表示的函数,对图像、表格表示的函数,因其对应关系“说不出来”,往往认为不是函数.这时顺势导入进入教学的第二个环节,丰富实例,探究共性.在这一环节给出四个案例,分析中要引导学生用集合的观点解释已有概念,利用函数的各种表达形式,为学生搭建理解的平台,以帮助学生感悟函数概念四个例题教学设计如下实例1复兴号高速列车的行驶速度、时间和路程。
函数的概念说课稿(精选)
![函数的概念说课稿(精选)](https://img.taocdn.com/s3/m/50d633163069a45177232f60ddccda38376be197.png)
函数的概念说课稿(精选)篇一:《函数概念》说课稿尊敬的各位评委、老师们:大家好!今天我说课的内容是《函数的概念》,选自人教版高中数学必修一第一章第二节。
下面介绍我对本节课的设计和构思,请您多提宝贵意见。
我的说课有以下六个部分:一、背景分析1、学习任务分析2、学情分析学生在初中已经学习了函数的概念,初步具备了学习函数概念的基本能力,但函数的概念从初中的变量学说到高中阶段的对应说很抽象,不易理解。
另外,通过对集合的学习,学生基本适应了有效的课堂模式,初步具备了小组合作、自主探究的学习能力。
基于以上的分析,我认为本节课的教学重点为:函数的概念以及构成函数的三要素;教学难点为:函数概念的形成及理解。
二、教学目标设计根据《课程标准》对本节课的学习要求,结合本班学生的情况,故而确立本节课的教学目标。
1、知识与技能(方面)通过丰富的实例,让学生①了解函数是非空数集到非空数集的一个对应;②了解构成函数的三要素;③理解函数概念的本质;⑤会求一些简单函数的定义域。
2、过程与方法(方面)在教学过程中,结合生活中的实例,通过师生互动、生生互动培养学生分析推理、归纳总结和表达问题的能力,在函数概念的构建过程中体会类比、归纳、猜想等数学思想方法。
3、情感、态度与价值观(方面)让学生充分体验函数概念的形成过程,参与函数定义域的求解过程以及函数的求值过程,使学生感受到数学的抽象美与简洁美。
三、课堂结构设计为充分调动学生的学习积极性,变被动学习为主动愉快的探究,我使用有效教学的课堂模式,课前学生通过结构化预习,完成问题生成单,课中采用师生互动、小组讨论、学生展写、展讲例题,教师点评的方式完成问题解决单,课后完成问题拓展单,课堂结构包含:复习旧知,引出课题(约2分钟)创设情境,形成概念(约5分钟)剖析概念(约12分钟)例题分析,巩固知识,小组讨论,展写例题(约8分钟)小组展讲,教师点评(约10分钟)总结反思,知识升华(约2分钟)(最后)布置作业,拓展练习。
函数的概念说课教案8篇
![函数的概念说课教案8篇](https://img.taocdn.com/s3/m/a52c7f8009a1284ac850ad02de80d4d8d05a0112.png)
函数的概念说课教案8篇在我们日常的教学生涯中,难免会遇到要写教案的情况,教案是需要结合实际的教学进度和内容的,下面是作者为您分享的函数的概念说课教案8篇,感谢您的参阅。
函数的概念说课教案篇1教材分析:函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想.教学目的:(1)通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;(2)了解构成函数的要素;(3)会求一些简单函数的定义域和值域;(4)能够正确使用“区间”的符号表示某些函数的定义域;教学重点:理解函数的模型化思想,用合与对应的语言来刻画函数;教学难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;教学过程:一、引入课题1、复习初中所学函数的概念,强调函数的模型化思想;2、阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:(1)炮弹的射高与时间的变化关系问题;(2)南极臭氧空洞面积与时间的变化关系问题;(3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题备用实例:我国#年4月份非典疫情统计:日期#新增确诊病例数#3、引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;4、根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系.二、新课教学(一)函数的有关概念1.函数的概念:设a、b是非空的数集,如果按照某个确定的对应关系f,使对于集合a中的任意一个数x,在集合b中都有唯一确定的数f(x)和它对应,那么就称f:a→b 为从集合a到集合b的一个函数(function).记作:y=f(x),x∈a.其中,x叫做自变量,x的取值范围a叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈a}叫做函数的值域(range).注意:○1“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;○2函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.2.构成函数的三要素:定义域、对应关系和值域3.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.4.一次函数、二次函数、反比例函数的定义域和值域讨论(由学生完成,师生共同分析讲评)(二)典型例题1.求函数定义域课本p20例1解:(略)说明:○1函数的定义域通常由问题的实际背景确定,如果课前三个实例;○2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;○3函数的定义域、值域要写成集合或区间的形式.巩固练习:课本p22第1题2.判断两个函数是否为同一函数课本p21例2解:(略)说明:○1构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)○2两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。
《函数的概念》说课稿[规整]
![《函数的概念》说课稿[规整]](https://img.taocdn.com/s3/m/1763d2234531b90d6c85ec3a87c24028915f85fd.png)
《函数的概念》说课稿[规整]函数的概念是数学中最基础、最重要的概念之一,更是理解数学本质的关键所在。
在高中数学的教学中,函数的概念被视为数学课程的重头戏,教师需要通过灵活的授课方法来向学生阐述函数的基本概念及其特点,并通过多样的教学方式引导学生深入理解和掌握函数的应用。
一、引入首先,我会展示一个常见的数学问题:“有一条直线过点A和点B,如何绘制这条直线?”这个问题通过平面直角坐标系的概念可以解答。
以直线上的两个点A(x1, y1)和B(x2, y2)为例,我们可以通过两点的坐标差值计算出直线的斜率k,即k=(y2-y1)/(x2-x1),进而绘制出直线,如下图所示。
(示意图)二、引入函数的概念接着,我会介绍另一个问题:“在第一象限内,如何将一个由点组成的图形与其坐标系上的每个点一一对应?”这个问题的答案就是函数的概念。
通过将坐标系上的每个点表示为(x, y)的形式,将x看作自变量,y看作因变量,可以将一个由点组成的图形看作一个函数y=f(x)。
在函数中,自变量x是图形上的点,因变量y是对应的y坐标,通过函数的定义,不同的自变量对应不同的因变量,从而实现对每个点的一一对应。
三、函数的定义及特点在讲解函数的定义时,我将着重强调以下内容:(1)函数的定义函数是一种特殊的关系,将集合A中的元素与集合B中唯一的元素对应起来,即y=f(x),其中x是A中元素,y是B中元素,x是自变量,y是因变量,f(x)是函数,称为关于自变量x的函数。
函数有两个基本特点,即定义域和值域。
其中,定义域是自变量x可以取的值的范围;值域是因变量y可以取的值的范围。
此外,函数还具有单调性、奇偶性、周期性等特点。
四、函数的应用最后,我将演示数学中常见的函数应用——直线函数。
直线函数可表示为y=kx+b,其中,k是斜率,b是截距。
我们可以利用直线函数解决各类几何问题,例如求两点间的距离、求等腰三角形的重心坐标、求某点到某线段的距离等问题。
函数的概念说课稿
![函数的概念说课稿](https://img.taocdn.com/s3/m/666165dea8114431b80dd837.png)
函数的概念说课稿work Information Technology Company.2020YEAR《函数的概念》说课稿《函数的概念》说课稿姓名:xxx 学号22201331401xxxxx 各位为老师大家好,我是来自西南大学数学与统计学院201x级x班的xxx。
今天我说课的内容是“函数的概念”。
下面我从七个方面来阐述我对“函数的概念”的教学设计。
首先,我将对教材进行简要的分析。
一、教材分析1、教材地位“函数的概念”是人教版普通高中实验教科书必修一第一章第二节第一课时的内容,是高考考查的重点内容之一,也是中学教材的一个重要的基本概念。
它不仅对前面学习的集合做了巩固和发展,而且也是学好后面指数函数、对数函数、三角函数等这些后继知识的基础和工具。
2、教学对象一方面学生在初中已经初步学习了函数的概念,探讨了函数的相关知识,有了一定的知识基础,但是这些知识基础在相当大的程度上起到负迁移的作用,使学生对函数概念的“变量说”先入为主,很难接受“对应说”。
另一方面,通过前面集合的学习,学生对集合的认识也逐渐提高,为重新定义函数,从根本上揭示函数的本质提供了一定的知识保障。
二、教学目标基于以上对教材的分析,根据数学课程标准的基本要求,考虑到学生的认知结构和心理特征,我制定目标如下:1、知识与技能目标(1)理解函数的概念,明确函数的三要素;(2)能正确判断函数是否相等,会求一些基本函数的定义域、值域;(3)掌握函数符号及区间符号的应用。
2、过程与方法目标经历函数的概念的归纳过程,培养抽象概况能力、逻辑思维能力、口语表达能力;经历习题的探索过程,培养全面思维能力。
3、情感、态度、价值观内化“对应说”对函数概念的描述;渗透数学文化思想,激发观察、分析、探求的兴趣和热情;养成严谨、全面的数学思维。
三、教学重难点基于以上教材分析以及教学目标的设定,我制定了如下重难点:1、重点:(1)函数概念的理解;(2)简单函数的定义域、值域的求法;(3)函数相等的判断;(4)区间符号的使用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B ={S|0≤S≤26}
实例3 (3)国际上常用恩格尔系数反映一个国家人民生活质量的高低,恩格尔系
数越低,生活质量越高.表中恩格尔系数随时间(年)变化的情况表明, “八五”计划以来,我国城镇居民的生活质量发生了显著变化.
1991 53.8 1992 52.9 1993 50.1 1994 49.9 1995 49.9 1996 48.6 1997 46.4 1998 44.5 1999 41.9 2000 39.2 2001 37.9
布置作业,拓展练习
四、教学媒体设计
1.多媒体辅助教学
2.设计科学合理的板书
前黑板
1.2.1 函数的概念 一、函数的有关概念
(1)函数的定义 (2)函数的三要素 (3)函数相等 二、区间的概念
例1 ( 1) ( 2) ( 3) --------
投影区
后黑板
---------例2 -------------例3 --------------
. 炮弹的射高为845 m,且炮弹距地面的高度h( 单位: m)随时间t (单位: s)变化的规律是 h=130t-5t2.
问题1:从炮弹发射到炮弹落地的时间内,集合A 中是否存在某一时间t,在B中没有高度h与之相对应 ?是否有两个或多个高度与之相对应?
A={t|0≤t≤26}
B={h|0≤h≤845}
普通高中课程标准实验教科书数学必修1第一章第二节
函数的概念
函数的概念
一、背景分析 二、教学目标分析 三、课堂结构设计 四、教学媒体设计 五、教学过程设计 六、教学评价设计
一、背景分析
1、学习任务分析
本节课是必修1第一章第二节的内容,是函 数这一章的起始课;它上承集合,下引性质, 与方程、不等式、数列、三角函数、解析几何 、导数等内容联系密切,是学好后继知识的基 础和工具,所以本节课在数学教学中的地位和 作用是至关重要的。
B ={S|0≤S≤26}
教学过程 问题3:从1991-2001年,集合A中是否存在某一 时间t,在B中没有恩格尔系数与之相对应?是否有 两个或多个恩格尔系数与之相对应? (3)国际上常用恩格尔系数反映一个国家人民生活质 量的高低,恩格尔系数越低,生活质量越高.表中恩 格尔系数随时间(年)变化的情况表明,“八五”计 划以来,我国城镇居民的生活质量发生了显著变化.
A
a1 a2
B f
b1
A
B f
a1
b1
b2
a2
b2
b2
a2
a3
b3
a3
b3
a3
b3
特征:(1)A, B 都是非空数集; (2)A中任意,B中唯一; (3)函数的定义域为 A;函数的值域 {f(x)|x∈A} B; 2.函数的三要素:定义域,对应关系和值域 如果两个函数的定义域,对应关系完全 3.函数相等:一致,则两个函数相等,这是判断两函 数相等的依据.
B={132,135,120,125,122},f:上次考试数学成绩,由A到B能否构成 函数?
问题2:若将问题1中集合A改为“A={杜杭,王丽,林晨晨,姚壮
,田汶帅}”,其余条件不变,那么由A到B能否构成函数?
问题3:若学号04的学生上次考试因病缺考,无成绩,那么学号
与成绩能否构成函数?
教学过程 2、螺旋上升: B A f b1 a1
教学过程 问题2:从1979-2001年,集合A中是否存在某一 时间t,在B中没有面积S与之相对应?是否有两个 实例2 (2)近几十年来,大气层中的臭氧迅速减少,因而出 或多个面积与之相对应? 现了臭氧层空洞问题.图中的曲线显示了南极上空臭 氧层空洞的面积近几年的变化情况.
A={t|1979≤t≤2001}
五 、 教学过程设计
函 数 概 念 的 形 成 理 解 概 念 、 剖 析 概 念 例 题 分 析 、 巩 固 知 识 掌 握
激 趣 导 入 新 课
教学过程
一、导入新课
问题一:
初中时函数是如何定义的?
问题二:
y=1是函数吗?
教学过程
实例1 (1)一枚炮弹发射后,经过26 s落到地面击中目标. 炮弹的射高为
B={53.8,52.9, 50.1,49.9, 48.6, 46.4, 44.5, 41.9, 39.2, 37.9}
教学过程
函数的概念的理解:
1、学生活动:
学号
学生 成绩
01
杜杭Байду номын сангаас132
02
王丽 135
03
林晨晨 120
04
姚壮 125
05
田汶帅 122
问题1:若学号构成集合A={01,02,03,04,05},成绩构成集合
时间(年) 恩格尔系数( % )
A={1991,1992,1993,1994, 1995, 1996, 1997,1998,1999,2000,2001} B={53.8,52.9, 50.1,49.9, 48.6, 46.4, 44.5, 41.9, 39.2, 37.9}
教学过程 实例1 (1)一枚炮弹发射后,经过26 s落到地面击中目标
一、背景分析
2、学情分析
学生在初中已经学习了函数的概念,初步具备 了学习函数概念的基本能力,但函数的概念从初 中的变量学说到高中阶段的对应说很抽象,不易 理解。 另外,通过对集合的学习,学生基本适应了 有效教学的课堂模式,初步具备了小组合作、自 主探究的学习能力
教学重点:函数的概念以及构成函数的三要素;
教学难点:函数概念的形成及理解。
二、教学目标设计
知识与技能
情感态度
与价值观 过程与方法
三、课堂结构设计
复习旧知,导入新课(约2分钟) 创设情境,形成概念(约5分钟) 剖析概念,理解概念(约12分钟) 小组讨论,展写例题(约8分钟) 例题分析,巩固知识 小组展讲,教师点评(约10分钟) 总结反思,知识升华(约2分钟)
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
实例3
时间(年)
恩格尔系数( % )
53.8
52.9
50.1
49.9
49.9
48.6
46.4
44.5
41.9
39.2
37.9
A={1991,1992,1993,1994, 1995, 1996, 1997,1998,1999,2000,2001}
845 m,且炮弹距地面的高度h(单位: m)随时间t (单位: s)变化的规 律是h=130t-5t2.
A={t|0≤t≤26}
B={h|0≤h≤845}
实例2 (2)近几十年来,大气层中的臭氧迅速减少,因而出现了臭氧层空洞
问题.图中的曲线显示了南极上空臭氧层空洞的面积从年的变化情况.
A={t|1979≤t≤2001}